

Java

Learning to Program with Robots

Byron Weber Becker, University of Waterloo

Java: Learning to Program with Robots

Managing Editor:
Mary Franz

Senior Product Manager:
Alyssa Pratt

Production Editor:
Kelly Robinson

Developmental Editor:
Lisa Ruffolo

Associate Product Manager:
Jennifer Smith

COPYRIGHT 2007 Thumbody's
Thinking Inc.

ALL RIGHTS RESERVED. No part of
this work may be reproduced, tran-
scribed, or used in any form or by any
means—graphic, electronic, or mechani-
cal, including photocopying, recording,
taping, Web distribution, or information
storage and retrieval systems—without
prior written permission of the publisher.

An exception to the above is made for
instructors and students. They are
permitted to make copies at cost,
including printed copies, for their own
use.

Any additional questions about permis-
sions can be submitted by e-mail to
info@learningwithrobots.com

by Byron Weber Becker

Senior Marketing Manager:
Karen Seitz

Senior Manufacturing Coordinator:
Justin Palmeiro

Marketing Coordinator:
Suelaine Frongello

Cover Artist:
Joel Weber Becker

Cover Designer:
Deborah van Rooyen

Disclaimer
Thumbody's Thinking reserves the
right to revise this publication and
make changes from time to time in its
content without notice.

For more information, contact
Thumbody's Thinking, 211 Simeon
Street, Kitchener, ON N2H 1S9
Canada or email
info@learningwithrobots.com

This work was originally published by
Thomson Course Technology, a
division of Thomson Learning. The
rights to this work have subsequently
reverted back to the author's company,
Thumbody's Thinking Inc. This copy,
including the credits listed above, is
identical except for information related
to the original publisher.

Compositor:
GEX Publishing Services

Copyeditor:
Lori Cavanaugh

Proofreader:
Green Pen Quality Assurance

Indexer:
Alexandra Nickerson

ISBN 0-619-21724-3

Photo Credits
Figure 1-5: Courtesy of

NASA/JPL-Caltech
Figure 1-22: Courtesy of the U.S. Navy
Figure 3-3: Cartoon © 2005

ScienceCartoonsPlus.com. Used with
permission.

Cover: Drawing © 2001 by Joel Weber
Becker. Used with permission.

Some portions of this work are based on
Karel++: A Gentle Introduction to the
Art of Object-Oriented Programming
by Joseph Bergin, Mark Stehlik,
Jim Roberts, and Richard Pattis.
Copyright © 1997 by John Wiley
& Sons, Inc. Used with permission of
John Wiley & Sons, Inc.

The Web addresses in this book are sub-
ject to change from time to time as nec-
essary without notice.

http:ScienceCartoonsPlus.com
mailto:info@learningwithrobots.com
mailto:info@learningwithrobots.com

Contents

Chapter 1 Programming with Objects 1
1.1 Modeling with Objects 2

1.1.1 Using Models 2

1.1.2 Using Software Objects to Create Models 4

1.1.3 Modeling Robots 7

1.2 Understanding Karel’s World 9

1.2.1 Avenues, Streets, and Intersections 9

1.2.2 Walls and (other) Things 10

1.2.3 Robots 10

1.3 Modeling Robots with Software Objects 12

1.3.1 Attributes 13

1.3.2 Constructors 13

1.3.3 Services 14

1.4 Two Example Programs 15

1.4.1 Situations 15

1.4.2 Program Listing 17

1.4.3 Setting up the Initial Situation 19

1.4.4 Sending Messages 20

1.4.5 Tracing a Program 20

1.4.6 Another Example Program 23

1.4.7 The Form of a Java Program 25

1.4.8 Reading Documentation to Learn More 26

1.5 Compiling and Executing Programs 29

1.5.1 Compile-Time Errors 30

1.5.2 Run-Time Errors 32

1.5.3 Intent Errors 33

1.5.4 A Brief History of Bugs and Debugging 34

1.6 GUI: Creating a Window 34

1.6.1 Displaying a Frame 35

1.6.2 Adding User Interface Components 37

1.7 Patterns 39

1.7.1 The Java Program Pattern 40

1.7.2 The Object Instantiation Pattern 41

1.7.3 The Command Invocation Pattern 42

1.7.4 The Sequential Execution Pattern 43

1.7.5 The Display a Frame Pattern 44

iii

iv
CO

N
TE

N
TS

1.8 Summary and Concept Map 44

1.8.1 Concept Maps 45

1.9 Problem Set 46

Chapter 2 Extending Classes with Services 53

2.1 Understanding Programs: An Experiment 54

2.2 Extending the Robot Class 56

2.2.1 The Vocabulary of Extending Classes 58

2.2.2 The Form of an Extended Class 59

2.2.3 Implementing the Constructor 59

2.2.4 Adding a Service 62

2.2.5 Implementing move3 64

2.2.6 Implementing turnRight 65

2.2.7 RobotSE 66

2.2.8 Extension vs. Modification 67

2.3 Extending the Thing Class 67

2.3.1 Exploring the Thing Class 68

2.3.2 Implementing a Simple Lamp Object 69

2.3.3 Completely Initializing Lamps 74

2.3.4 Fine-Tuning the Lamp Class (optional) 75

2.3.5 Other Subclasses of Thing 76

2.3.6 Fun with Lights (optional) 77

2.4 Style 78

2.4.1 White Space and Indentation 78

2.4.2 Identifiers 79

2.4.3 Comments 81

2.4.4 External Documentation (advanced) 84

2.5 Meaning and Correctness 85

2.6 Modifying Inherited Methods 87

2.6.1 Overriding a Method Definition 87

2.6.2 Method Resolution 90

2.6.3 Side Effects 92

2.7 GUI: Extending GUI Components 92

2.7.1 Extending JComponent 94

2.7.2 Overriding paintComponent 97

2.7.3 How paintComponent Is Invoked 100

2.7.4 Extending Icon 100

2.8 Patterns 102

2.8.1 The Extended Class Pattern 102

2.8.2 The Constructor Pattern 103

2.8.3 The Parameterless Command Pattern 105

2.8.4 The Draw a Picture Pattern 105

2.9 Summary and Concept Map 106

2.10 Problem Set 107

v

Chapter 3 Developing Methods 115

C
O
N
TEN

TS

3.1 Solving Problems 	 116

3.2 Stepwise Refinement 	 117

3.2.1	 Identifying the Required Services 118

3.2.2	 Refining harvestField 120

3.2.3	 Refining harvestTwoRows 126

3.2.4	 Refining harvestOneRow 127

3.2.5	 Refining goToNextRow 129

3.2.6	 Refining positionForNextHarvest 129

3.2.7	 The Complete Program 130

3.2.8	 Summary of Stepwise Refinement 132

3.3 Advantages of Stepwise Refinement 133

3.3.1	 Understandable Programs 133

3.3.2	 Avoiding Errors 134

3.3.3	 Testing and Debugging 135

3.3.4	 Future Modifications 136

3.4 Pseudocode 	 138

3.5 Variations on the Theme 	 139

3.5.1	 Using Multiple Robots 140

3.5.2	 Multiple Robots with Threads (advanced) 142

3.5.3	 Factoring Out Differences 146

3.6 Private and Protected Methods 	 147

3.7 GUI: Using Helper Methods 	 151

3.7.1	 Declaring Parameters 153

3.7.2	 Using Parameters 153

3.8 Patterns 	 155

3.8.1	 The Helper Method Pattern 155

3.8.2	 The Multiple Threads Pattern 156

3.8.3	 The Template Method Pattern 157

3.8.4	 The Parameterized Method Pattern 158

3.9 Summary and Concept Map 	 159

3.10	 Problem Set 160

Chapter 4 Making Decisions 167
4.1 Understanding Two Kinds of Decisions 168

4.1.1 Flowcharts for if and while Statements 169

4.1.2	 Examining an if Statement 169

4.1.3	 Examining a while Statement 171

4.1.4	 The General Forms of the if and

while Statements 173

4.2 Questions Robots Can Ask 	 174

4.2.1 Built-In Queries 	 174

4.2.2 Negating Predicates 	 175

4.2.3 Testing Integer Queries 	 176

vi
CO

N
TE

N
TS

4.3 Reexamining Harvesting a Field 	 177

4.3.1	 Putting a Missing Thing 178

4.3.2	 Picking Up a Pile of Things 179

4.3.3	 Improving goToNextRow 181

4.4 Using the if-else Statement 	 183

4.4.1	 An Example Using if-else 184

4.5 Writing Predicates 	 186

4.5.1	 Writing frontIsBlocked 187

4.5.2	 Predicates Using Non-Boolean Queries 188

4.6 Using Parameters 	 189

4.6.1	 Using a while Statement with a Parameter 190

4.6.2	 Using an Assignment Statement with a Loop 191

4.6.3	 Revisiting Stepwise Refinement 193

4.7 GUI: Scaling Images 	 196

4.7.1	 Using Size Queries 198

4.7.2	 Scaling an Image 199

4.8 Patterns 	 201

4.8.1	 The Once or Not at All Pattern 201

4.8.2	 The Zero or More Times Pattern 202

4.8.3	 The Either This or That Pattern 202

4.8.4	 The Simple Predicate Pattern 203

4.8.5	 The Count-Down Loop Pattern 204

4.8.6	 The Scale an Image Pattern 205

4.9 Summary and Concept Map 	 205

4.10	 Problem Set 207

Chapter 5 More Decision Making 	 211

5.1 Constructing while Loops 	 212

5.1.1	 Avoiding Common Errors 212

5.1.2	 A Four-Step Process for Constructing

while Loops 214

5.2 Temporary Variables 	 218

5.2.1 Counting the Things on an Intersection 219

5.2.2 Tracing with a Temporary Variable 221

5.2.3 Storing the Result of a Query 222

5.2.4 Writing a Query 	 223

5.2.5 Using a boolean Temporary Variable 224

5.2.6 Scope 	 224

5.3 Nesting Statements 	 225

5.3.1 Examples Using if and while 225

5.3.2 Nesting with Helper Methods 227

5.3.3 Cascading-if Statements 	 227

vii
C

O
N
TEN

TS

5.4 Boolean Expressions 	 231

5.4.1	 Combining Boolean Expressions 231

5.4.2	 Simplifying Boolean Expressions 236

5.4.3	 Short-Circuit Evaluation 238

5.5 Exploring Loop Variations 	 239

5.5.1	 Using a for Statement 239

5.5.2	 Using a do-while Loop (optional) 242

5.5.3	 Using a while-true Loop (optional) 243

5.5.4	 Choosing an Appropriate Looping Statement 246

5.6 Coding with Style 	 246

5.6.1	 Use Stepwise Refinement 247

5.6.2	 Use Positively Stated Simple Expressions 247

5.6.3	 Visually Structure Code 250

5.7 GUI: Using Loops to Draw 	 251

5.7.1	 Using the Loop Counter 252

5.7.2	 Nesting Selection and Repetition 253

5.8 Patterns 	 257

5.8.1	 The Loop-and-a-Half Pattern 257

5.8.2	 The Temporary Variable Pattern 258

5.8.3	 The Counting Pattern 259

5.8.4	 The Query Pattern 259

5.8.5	 The Predicate Pattern 260

5.8.6	 The Cascading-if Pattern 261

5.8.7	 The Counted Loop Pattern 262

5.9 Summary and Concept Map 	 262

5.10	 Problem Set 264

Chapter 6 Using Variables 	 273

6.1 Instance Variables in the Robot Class 274

6.1.1	 Implementing Attributes with

Instance Variables 275

6.1.2	 Declaring Instance Variables 276

6.1.3	 Accessing Instance Variables 278

6.1.4	 Modifying Instance Variables 280

6.1.5	 Testing the SimpleBot Class 282

6.1.6	 Adding Another Instance Variable:

direction 283

6.1.7	 Providing Accessor Methods 286

6.1.8	 Instance Variables versus Parameter

and Temporary Variables 289

6.2 Temporary and Parameter Variables 289

6.2.1	 Reviewing Temporary Variables 290

6.2.2	 Reviewing Parameter Variables 296

viii
CO

N
TE

N
TS

6.3 Extending a Class with Variables 300

6.3.1 Declaring and Initializing the Variables 302

6.3.2 Maintaining and Using Instance Variables 303

6.3.3 Blank Final Instance Variables 305

6.4 Modifying vs. Extending Classes 305

6.5 Comparing Kinds of Variables 306

6.5.1 Similarities and Differences 306

6.5.2 Rules of Thumb for Selecting a Variable 307

6.5.3 Temporary versus Instance Variables 308

6.6 Printing Expressions 310

6.6.1 Using System.out 310

6.6.2 Using a Debugger 311

6.7 GUI: Repainting 312

6.7.1 Instance Variables in Components 314

6.7.2 Triggering a Repaint 317

6.7.3 Animating the Thermometer 317

6.8 Patterns 318

6.8.1 The Named Constant Pattern 318

6.8.2 The Instance Variable Pattern 319

6.8.3 The Accessor Method Pattern 320

6.9 Summary and Concept Map 321

6.10 Problem Set 322

Chapter 7 More on Variables and Methods 329

7.1 Using Queries to Test Classes 330

7.1.1 Testing a Command 330

7.1.2 Testing a Query 332

7.1.3 Using Multiple Main Methods 335

7.2 Using Numeric Types 337

7.2.1 Integer Types 337

7.2.2 Floating-Point Types 338

7.2.3 Converting Between Numeric Types 340

7.2.4 Formatting Numbers 341

7.2.5 Taking Advantage of Shortcuts 344

7.3 Using Non-Numeric Types 344

7.3.1 The boolean Type 344

7.3.2 The Character Type 345

7.3.3 Using Strings 347

7.3.4 Understanding Enumerations 355

7.4 Example: Writing a Gas Pump Class 358

7.4.1 Implementing Accessor Methods 359

7.4.2 Implementing a Command/Query Pair 361

7.5 Understanding Class Variables and Methods 366

7.5.1 Using Class Variables 366

7.5.2 Using Class Methods 368

ix
C

O
N
TEN

TS

7.6 GUI: Using Java Interfaces 	 374

7.6.1	 Specifying Methods with Interfaces 375

7.6.2	 Implementing an Interface 377

7.6.3	 Developing Classes to a Specified Interface 378

7.6.4	 Informing the User Interface of Changes 379

7.7 Patterns 	 381

7.7.1	 The Test Harness Pattern 381

7.7.2	 The toString Pattern 381

7.7.3	 The Enumeration Pattern 382

7.7.4	 The Assign a Unique ID Pattern 383

7.8 Summary and Concept Map 	 384

7.9 Problem Set 	 386

Chapter 8 Collaborative Classes 	 391

8.1 Example: Modeling a Person 	 392

8.1.1 Using a Single Class 	 392

8.1.2 Using Multiple Classes 	 394

8.1.3 Diagramming Collaborating Classes 399

8.1.4 Passing Arguments 	 401

8.1.5 Temporary Variables 	 401

8.1.6 Returning Object References 401

8.1.7 Section Summary 	 403

8.2 Reference Variables 	 403

8.2.1 Memory 	 404

8.2.2 Aliases 	 406

8.2.3 Garbage Collection 	 409

8.2.4 Testing for Equality 	 410

8.3 Case Study: An Alarm Clock 	 412

8.3.1 Step 1: Identifying Objects and Classes 412

8.3.2 Step 2: Identifying Services 	 414

8.3.3 Step 3: Solving the Problem 	 423

8.4 Introducing Exceptions 	 424

8.4.1 Throwing Exceptions 	 424

8.4.2 Reading a Stack Trace 	 425

8.4.3	 Handling Exceptions 426

8.4.4	 Propogating Exceptions 428

8.4.5	 Enhancing the Alarm Clock with

Sound (optional) 429

8.5 Java’s Collection Classes 	 431

8.5.1 A List Class: ArrayList	 432

8.5.2 A Set Class: HashSet	 439

8.5.3 A Map Class: TreeMap	 441

8.5.4 Wrapper Classes 	 446

x
CO

N
TE

N
TS

8.6 GUIs and Collaborating Classes 	 447

8.6.1	 Using Libraries of Components 448

8.6.2	 Introducing the Model-View-Controller

Pattern 448

8.7 Patterns 	 449

8.7.1	 The Has-a (Composition) Pattern 449

8.7.2	 The Equivalence Test Pattern 450

8.7.3	 The Throw an Exception Pattern 451

8.7.4	 The Catch an Exception Pattern 452

8.7.5	 The Process All Elements Pattern 452

8.8 Summary and Concept Map 	 453

8.9 Problem Set 	 454

Chapter 9 Input and Output 	 459

9.1 Basic File Input and Output 	 460

9.1.1	 Reading from a File 461

9.1.2	 Writing to a File 464

9.1.3	 The Structure of Files 466

9.2 Representing Records as Objects 	 472

9.2.1	 Reading Records as Objects 472

9.2.2	 File Formats 475

9.3 Using the File Class 	 477

9.3.1	 Filenames 477

9.3.2	 Specifying File Locations 478

9.3.3	 Manipulating Files 479

9.4 Interacting with Users 	 480

9.4.1	 Reading from the Console 480

9.4.2	 Checking Input for Errors 481

9.5 Command Interpreters 	 486

9.5.1	 Using a Command Interpreter 486

9.5.2	 Implementing a Command Interpreter 487

9.5.3	 Separating the User Interface from the Model 492

9.6 Constructing a Library 	 495

9.6.1	 Compiling without an IDE 495

9.6.2	 Creating and Using a Package 497

9.6.3	 Using .jar Files 499

9.7 Streams (advanced) 	 500

9.7.1	 Character Input Streams 501

9.7.2	 Character Output Streams 502

9.7.3	 Byte Streams 503

9.8 GUI: File Choosers and Images 	 503

9.8.1	 Using JFileChooser 504

9.8.2	 Displaying Images from a File 506

xi
C

O
N
TEN

TS

9.9 Patterns 508

9.9.1 The Open File for Input Pattern 508

9.9.2 The Open File for Output Pattern 508

9.9.3 The Process File Pattern 508

9.9.4 The Construct Record from File Pattern 509

9.9.5 The Error-Checked Input Pattern 509

9.9.6 The Command Interpreter Pattern 510

9.10 Summary and Concept Map 511

9.11 Problem Set 512

Chapter 10 Arrays 519

10.1 Using Arrays 520

10.1.1 Visualizing an Array 521

10.1.2 Accessing One Array Element 522

10.1.3 Swapping Array Elements 525

10.1.4 Processing All the Elements in an Array 527

10.1.5 Processing Matching Elements 528

10.1.6 Searching for a Specified Element 529

10.1.7 Finding an Extreme Element 533

10.1.8 Sorting an Array 534

10.1.9 Comparing Arrays and Files 540

10.2 Creating an Array 541

10.2.1 Declaration 542

10.2.2 Allocation 543

10.2.3 Initialization 544

10.3 Passing and Returning Arrays 547

10.4 Dynamic Arrays 551

10.4.1 Partially Filled Arrays 551

10.4.2 Resizing Arrays 554

10.4.3 Combining Approaches 557

10.5 Arrays of Primitive Types 558

10.5.1 Using an Array of double 558

10.5.2 Meaningful Indices 560

10.6 Multi-Dimensional Arrays 562

10.6.1 2D Array Algorithms 563

10.6.2 Allocating and Initializing a 2D Array 565

10.6.3 Arrays of Arrays 566

10.7 GUI: Animation 569

10.8 Patterns 572

10.8.1 The Process All Elements Pattern 573

10.8.2 The Linear Search Pattern 573

10.9 Summary and Concept Map 574

10.10 Problem Set 575

xii
CO

N
TE

N
TS

Chapter 11 Building Quality Software 	 583

11.1 Defining Quality Software 	 584

11.1.1	 Quality from a User’s Perspective 584

11.1.2	 Quality from a Programmer’s Perspective 585

11.2 Using a Development Process 	 586

11.2.1	 Defining Requirements 587

11.2.2	 Designing the Architecture 588

11.2.3	 Iterative Development 595

11.3 Designing Classes and Methods 	 599

11.3.1	 Rules of Thumb for Writing Quality Code 606

11.3.2	 Managing Complexity 615

11.4 Programming Defensively 	 621

11.4.1	 Exceptions 621

11.4.2	 Design by Contract 622

11.4.3	 Assertions 624

11.5 GUIs: Quality Interfaces 	 624

11.5.1	 Iterative User Interface Design 625

11.5.2	 User Interface Design Principles 626

11.6 Summary and Concept Map 	 628

11.7 Problem Set 	 629

Chapter 12 Polymorphism 	 633

12.1 Introduction to Polymorphism 	 634

12.1.1 Dancing Robots 	 634

12.1.2 Polymorphism via Inheritance 635

12.1.3 Examples of Polymorphism 640

12.1.4	 Polymorphism via Interfaces 643

12.1.5	 The Substitution Principle 645

12.1.6	 Choosing between Interfaces and

Inheritance 646

12.2 Case Study: Invoices 	 647

12.2.1 Step 1: Identifying Objects and Classes 648

12.2.2 Step 2: Identifying Services 	 652

12.2.3 Step 3: Solving the Problem 655

12.3 Polymorphism without Arrays 	 661

12.4 Overriding Methods in object	 662

12.4.1 toString	 662

12.4.2 equals	 663

12.4.3 clone (advanced) 	 665

12.5 Increasing Flexibility with Interfaces 669

12.5.1 Using an Interface 	 671

12.5.2 Using the Strategy Pattern 	 674

12.5.3 Flexibility in Choosing Implementations 679

xiii

12.6 GUI: Layout Managers 680

C
O
N
TEN

TS 12.6.1 The FlowLayout Strategy 680

12.6.2 The GridLayout Strategy 681

12.6.3 The BorderLayout Strategy 683

12.6.4 Other Layout Strategies 683

12.6.5 Nesting Layout Strategies 684

12.7 Patterns 686

12.7.1 The Polymorphic Call Pattern 686

12.7.2 The Strategy Pattern 687

12.7.3 The Equals Pattern 688

12.7.4 The Factory Method Pattern 689

12.8 Summary and Concept Map 689

12.9 Problem Set 690

Chapter 13 Graphical User Interfaces 697

13.1 Overview 698

13.1.1 Models, Views, and Controllers 698

13.1.2 Using a Pattern 700

13.2 Setting up the Model and View 700

13.2.1 The Model’s Infrastructure 701

13.2.2 The View’s Infrastructure 703

13.2.3 The main Method 704

13.3 Building and Testing the Model 705

13.4 Building the View and Controllers 709

13.4.1 Designing the Interface 709

13.4.2 Laying Out the Components 711

13.4.3 Updating the View 713

13.4.4 Writing and Registering Controllers 716

13.4.5 Refining the View 721

13.4.6 View Pattern 725

13.5 Using Multiple Views 726

13.5.1 Implementing NimView 728

13.5.2 Implementing NimPileView 729

13.5.3 Implementing NimPlayerView 730

13.5.4 Sequence Diagrams 733

13.6 Controller Variations 735

13.6.1 Using Inner Classes 735

13.6.2 Using Event Objects 737

13.6.3 Integrating the Controller and View 739

13.7 Other Components 740

13.7.1 Discover Available Components 740

13.7.2 Identify Listeners 741

13.7.3 Skim the Documentation 743

13.7.4 Begin with Sample Code 744

13.7.5 Work Incrementally 744

xiv
CO

N
TE

N
TS

13.8 Graphical Views 	 747

13.8.1	 Painting a Component 747

13.8.2	 Making a Graphical Component

Interactive 750

13.9 Patterns 	 756

13.9.1	 The Model-View-Controller Pattern 756

13.10	 Summary and Concept Map 757

13.11	 Problem Set 758

Epilogue	 765

Appendix A Glossary	 771

Appendix B Precedence Rules	 787

Appendix C Variable Initialization Rules	 791

Appendix D Unicode Character Set	 793

Appendix E Selected Robot Documentation 797

Index 815

Preface

The preface includes:

➤	 Why this book exists

➤	 The approach it takes to teaching object-oriented programming

➤	 The advantages of this approach

➤	 A section for students describing the software they need and the features of this
book that they will find particularly helpful

➤	 A section for instructors describing the author’s Use, Then Write object-oriented
pedagogy, the organization and coverage of topics, and supplemental resources

➤	 Who helped the author along the way

How It All Started

As often happens, this book exists because the author was unhappy with the alterna
tives. When I was first asked to develop a Java version of our introductory program
ming course for 1,000 students a year, I naturally collected all the relevant Java
textbooks I could find. They all left me with a vague sense of uneasiness. Yes, the
programming language had changed from Pascal to Java, but the approach had not.
A second change was necessary: a change in pedagogy.

The first term of my course did not go well. I had chosen what I considered to be the
best textbook available, but the experience of teaching with it only confirmed that the
pedagogical paradigm shift had not been made. Shortly thereafter I discovered a small
book, Karel++: A Gentle Introduction to the Art of Object-Oriented Programming
(Wiley, 1997). It was an “Aha!” experience for me. The pedagogy of this book felt right
to me. In addition, I knew its metaphor of programming robots would appeal to my stu
dents, it had an obvious appeal for visual learners, and I could imagine having lots of
fun acting out programs with students. Unfortunately, Karel++ is a C++ textbook, not
Java. Furthermore, at only 175 pages and lacking many language-specific details, it
forms the first several weeks of an introductory course. After that, a different textbook
is required—a textbook that did not exist.

Discussions with the publisher of Karel++ led to them granting me permission to trans
late it to Java for use at the University of Waterloo, Ontario, Canada. After experiencing
the joys of teaching with the approach—and the difficulties of changing to an unrelated
text after a few weeks—I began to write the textbook I really wanted. Java: Learning to
Program with Robots combines the wonderful pedagogy of Karel++ with the full and
complete treatment required by an introductory object-oriented programming textbook.

xv

xvi
PR

EF
AC

E

Approach

This text begins with programming virtual robots to teach object-oriented program
ming in general (dark green in Figure 1). Once students are comfortable with many
aspects of objects and classes, the examples shift from robots to a much broader set of
examples (white). Each chapter ends with a section on graphics and graphical user
interfaces (light green), applying the concepts learned to a different context.
Transferring the knowledge gained using robots to another problem (graphics) is an
important part of mastering the material. The graphics sections at the end of each
chapter should be viewed as an integral part of the curriculum.

1 10 11 12 132 3 4 5 6 7 8 9

Pr
og

ra
m

m
in

g
w

it
h

Ob
je

ct
s

Ex
te

nd
in

g
Cl

as
se

s
w

it
h

Se
rv

ic
es

De
ve

lo
pi

ng
 M

et
ho

ds

M
ak

in
g

De
ci

si
on

s

M
or

e
De

ci
si

on
-M

ak
in

g

Us
in

g
Va

ria
bl

es

M
or

e
on

 V
ar

ia
bl

es
 a

nd
 M

et
ho

ds

Co
lla

bo
ra

ti
ve

 C
la

ss
es

In
pu

t
an

d
Ou

tp
ut

Ar
ra

ys

Bu
ild

in
g

Qu
al

it
y

So
ft

w
ar

e

Po
ly

m
or

ph
is

m

Gr
ap

hi
ca

l U
se

r I
nt

er
fa

ce
s

(figure 1)

Examples Distribution of example
Robots programs
Graphics

Other

Chapters

Starting with Robots
Robots are objects in an object-oriented program that can receive messages telling them
to move, turn, pick things up, carry things, and put things down again. We all have a
mental image of robots and can easily direct them to perform a task, such as picking up
three things in a row and putting them in a pile. This task can be clarified with a pair of
diagrams, as shown in Figure 2. The first diagram shows how the task begins: with the
robot (an arrowhead) and three things (circles) in front of it. The second diagram shows
how the task should end: with the three things all in the same place.

3

(figure 2)

Robot picking up three

things and putting them in

a pile

Initial situation Final situation

We can easily “program” a student or instructor to complete this task with the follow
ing instructions. Assume the person’s name is “Karl.”

xvii
P

REFACE Karl, move

Karl, pick up a thing

Karl, move

Karl, pick up a thing

Karl, move

Karl, pick up a thing

Karl, move

Karl, put down a thing

Karl, put down a thing

Karl, put down a thing

Karl, move

After verbally directing Karl, it is easy to introduce a simple program that does the
same thing where karl is the name of a robot object, as follows:

karl.move();

karl.pickThing();

karl.move();

karl.pickThing();

karl.move();

karl.pickThing();

karl.move();

karl.putThing();

karl.putThing();

karl.putThing();

karl.move();

There are additional details to cover before this Java fragment can be executed as a
complete program. However, these details form an easily learned pattern, leaving the
focus on using robot objects to accomplish tasks.

Other kinds of objects can be included in robot programs, including walls that can
block a robot from moving and lights that can be turned on and off. We can also cre
ate new kinds of objects to use.

The fundamental object-oriented concepts learned with robot objects can all be
transferred to programs that have nothing to do with robots. Each chapter includes a
section focusing on graphics to help with the conceptual transfer. The latter part of the
book includes many examples that have nothing to do with robots.

Advantages of Using Robots
Using robots to learn object-oriented programming offers significant advantages. I
have used this approach in my classes for half a dozen years, and find that the follow
ing qualities are the most important advantages.

Visualization: The visual qualities of robots make it easy to specify a problem using
pictures and a few lines of text. They provide visual feedback about the correctness of
the program. Watching the robot traverse the screen makes debugging easier. This text
makes the most of the human brain’s highly optimized processing of visual input.

xviii
PR

EF
AC

E

Ease of Programming: Object-oriented programs are easier to write when program
mers can imagine what they would do if they were the objects in the program. Robot
objects make this easy. Because moving, turning, picking things up, and putting them
down again are activities that we do every day, it is easy for us to give directions to one
another or to a robot object. Even though this method is easier to grasp, we still learn
important object-oriented programming concepts.

Fun: Robots are fun! I have never had so much fun with a classroom of students as
the day we worked with a “paranoid” robot that “looked” to the right and to the left
before it moved forward. People who acted it out adopted a hunched, uptight look
with shifty eyes that generated much laughter among the students. Later in the same
period, we turned this into a paranoid thief that went up the aisle swiping small objects
from student desks, all the while looking both ways before it would move. It was fun,
but it also taught students about inheritance, one of the three hallmarks of object-
oriented programming.

Quick Startup: The robot microworld allows students to begin object-oriented pro
gramming immediately using real objects in a real programming environment. Similar
approaches often use graphics alone, but robots are more intuitive than graphics and
have many more interesting algorithmic aspects.

Pedagogy: Finally, I believe that the largest benefit of using robots is that they lend
themselves to a superior pedagogy for teaching object-oriented programming. This ulti
mate benefit is more fully explained in a later section of this Preface, For Instructors.

For Students

You are about to embark on an exciting journey of learning to program using Java.
Before we begin, let’s take a few moments to orient ourselves to this textbook and to
the software you will need to complete all the exercises in the book.

Textbook Features
This textbook includes a number of features to make your life as a student easier. They
include the following:

Objectives: A brief list of objectives appears at the beginning of each chapter to pro
vide an overview of the chapter contents. Knowing your destination helps you make
the most of your journey through the chapter.

Program listings: Each chapter contains many examples of working code demon
strating the principles under discussion. The code is often shown as a complete listing
that is available for you to download, modify, and run yourself.

Figures: Each chapter provides a rich collection of figures to help illustrate the con
cepts. Figures include UML diagrams, illustrations of robot programs, flowcharts,
screen shots of program output, and many others illustrating program features, object-
oriented concepts, and the principles of effective program design.

xix
P

REFACE Key terms and glossary: Every discipline has its own vocabulary, including com
puter science. When a term is used for the first time, it’s highlighted. A complete glos
sary in Appendix A is a handy reference for those times that you need a reminder.

Margin notes: The margin of each chapter contains four types of notes. Find the
Code notes direct you to files containing sample code. Key Idea notes summarize key
ideas discussed on the page and help you review. Looking Back notes link current dis
cussions with ideas covered earlier in the book. Looking Ahead notes preview concepts
or techniques introduced in later chapters.

Pattern icons and discussion: In addition to margin notes, each chapter includes
pattern icons to highlight code or to explain common programming patterns. Learning
to recognize these patterns is an important part of becoming a good programmer. A
section named “Patterns” near the end of each chapter summarizes the patterns and
generalizes them so that they’re more broadly applicable.

Graphical user interface sections: Each chapter includes a section presenting the
chapter’s topics in the context of graphical user interfaces, helping you transfer your
understanding to new situations. In addition, many of the problems in each chapter
have a graphical user interface to make your homework look more like the programs
you use every day. In the early chapters, the interface is provided by the robot world. In
the middle chapters, graphical user interfaces are often provided to work with the code
you write. In the last chapter, you will write the interfaces yourself.

Concept maps and summaries: Each chapter concludes with a brief written sum
mary of the important concepts, followed by a concept map. The concept map gives a
visual representation of the ideas discussed and how they are related to each other.

Obtaining and Installing Software
Writing programs requires tools. A minimal set of tools is a text editor and the
Java Development Kit (JDK) from Sun Microsystems. The JDK is included in the CD-ROM
that accompanies this textbook. Updates can be downloaded from www.java.sun.com/j2se/.
The software you will be using with this textbook requires Java 5 or higher (also known
as JDK 1.5).

Another approach is to use an Integrated Development Environment (IDE). It inte
grates the text editor and development tools such as the JDK into one environment that
is optimized specifically for writing programs. The CD-ROM includes two such IDEs,
JCreator and jGrasp. Others include Dr. Java (www.drjava.org/), BlueJ (www.bluej.org/),
and Eclipse (www.eclipse.org/). Of these, JCreator and Eclipse are aimed at program
mers; the others are developed specifically for students. All of the IDEs listed here have
a free version.

In addition to the JDK or an IDE, the introductory programs in this textbook
require software implementing the robots. This software and documentation is avail
able on the Robots Web site, www.learningwithrobots.com, and on the CD-ROM.

Instructions for installing the software and documentation is available on the CD-ROM
(open InstallationInstructions.html with your Web browser) and on the Robots
Web site (www.learningwithrobots.com/InstallationInstructions.html).

www.learningwithrobots.com/InstallationInstructions.html
http:www.learningwithrobots.com
http:www.eclipse.org
http:www.bluej.org
http:www.drjava.org
www.java.sun.com/j2se

xx
PR

EF
AC

E

For Instructors

Robots uses objects to their fullest extent from day one, but doesn’t overwhelm the stu
dents. How? It provides a rich set of classes that students use to learn about objects
before they are asked to write their own classes. Let’s explore this Use, Then Write ped
agogy further by comparing it with the alternatives.

Object-Oriented Pedagogies
The concepts of object and class are intimately related. Each kind of object in a stu
dent’s program is created from a class that a programmer writes to define the objects’
characteristics. Given that students need to master both using objects and writing the
classes that define them, a crucial question is how to order these topics. There are three
possibilities for writing classes and using the resulting objects:

Write and use: In this approach students are asked to master the basics of writing a
class at the same time they are learning how to use objects. One author, for example,
introduces classes and objects by describing how to use a bank account object in only
two pages. The author then delves into the details of writing the class to define it. This
requires introducing students to the distinction between class and object, declaring
objects, object instantiation, invoking methods, the structure of a class, defining meth
ods, declaring parameters and passing arguments, return values, and instance vari
ables. This presents an incredible cognitive load for students. The author chose a
wonderful example to convey all these concepts, but it is still difficult to understand all
the concepts all at once, even at an introductory level.

Write, then use: When actually writing a program, programmers first write the
required classes and then use the objects they define. I am aware of only one textbook
that has chosen to follow this same ordering. It includes a light treatment on the idea
of an object, but then delves into the details of writing classes with very few examples
of how the objects they define would be used. This lessens the cognitive load on the
students by focusing on just one of the two aspects, but leaves students wondering how
these classes are used. Much of the instruction on writing classes is lost because stu
dents don’t have practical experience in using the resulting objects.

Use, then write: A third possibility is to first use objects and then learn how to write
classes defining new kinds of objects. Robots uses this approach. Students make exten
sive use of robot objects, learning how to declare objects, instantiate objects, and
invoke their methods. All the details of writing their own classes come later, after they
are comfortable with using objects.

Robots provides a gentle but thorough introduction to object-oriented program
ming using the Use, Then Write pedagogy. It’s an approach that helps students write
interesting, object-oriented programs right away. It uses objects early and consistently,
even with the traditional subjects of selection and repetition. Furthermore, it has been
classroom tested with over 6,000 students at the University of Waterloo.

xxi
P

REFACE Organization and Coverage
Chapter 1, “Programming with Objects,” introduces students to instantiating and
using objects.

Chapter 2, “Extending Classes with Services,” discusses extending an existing class
with new parameterless methods.

Chapter 3, “Developing Methods,” continues the theme of writing methods, but with
a focus on strategies for writing complex methods—pseudocode and stepwise refinement.

Chapter 4, “Making Decisions,” explores how to alter a program’s flow with repeti
tion and selection, and includes the basics of the Boolean expressions used in such con
structs. Introducing parameters adds even more flexibility to the methods students write.

Chapter 5, “More Decision Making,” continues exploring decision-making con
structs with a process for writing correct loops, additional control statements, and
manipulating Boolean expressions. Temporary (local) variables are introduced to sim
plify some algorithms.

Chapter 6, “Using Variables,” introduces integer instance variables and constants,
and expands on using temporary variables and parameter variables.

Chapter 7, “More on Variables and Methods,” examines using variables with types
other than int, including strings. Queries are used to examine the state of an object
and to test it using a test harness. This chapter also includes the first large case study
that does not involve robots or graphics.

Chapter 8, “Collaborative Classes,” presents classes that use references to another
class and thoroughly explores the differences between reference types and primitive types.
Exceptions are introduced, as well as Java collections to collaborate with many objects.

Chapter 9, “Input and Output,” covers reading information from files, writing
information to files, and interacting with users via the console.

Chapter 10, “Arrays,” explains how to work with arrays. A number of algorithms
are discussed, including a careful treatment of Selection Sort. Handling changing num
bers of elements and multi-dimensional arrays are also covered.

Chapter 11, “Building Quality Software,” identifies characteristics of quality soft
ware and explains how to follow a development process that promotes quality.

Chapter 12, “Polymorphism,” explores writing polymorphic programs using inher
itance and interfaces. It also discusses building an inheritance hierarchy and using the
strategy and factory method patterns to make programs more flexible.

Chapter 13, “Graphical User Interfaces,” examines how to write a graphical user
interface using existing Java components, structure a graphical user interface using the
model-view-controller pattern and multiple views, and write new components for use
in graphical user interfaces.

xxii
PR

EF
AC

E

Dependencies
This text is, of necessity, printed in a particular order. You may find that a different orga
nization suits you and your students better. The dependency chart shown in Figure 3
serves as a guide to reordering the material. The core material is shown with heavy lines
and should be presented in the order shown. Other material can be rearranged around it
at your discretion.

Textbook Features
Most of the textbook’s features are listed in the section for students. Three features
that instructors are more likely than students to appreciate are listed here:

Written exercises: The problem set at the end of each chapter includes written exer
cises, which provide an opportunity for students to synthesize the ideas and techniques
they have learned in the chapter.

Programming exercises: The problem sets also include programming exercises,
which prompt students to write, improve, or experiment with smaller programs.

Programming projects: Finally, the problem sets present projects that encourage
students to create complete classes or programs.

Supplemental Resources
The following ancillary materials are available when this book is used in a classroom
setting. All of the teaching tools available with this book are provided to the instructor
on a single CD.

Instructor’s Manual: Additional instructional material to assist in class preparation,
including suggested syllabi for 14 and 16 week courses, and complete lecture notes.

PowerPoint Presentations®: This book comes with Microsoft PowerPoint slides for
each chapter. In addition to reviewing the chapter, they contain examples and case
studies illustrating the current topics. The slides are included as a teaching aid for class
room presentation, to make available to students on the network for chapter review, or
to be printed for classroom distribution. Instructors can add their own slides for addi
tional topics they may introduce to the class.

Solution Files: Sample solutions to most exercises.
Example Programs: The source code to almost all of the Java programs listed in

this book are easily available to you and your students. They are on the CD accompa
nying each copy of the book, the Instructor Resources CD, the book’s Web site
(www.learningwithrobots.com), and the Thomson Course Technology Web site.

ExamView Test Bank: This assessment tool can help instructors design and
administer tests.

Software: JDK 5.0, jGRASP, and JCreator are included with each copy of this book.
Also provided are the libraries containing the robot classes. These libraries work with any
Java development environment (JDK 5.0 and above) and permit you to write, run, and
animate robot programs. Because a regular development environment is used, students do

http:www.learningwithrobots.com

xxiii
P

REFACE (figure 3)

Dependency chart
Using Objects

1.1–1.5
Intro Components

1.1–1.5

Extending Classes
2.1–2.2

Overriding
2.6

Example; Discuss
2.3–2.5

Override Paint
2.7

Graphics

Developing Methods
3.1–3.4

Variations; Access
3.5–3.6

Intro Parameters
4.6

Debugging
6.6

Helper Methods
3.7

Intro If; While
4.1–4.5

Scaling Drawings
4.7

Testing; Types
7.1–7.3

Case Study
7.4

Java Interfaces
7.6

Static
7.5

Collab. Classes
8.1–8.2

Collab. Comp.
8.6

Collections
8.5

Variables
6.1—6.5

Repainting
6.7

Arrays
10.1–10.6

or

Animation
10.7

GUIs
13.1–13.8

Intro Temp Vars
5.2

Boolean Expr.
5.4

More Looping
5.1; 5.5 Line Drawings

5.7
Nesting; Style

5.3; 5.6

Exceptions
8.4

Case Study
8.3

Input/Output
9.1–9.4

Choosers; Images
9.8

Polymorphism
12.1–12.5

Layout Managers
12.6

Cmd. Interpreters
9.5

Libraries; Streams
9.6–9.7

Soft. Eng.
11.1–11.4

Interface Design
10.7

xxiv
PR

EF
AC

E

not experience a transition in technology from writing robot programs to any other
kind of program. Complete graphical user interfaces are also provided in the support
ing libraries for use in a number of homework problems.

Web site: www.learningwithrobots.com makes many of these resources available to
you and your students wherever you have an Internet connection.

Acknowledgements

In recalling those who have helped this book become a reality, I think of five groups
of people.

Originators: Rich Pattis developed the idea of using robots to teach programming
in the early 1980s. The idea was later adapted to an object-oriented style by Joe Bergin.
These are the giants upon whose shoulders this work stands. Without them, this text
and the core ideas it builds on would not exist. Thank you to Rich, in particular, who
has been very encouraging of my attempts to adapt his ideas to a full CS1 textbook.

Facilitators: Bruce Spatz, Bill Zobrist, Paul Crockett, and all of John Wiley and
Sons were flexible with their intellectual property rights to the original Karel the Robot
book. Thank you.

Brainstormers: Jack Rehder, Judene Pretti, and Arnie Dyck are all wonderful col
leagues of mine at the University of Waterloo. Much of the text has been shaped and
improved by brainstorming sessions with them in the course of teaching this material
together. Thank you for the ideas, the clarifications, and the suggestions. A large group
of other instructors and tutors also contributed in countless smaller ways.

Polishers: Many people helped put the finishing touches on this book to get it ready
for publication. They include the team at Course Technology: Lisa Ruffolo, Alyssa
Pratt, Kelly Robinson, Mary Franz, and Mac Mendelsohn. Thank you for all your
hard work and willingness to listen to my views on the design. Carrie Howells, a col
league at University of Waterloo, did a wonderful job of proofreading and critiquing
many chapters. Michael Diramio, one of our former tutors, rescued my sanity by writ
ing some of the solutions to problem sets. Finally, a huge thank you to the reviewers:
John Ridgeway (Wesleyan University), Mary Goodwin (Illinois State University), Noel
LeJeune (Metropolitan State College of Denver), and especially Rich Pattis (Carnegie
Mellon University). Their insightful comments caused me to rework many sections that
I had thought were finished.

Cheerleaders: My two sons, Luke and Joel, who can hardly wait to learn to pro
gram with “Dad’s robots,” cheered me on. Joel’s artwork graces the cover. A colleague,
Sandy Graham, was a wonderful evangelist for the approach.

Finally, the biggest thank you is to Ann, the most wonderful woman a man could
ever marry, for her indulgence as I wrote.

—Byron Weber Becker

http:www.learningwithrobots.com

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 1

Chapter 1 Programming with Objects

Chapter Objectives

After studying this chapter, you should be able to:

➤	 Describe models

➤	 Describe the relationship between objects and classes

➤	 Understand the syntax and semantics of a simple Java program

➤	 Write object-oriented programs that simulate robots

➤	 Understand and fix errors that can occur when constructing a program

➤	 Read documentation for classes

➤	 Apply the concepts learned with robots to display a window as used in a graphical
user interface

A computer program usually models something. It might be the ticket sales for a con
cert, the flow of money in a corporation, or a game set in an imaginary world.
Whatever that something is, a computer program abstracts the relevant features into a
model, and then uses the model to help make decisions, predict the future, answer
questions, or build a picture of an imaginary world.

In this chapter, we create programs that model a world filled with robots, directing
them to move, turn, pick up, transport, and put down things. This robot world is sim
ple to model, but quickly reveals key concepts of object-oriented programming:
objects, classes, attributes, and services.

1

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 2

2

1.1 Modeling with Objects

CH
AP

TE
R

1
| P

RO
G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

Fifteen years ago I went to the local concert hall and asked the ticket agent for two
tickets for the March 21 concert. “Where do you want to sit?” he asked.

“That depends on what’s available,” I answered.

The agent grabbed a printed map of the concert hall. It was clearly dated “March 21,”
noted the name of the performer, and showed a map of the auditorium’s seats. Seats
that had already been sold were marked with a red X. The seats were also color-coded:
the most expensive seats were green, the moderately priced seats were black, and the
least expensive seats were blue.

Fifteen years ago, the ticket agent showed me the map and stabbed his finger on a pair
of seats. “These are the best seats left, but the choice is yours.”

I quickly scanned the map and noticed that a pair of less expensive seats with almost
the same sightlines was not far away. I chose the cheaper seats, and the agent promptly
marked them with a red X.

Fast-forward fifteen years. Today I order tickets from the comfort of my home over the
Web. I visit the concert hall’s Web site and find the performance I want. I click the
“purchase tickets online” button and am shown a color-coded map of the theatre. I
click on the seats I want, enter my credit card information, and am assured that the
tickets will be mailed to me promptly.

1.1.1 Using Models

A model is a simplified description of something. It helps us, for example, make deci
sions, predict future events, maintain up-to-date information, simulate a process, and
so forth. Originally, the local concert hall modeled ticket sales with a simple paper
map of the auditorium. Later, a Web-based computerized model performed the same
functions—and probably many more.

To be useful, a model must be able to answer one or more questions. The paper-based
model of ticket sales could be used to answer questions such as:

➤ What is the date of the concert?

➤ Who is playing?

➤ How many tickets have been sold to date?

➤ How many tickets are still unsold?

➤ Is the ticket for seat 22H still available?

➤ What is the price of the ticket for seat 22H?

KEY IDEA

A model is a
simplified description
of something.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 3

3

➤ Which row has unsold tickets for 10 consecutive seats and is closest to the stage?

➤ What is the total value of all the tickets sold to date?

Models often change over time. For instance, the ticket sales model was updated with
two new red X’s when I bought my tickets. Without being updated, the model quickly
diverges from the thing it represents and loses its value because the answers it provides
are wrong.

We often speak of models or elements of a model as if they were real. When the ticket
agent pointed to the map and said, “These are the best seats left,” we both knew that
what he was pointing at were not seats, but only images that represented actual seats.
The model provided a correspondence. Anyone could use that model to find those two
seats in the concert hall.

We often build models without even being aware of it. For example, you might make
a mental list of the errands you want to run before having supper ready for your
roommate at 6 o’clock, as shown in Figure 1-1: stopping at the library to pick up a
book (10 minutes), checking e-mail on a public terminal at the library (5 minutes),
and buying a few groceries (10 minutes). Checking your watch (it’s 4:15) and factor
ing in 45 minutes for the bike ride home and 30 minutes to prepare supper, you esti
mate that you can do it all, with a little time to spare. It takes longer than expected,
however, to find the book, and there’s a line at the library checkout counter. The
library errand took 20 minutes instead of 10. Now it’s 4:35, and you must make some
choices based on your updated model: have supper a little late, skip the e-mail, hope
that you can cook supper in 25 minutes instead of 30, and so forth. You have been
modeling your time usage for the next two hours.

1.1
M

O
D
ELIN

G
 W

ITH
 O

BJECTS

(figure 1-1)

Sample schedule

KEY IDEA

Models focus on
relevant features.

4:15 Pick up library book.
4:25 Check e-mail.
4:30 Buy groceries.
4:40 Bike home.
5:25 Cook supper.
6:00 Supper.

Models form an abstraction. Abstractions focus only on the relevant information and
organize the remaining details into useful higher-level “chunks” of information. People
can only manage about seven pieces of information at a time, so we must carefully
choose the information we manage. By using abstraction to eliminate or hide some
details and group similar details together into a chunk, we can manage more complex
ideas. Abstraction is the key to dealing with complexity.

For example, the ticket sales model gives ticket buyers and agents information about
which tickets are available, where the corresponding seats are located, and their price.
These were all relevant to my decision of which tickets to purchase. The map did not

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 4

4
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

provide information about the seat’s fabric color, and I really didn’t care, because that
was irrelevant to my decision. Furthermore, the color-coding of the concert hall map
conveniently chunked information, which helped me make a decision quickly. It was
easier to see all the least expensive seats in blue rather than consulting a long list of seat
numbers.

Beyond information, models also provide operations that can be performed on them.
In the concert hall model operations include “sell a ticket” and “add a new concert.”
In the informal time management model for errands, operations include “insert a new
errand,” “drop an errand from the list,” and “recompute the estimated start time for
each errand.”

1.1.2 Using Software Objects to Create Models

The concert hall’s computer program and the paper map it replaced model the ticket-
selling problem using different technologies. One uses pre-printed sheets of paper
marked with a simple X. The other involves a computer with a detailed set of instruc
tions, called a program. If the program is written in an object-oriented programming
language, such as Java, the computer program uses cooperating software objects. A
software object usually corresponds to an identifiable entity in the problem. The con
cert hall program probably has an object modeling the concert hall’s physical layout, a
collection of objects that each models a seat in the concert hall, and another collection
of objects that each models an upcoming concert. A program maintaining student
enrollments in courses would likely model each student with an object, and use other
objects to model each course.

Each of the software objects can perform tasks such as:

➤	 Maintain information about part of the problem the program models.

➤	 Answer questions about that part of the problem based on the information it
maintains.

➤	 Change its information to reflect changes in the real-world entity it models.

The information kept by the object is called its attributes. Objects respond to queries
for information and to commands to change their attributes. Queries and commands
are collectively referred to as services. An object provides these services to other
objects, called clients. The object providing the service is called, appropriately, the
server. We will explore these concepts in the coming pages.

Queries and Attributes

Queries are the questions to which an object can respond. A query is always answered
by the object to which it is directed. It might be true or false (“Is the ticket for seat 22H
still for sale?”), a number (“How many tickets have been sold?”), a string of characters

KEY IDEA

Object-oriented
programs use
software objects to
model the problem
at hand.

KEY IDEA

Computer science has
a specialized
vocabulary to allow
precise
communication. You
must learn this
vocabulary.

KEY IDEA

Server objects
provide services—
queries and
commands—to client
objects.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 5

ets: 35A, 35B, 35C
ckets: 10A, 10B, ...,34Z, ...

35D , ...date:

Sold Seats: 10A, 10B,
...,22N, 22P,

5

KEY IDEA

Objects have
attributes. Answers to

queries are based on
the values of the

attributes.

(“What is the name of the band that is playing?”), or even another object such as a
date object (“What is the date of the concert?”). Queries are said to return answers to
their clients. An object can’t respond to just any query, only to those it was designed
and programmed to support.

The answers provided by queries are always based on the object’s attributes. If an
object must answer the query, “What is the date of the concert?” then it must have an
attribute with information about the date. Similarly, if it must answer the question,
“How many tickets have been sold to date?” it must have an attribute that has that
information directly, or it must have a way to calculate that information, perhaps by
counting the number of tickets that have been sold. Information about which tickets
have been sold would be kept in an attribute.

The concert hall’s program must model ticket sales for many concerts, each repre
sented by its own concert object. If we look at several concert objects, we’ll notice
they all have the same set of attributes, although the values of those attributes may be
different. One way to show the differing attribute values is with an object diagram, as
shown in Figure 1-2. Each rounded rectangle represents a different concert object.
The type of object is shown at the top. Below that is a table with attribute names on
the left and attribute values on the right. For example, the attribute “date” has a value
of “21-March-2008” for one concert. That same concert has the value “Great Big
Sea” for the “performer” attribute.

1.1
M

O
D
ELIN

G
 W

ITH
 O

BJECTS

(figure 1-2)

Object diagram showing

three concert objects with

their attributes

date: 28-March-2008

performer: Toronto Symphony

unsoldTick
soldTi

Concert

Concert
21-March-2008

performer: Great Big Sea

unsoldTickets: 10D, 22H, 25A,
25B, 25C, 28Z,...

10C,
...

Concert
date: 22-March-2008

performer: U2

unsoldTickets: 35A, 35B, 35C

soldTickets: 10A, 10B, ..., 34Z,
... 35D, ...

Type of
object

Attribute Attribute
names values

One analogy for objects is that an object is like a form, such as an income tax form. The
government prints millions of copies of the form asking for a person’s name, address, tax
payer identification number, earned income, and so forth. Each piece of information is pro
vided in a little box, appropriately labeled on the form. Each copy of the form starts like all

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 6

6
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

the others. When filled out, however, each form has unique values in those boxes. It could
be that two people have exactly the same income and birthday, with the result that some
forms have the same values in the same boxes—but that’s only a coincidence.

Just as each copy of that tax form asks for the same information, every concert object
has the same set of attributes. Each copy of the form is filled out with information for
a specific taxpayer; likewise, each concert object’s attributes have values for a specific
concert. In general, there may be many objects of a given type. All have the same set of
attributes, but probably have different values for those attributes.

Commands

When a ticket is sold for seat 22H for the March 21 concert, the appropriate concert
object must record that fact. This record keeping is done with a command. The object
is “commanded” to change its attributes to reflect the new reality. This change can be
visualized with a state change diagram, as shown in Figure 1-3. A state change diagram
shows the state of the object before the command and the state of the object after the
command. The state is the set of attributes and their values at a given point in time. As
time passes, it is normal for the state of an object to change.

KEY IDEA

Every object of a given
type has the same set
of attributes,
but usually has
different values for the
attributes.

KEY IDEA

Commands change
the state of the
object.

Concert
date: 21-March-2008

performer: Great Big Sea
unsold

Tickets:
10D, 22H, 25A,
25B, 25C , 28Z,...

soldTickets: 10A, 10B, 10C,
..., 22N, 22P, ...

date: 21-March-2008
performer: Great Big Sea

unsold
Tickets:

10D, 25A,
25B, 25C, 28Z,...

soldTickets: 10A, 10B, 10C, 22H,
..., 22N, 22P, ...

Concert
(figure 1-3)

State change diagram

showing the change in

state after a command to
Command:

sell seat 22H is given to a Sell ticket

22H
 concert object

Time0: State of the object Time1: State of the same object
before the command is executed after the command is executed

Classes

When we write a Java program, we don’t write objects, we write classes. A class is a
definition for a group of objects that have the same attributes and services. A pro
grammer writing the concert hall program would write a concert class to specify that
all concert objects have attributes storing the concert’s date, performers, and so on.
The class also specifies services that all concert objects have, such as “sell a ticket,” and
“how many tickets have been sold?”

Once a concert class is defined, the programmer can use it to create as many concert
objects as she needs. Each object is an instance, or one particular example, of a class.
When an object is first brought into existence, we sometimes say it has been instantiated.

KEY IDEA

A Java programmer
writes a class by
specifying the
attributes and
services the classes’
objects will possess.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 7

7
1.1

M
O
D
ELIN

G
 W

ITH
 O

BJECTS

KEY IDEA

A class diagram
summarizes all of the
objects belonging to

that class.

(figure 1-4)

Class diagram for the

Concert class showing four

attributes and six services

The distinction between class and object is important. It’s the same as the distinction
between a factory and the cars made in the factory, or the distinction between a cookie
cutter and the cookies it shapes. The pattern used to sew a dress is different from the dress
produced from it, just as a blueprint is different from the house it specifies. In each case,
one thing (the class, factory, or cookie cutter) specifies what something else (objects, cars,
or cookies) will be like. Furthermore, classes, factories, and cookie cutters can all be used
to make many instances of the things they specify. One factory makes many cars; one class
can make many objects. Finally, just as most of us are not interested in cookie cutters for
their own sakes, but in the cookies made from them, our primary interest in classes is to
get what we really want: software objects that help model some problem for us.

Class Diagrams

Just as architects and dress designers communicate parts of their designs visually through
blueprints and patterns, software professionals use diagrams to design, document, and
communicate their programs. We’ve already seen an object diagram in Figure 1-2 and a
state change diagram (consisting of two object diagrams) in Figure 1-3. Another kind of
diagram is the class diagram. Class diagrams show the attributes and services common to
all objects belonging to the class. The class diagram for the concert class summarizes all
the possible concert objects by showing the attributes and services each object has in com
mon with all other concert objects.

A class diagram is a rectangle divided into three areas (see Figure 1-4). The top area
contains the name of the class. Attributes are named in the middle area, and services
are in the bottom area.

Concert
date
performer
unsoldTickets
soldTickets

Concert(date, performer)
numTicketsSold()
valueOfTicketsSold()
performerName()
performanceDate()
sellTicket (seatNumber)

Name of
the class

Attributes

Services

1.1.3 Modeling Robots

Every computer program has a model of a problem. Sometimes the problem is tangi
ble, such as tracking concert ticket sales or the time required to run errands before sup
per. At other times, the problem may be more abstract: the future earnings of a

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 8

8
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

company under a given set of assumptions or the energy loss of a house. Sometimes the
problem is to visualize a figment of someone’s imagination, such as a game set on a far-
off world at some point in the future.

Many of the programs in this textbook model imaginary robots and the city in which
they operate. The programs cause robots to move on the computer screen as they per
form various tasks. This model was chosen to be basic enough to grasp easily, yet com
plex enough to be interesting; simple enough to be easy to program, yet rich enough to
show many important object-oriented concepts. The robots and their world are
described in Section 1.2. Section 1.3 describes using software objects to model the
robots, and Section 1.4 will present the first program.

The robots our programs model are similar to the small robotic explorers NASA
landed on Mars. The first, named Sojourner, landed on Mars on July 4, 1997. It could
move around the Martian landscape, take photographs, and conduct scientific experi
ments. Sojourner was about two feet long and could travel at a top speed of two feet
per minute. A photo of the explorer is shown in Figure 1-5.

(figure 1-5)

Sojourner, a robotic

explorer landed on Mars

by NASA

Sojourner was controlled from Earth via radio signals. Because radio signals take approx
imately 11 minutes to travel from Earth to Mars, Sojourner could not be controlled in real
time. (Imagine trying to drive a car with a minimum of 22 minutes elapsing between turn
ing the steering wheel and receiving feedback about the change in direction.) Instead, con
trollers on Earth carefully mapped out the movements and tasks Sojourner was to do,
encoding them as a sequence of messages. These messages were sent to Sojourner, which
then attempted to carry them out. Feedback regarding the entire sequence of messages
was sent back to Earth, where controllers then worked out the next sequence of messages.

Sojourner had a computer on board to interpret the messages it received from Earth
into electrical signals to control its motion and scientific instruments. The computer’s
processor was an Intel 80C85 processor containing only 6,500 transistors and execut
ing about 100,000 instructions per second. This processor was used almost 15 years
earlier in the Radio Shack TRS-80 home computer.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 9

9

In contrast, a top-of-the-line Pentium processor in 1997 had about 7.5 million transis
tors and executed about 300,000,000 instructions per second.

Why did Sojourner use such a primitive processor? The 80C85 consumes tiny amounts
of power compared with its state-of-the-art cousins and is much more likely to operate
correctly in the presence of cosmic rays and extreme temperatures.

1.2 Understanding Karel’s World

1.2
U

N
D
ERSTAN

D
IN

G
 K

AREL’S W
O
RLD

KEY IDEA

Karel’s world is one
of the “realities” we

will be modeling with
software.

The city where karel1 the robot exists is pretty plain. It includes other robots, with a
range of capabilities. It also includes intersections connected by avenues and streets on
which robots travel, and where there may be several kinds of things. However, the city
does not include office buildings, restaurants, traffic lights, newspaper dispensers, or
homes. As you learn to program, you may want to change that fact.

1.2.1 Avenues, Streets, and Intersections

What a city does have are roads. Some roads, called streets, run east and west, while
other roads, called avenues, run north and south. (A helpful way to remember which is
which is that the “A” and “v” in “Avenue” point up and down—or north and south on
a map—whereas the cross strokes of the “t”s in “Street” run east and west.)

Streets and avenues are both numbered starting with 0. This convention is unusual
among urban planners, but normal among Java programmers. Street 0 is located on
the north (top) side, while Avenue 0 runs along the west (left) side. The place where
these two roads meet is called the origin.

Figure 1-6 shows a small portion of a city with a robot facing east at the origin and
another facing south at the intersection of 1st Street and 2nd Avenue. We can use a short
hand notation for specifying intersections. Instead of “1st Street and 2nd Avenue,” we can
write (1, 2). The first number in the pair gives the street, and the second gives the avenue.

1 We will often name robots “karel” (pronounced “kär- l”—the same as “Karl” or “Carl”) in recogni
tion of the Czechoslovakian dramatist Karel Capek (1890–1938), who popularized the word robot in
his 1921 play R.U.R. (Rossum’s Universal Robots). The word robot is derived from the Czech word
robota, meaning “forced labor.” The name is lowercase, in keeping with Java style.

e

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 10

10

0 1 2 3 (figure 1-6)
0

Small city with two robots,

CH
AP

TE
R

1
| P

RO
G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

one at the origin facing east1

and one at the intersection

of 1st Street and 2nd Avenue

facing south
2

Intersections are unusually wide. Many robots can be on the same intersection at the
same time without interfering with each other.

1.2.2 Walls and (other) Things

Intersections may be surrounded by walls on one or more sides. A wall stands at an
edge of an intersection and blocks robots from entering or leaving the intersection in
that direction. Robots can’t push walls out of the way. A small extension on the end of
each wall extends toward the intersection containing the wall.

The city shown in Figure 1-6 contains three walls, including two at the edges of the
intersection at (1, 3). Another wall is immediately in front of the robot at (1, 2) and
blocks it from proceeding south. The robot may go around the wall, of course.

Intersections may also have nondescript things. They are purposefully nondescript so
we can imagine them to be whatever we want them to be: newspapers, lights, pieces of
carpet, or flags. One such thing appears at (2, 0) in Figure 1-6. Robots can usually pick
a thing up, put it in a backpack to carry it somewhere else, and then put it down again.

Eventually we will learn how to define classes of things with different appearances and
services. Two examples already exist: flashers, like you might find marking a construc
tion site, and streetlights.

1.2.3 Robots

Robots exist to serve their clients. The four services they perform most often are mov
ing, turning, picking things up, and putting things down. Some additional services
robots provide include answering queries about their location and direction, and
responding to a command controlling their speed.

These are primitive services. Clients using a robot must give many small instructions to
tell the robot how to perform a task. Beginning with Chapter 2, we will learn how to cre
ate new kinds of robots that provide services tailored to solving the problem at hand.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 11

11

KEY IDEA

Software objects,
such as robots, do

things only in
response to

messages.

LOOKING AHEAD

In Chapter 2, we will
create a new kind of
robot that responds

to a turnRight
message.

1.2
U

N
D
ERSTAN

D
IN

G
 K

AREL’S W
O
RLD

(figure 1-7)

When a robot facing a wall

receives a move command,

it crashes into the wall,

breaks, and can no longer

respond to commands

Robots don’t do anything of their own volition. They respond only to messages sent to
them from outside themselves. A robot performs a service only when it is invoked by a
corresponding message.

In the following sections, we will look at these services in more detail.

Turning

When a robot receives a turnLeft message, it responds by turning left 90 degrees.
When a robot facing north receives the turnLeft message, it turns to face west. A
south-facing robot responds to a turnLeft message by turning to face east. When a
robot turns, it remains on the same intersection.

Robots always start out facing one of the four compass points: north, south, east, or
west. Because robots can turn only in 90-degree increments, they always face one of
those four directions (except while they are in the act of turning).

Robots do not have a turnRight instruction because it is not needed; three turnLeft
messages accomplish the same task.

Turning is a safe activity. Unlike moving, picking things up, or putting things down,
nothing can go wrong when turning.

Moving

When a robot receives a move message, it attempts to move from its current intersec
tion to the next intersection in the direction it is facing. It remains facing the same
direction. Robots can’t stop between intersections; they are either on an intersection or
in the process of moving to another one.

Things can go wrong when a robot receives a move message. In particular, if there is a
wall immediately in front of a robot, moving causes that robot to break. When a robot
breaks, it is displayed in three pieces, as shown in Figure 1-7, an error message is
printed on the screen, and the program halts. An example of the error message is
shown in Figure 1-20.

Robot facing a wall Receiving a move command and crashing

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 12

12
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

Handling Things

When a robot receives a pickThing message, it attempts to pick up a thing from its
current intersection. If there are several things the robot could pick up, it randomly
chooses one of them. Robots have a backpack where they carry the things they pick up.
Things are small and the backpack is large, so many things fit in it. Robots can also put
things down in response to the putThing message.

As you might expect, a robot can experience difficulties in handling things. If a robot
receives a pickThing message when there is nothing to pick up on the current inter
section, the robot breaks. Similarly, when a robot receives a putThing message and its
backpack is empty, the robot breaks. As with moving, after such a malfunction the
robot appears damaged, an error message is printed, and the program halts.

1.3 Modeling Robots with Software Objects

LOOKING AHEAD

In Chapter 4 we will
learn how to write
programs where
robots can detect if
something can be
picked up.

Not surprisingly, the software we will use to model robots mirrors the description in
the previous section in many ways. Software objects model intersections, robots, walls,
and things.

The software does not actually control real, physical robots that you can touch. Instead,
it displays images of robots on the computer screen. The programs we will write cause
the images to move about the city (also displayed on the screen) and perform various
tasks. These programs are only useful in that they provide an excellent way to learn
how to program a computer. You can transfer the knowledge you gain in writing robot
programs to writing programs that model the problems that concern you.

As shown earlier in Figure 1-4, we can summarize objects with a class diagram that
shows the attributes and services of each object belonging to the class. A class diagram
for the Robot class is shown in Figure 1-8. The class diagram shows the four services
discussed earlier, along with a special service to construct Robot objects.

Robot

int street
int avenue
Direction direction
ThingBag backpack

Robot(City aCity, int aStreet, int anAvenue
Direction aDirection)

void move()
void turnLeft()
void pickThing()
void putThing()

(figure 1-8)

Incomplete class diagram

for the Robot class

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 13

13

LOOKING AHEAD

Attributes can have
types other than int.

See Chapter 7.

LOOKING AHEAD

The type of an
attribute can be the

name of a class, like
ThingBag. See

Chapter 8.

KEY IDEA

Class diagrams are
designed to help you

understand a class.
They may omit low-

level details in the
interest of clarity.

KEY IDEA

Constructors create
new objects. Services

are performed by an
object that

already exists.

1.3.1 Attributes

Recall that the middle section of the class diagram lists the attributes. From the Robot
class diagram, we can infer that each Robot object has four attributes. We might guess
that the two named street and avenue record the street and avenue the robot cur
rently occupies, and that direction records the direction it is facing. Finally, the
backpack attribute might plausibly be where each robot keeps track of the things it is
carrying. We can’t know any of these details with absolute certainty, but it makes sense
given what we know about the robot world described in Section 1.2, “Understanding
Karel’s World,” and from the names of the attributes themselves.

Preceding the names of the attributes is the type of information to which they refer. The
type specifies the set of valid values for the attribute. The street and avenue attrib
utes are preceded by int, which is Java shorthand for “integer.” This information
makes sense because we have been referring to streets and avenues with integers, such as
0, 1, or 5, but never with real numbers, such as 3.14159.

The type of backpack is a ThingBag. ThingBags can store a variable number of
Thing objects. This attribute illustrates that a robot object makes use of other
objects—these objects cooperate to model the problem.

Sometimes a class diagram does not include all of the attributes. Why? The important
part of a class is the services its objects provide—the things they can do. It is appropri
ate to say that the programmer implementing the class needs to know the attributes,
but it’s no one else’s business how the object works internally. Nevertheless, we will
find it helpful in discussing the services to know what attributes they need to maintain.
The class diagram shown earlier in Figure 1-8 occupies a middle ground. It shows
attributes that contribute to understanding the class, but omits others that don’t, even
though they are necessary to implement the class.

1.3.2 Constructors

The Robot class diagram lists five services: Robot, move, turnLeft, pickThing, and
putThing.

The first, Robot, is actually a constructor rather than a service, but is listed here for
convenience. Although constructors have some similarities to services, there are impor
tant differences. The key difference is their purposes: services are performed by an
object for some client, while constructors are used by a client to construct a new object.
(Recall that the client is the object using the services of the Robot object.) Constructors
always have the same name as the class.

When a new object is constructed, its attributes must be set to the correct initial values. The
initial position of the robot is determined by the client. The client communicates the desired

1.3
M

O
D
ELIN

G
 R

O
BO

TS W
ITH

 S
O
FTW

ARE O
BJECTS

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 14

14
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

initial position to the constructor by providing arguments, or specific
values, for each of the constructor’s parameters. The parameters are shown in the class dia
gram between parentheses: Robot(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue,ƒ
DirectionƒaDirection). Notice that there is a remarkable similarity between the con
structor’s parameters and the classes’ attributes.

1.3.3 Services

Suppose we have a robot that we refer to as karel. We can tell karel what to do by
sending it messages such as move or turnLeft. A message requests that the object per
form one of its services for a client, the sender of the message. The services in the
Robot class diagram tell us which messages we can send to a robot object. A message
to karel contains the name karel, a dot, and the name of a service followed by an
argument list and a semicolon, as shown in Figure 1-9.

KEY IDEA

The constructor is
responsible for
correctly initializing
the attributes.

KEY IDEA

A client requests a
service from an object
by sending a message
to the object.

argument (figure 1-9)
“dot” list

Details of sending a

message to an object

referred to as karelkarel.move();

reference to the service semicolon
the object to execute

In this message, karel identifies who is supposed to move. We don’t want to move any
robot (or vehicle or cow or anything else that can move), only the particular robot
known as karel. Stating the object first is like having a conversation in a group of peo
ple. When you speak to a specific person within the group, you often start by saying his
or her name—“Karel, please pass the potatoes.” Because a program almost always
contains many objects, identifying the recipient of the message is a requirement.

After referring to the object, we place a dot, which connects the object to the message,
move. The message must be one of the services the object knows how to perform—a
service listed in the class diagram. Sending the message “jump” to karel would result
in an error because karel does not have a jumping service.

Like the constructor, a service may have a list of parameters to convey information the
object needs to carry out the service. Parameter lists always begin and end with paren
theses. None of the four Robot services listed require additional information, and so
all their parameter lists are empty (but the parentheses must still be present).
Consequently, when the corresponding messages are sent to a Robot object no argu
ments are needed, although parentheses are still required.

KEY IDEA

A message is always
sent to a specific
object.

KEY IDEA

Each message must
correspond to one of
its recipient’s
services.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 15

15
1.4

T
W

O
 E

XAM
PLE P

RO
G
RAM

S

KEY IDEA

Commands are
preceded by the word

void in class
diagrams.

Command Invocation

Finally, the message ends with a semicolon.

When a robot receives the move message, it moves. It also updates the street and
avenue attributes to reflect its new location. If karel is standing at 2nd Street and
1st Avenue facing south, street and avenue contain 2 and 1, respectively. As the
move service is executed, street is updated to 3, but avenue remains 1. The Robot
object also sends many messages to other objects in the program to make an image
move on the computer’s screen.

The move service is preceded in the class diagram with the word void. This word
means that move is a command that changes the state of a robot object rather than a
query that answers a question. If it were a query, void would be replaced with the type
of the answer it returns—an integer, a real number, or a string of characters, for exam
ple. Using the keyword void to mean “returns no answer” can be related to an English
meaning of the word: “containing nothing.”

Invoking the remaining services listed in the class diagram (turnLeft, pickThing,
and putThing) follows the same pattern as move. Start with a reference to a specific
robot. Then add a dot, the message you want to send the robot, an empty argument
list, and a semicolon. The designated robot responds by turning, picking, or putting, as
described earlier. Furthermore, the services of any other class are invoked by following
this same pattern. Not only the Robot, Wall, and Thing classes, but also classes mod
eling students or employees or printers or checkbooks or concerts follow this pattern.
All objects follow this pattern.

Learning to recognize common patterns is an important part of becoming a good pro
grammer. When this book uses a common pattern, a pattern icon appears in the mar
gin, as shown beside the previous paragraph. A section near the end of each chapter
explains the patterns in detail and generalizes them to be more broadly applicable. The
first such section is Section 1.7.

1.4 Two Example Programs

It’s time to put all this background to use. You know about the program’s model, you
know about classes and objects, and you know how to send an object a message to
invoke one of its services. In this section, we’ll take a look at a computer program that
uses these concepts to accomplish a task.

1.4.1 Situations

When writing a program (or reading a program someone else has written), you must
understand what the program is supposed to do. For our first program, let’s imagine that
a delivery robot is to pick up a parcel, represented by a Thing, at intersection (1, 2) and

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 16

16
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

deliver it to (2, 3). The initial situation, shown in Figure 1-10, represents the state of the
city before the robot does its task. The final situation, also shown in Figure 1-10, is how
we want the city to appear after the task is done.

This task could be accomplished in many ways. Perhaps the simplest is for the robot to
perform the following steps:

move forward until it reaches the parcel
pick up the parcel
move one block farther
turn right
move a block
put the parcel down
move one more block

0 1 2 3 0 1 2 3
0 0

1 1

2 2

3 3

Initial situation Final situation

KEY IDEA

Many robot tasks can
be specified by
showing the way
things are at the
beginning and how we
want things to end up.

Sequential Execution

(figure 1-10)

Initial and final situations

of a task to pick up and

deliver a parcel

This path is illustrated on the left side of Figure 1-11. A more roundabout path is
shown on the right. The roundabout path also accomplishes the task but results in a
less efficient solution. If the robot were real, which solution would cause the robot to
use the least power from its battery pack?

0 1 2 3 0 1 2 3 (figure 1-11)

Two approaches for the

robot to perform the

delivery task

An efficient approach A less efficient approach

Obviously, the robot could take any one of many possible paths to solve this problem.
The following program takes the more efficient approach outlined in Figure 1-11.

0

1

2

3

0

1

2

3

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 17

17

LOOKING BACK

Before you can run the
program in Listing 1-1,

you need to have
software installed on

your computer. See
the Preface for

instructions.

1.4
T

W
O
 E

XAM
PLE P

RO
G
RAM

S

1.4.2 Program Listing

Listing 1-1 shows the source code of a program to carry out the task just described. The
source code contains the words and other symbols we write to instruct the computer.

Based on the previous discussion, you should be able to read the main body of the pro
gram and have a feel for how it works. Of course, you won’t understand everything
now, but it will all be explained in due course. You may be interested in knowing that
much of the code in Listing 1-1 is repeated in every Java program and even more is
repeated in every program using robots.

The line numbers on the left are not part of the program. They are included in the list
ing only so we can easily refer to specific parts of the program.

This program divides naturally into three parts: the code in lines 8–10, which con
structs objects to set up the initial situation, the code in lines 13–22, which sends mes
sages directing the robot to the final situation, and the remaining “housekeeping”
required by the Java language. This division is reinforced by the comments written by
the programmer at lines 7 and 12.

At a lower level of detail, Table 1-1 describes the purpose of each line of code. Use it to
get a feel for the kinds of information present in a Java program, but don’t expect to
understand it all this early in the book. Lines 8–22 are the most important for right
now; all will be discussed in detail later in the book.

The source code for the program in Listing 1-1 is available from the Robots Web site.
Download the file examples.zip. After saving and expanding it, look in the directory
ch01/deliverParcel/.

ch01/deliverParcel/

Listing 1-1: A program to move a Thing from (1, 2) to (2, 3)

1 importƒbecker.robots.*;
2
3 publicƒclassƒDeliverParcel
4 {
5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
6 ƒƒ{
7 ƒƒƒƒ// Set up the initial situation
8 ƒƒƒƒCityƒpragueƒƒƒ=ƒnewƒCity();
9 ƒƒƒƒThingƒparcelƒƒ=ƒnewƒThing(prague,ƒ1,ƒ2);

10 ƒƒƒƒRobotƒkarelƒƒƒ=ƒnewƒRobot(prague,ƒ1,ƒ0,ƒDirection.EAST);
11
12 ƒƒƒƒ// Direct the robot to the final situation
13 ƒƒƒƒkarel.move();

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 18

18
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

Listing 1-1: A program to move a Thing from (1, 2) to (2, 3) (continued)

14 ƒƒƒƒkarel.move();
15 ƒƒƒƒkarel.pickThing();
16 ƒƒƒƒkarel.move();
17 ƒƒƒƒkarel.turnLeft();ƒƒƒƒƒƒ// start turning right as three turns lefts
18 ƒƒƒƒkarel.turnLeft();
19 ƒƒƒƒkarel.turnLeft();ƒƒƒƒƒƒ// finished turning right
20 ƒƒƒƒkarel.move();
21 ƒƒƒƒkarel.putThing();
22 ƒƒƒƒkarel.move();
23 ƒƒ}
24 }

Line Purpose

1 Makes code written by other programmers, such as the Robot class, easily
available.

2, 11 Blank lines often add clarity for a person reading the program, but do not
affect its execution in any way.

3 Identifies the class being written with the name DeliverParcel.

4, 6, 23, 24 Java uses braces to give structure to the program. The braces at lines 4
and 24 contain all the code belonging to the class. The braces at lines 6
and 23 contain all the code belonging to the service named main.

5 Identifies where the program will begin execution. Every program must
have a line similar to this one.

7, 12 Text between two consecutive slashes and the end of the line is a comment.
Comments are meant to help human readers and do not affect the execution
of the program in any way.

8–10 Construct the objects required by the program.

13–22 Messages telling the robot named karel which services it should perform.

(table 1-1)

An explanation of

Listing 1-1

We now turn to a detailed discussion of lines 8–22. The remainder of the program will
be discussed in Section 1.4.7.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 19

19

Object Instantiation

LOOKING AHEAD

We will see similar
declarations in other

situations. All have
the type first, then

the name.

LOOKING AHEAD

We will learn how to
define our own sets of

values in Chapter 7.

1.4.3 Setting up the Initial Situation

The initial situation, as shown in Figure 1-10, is set up by constructing three objects in
lines 8-10. The City object corresponds to all the intersections of streets and avenues.
The Robot and Thing objects obviously correspond to the robot and thing shown in
the initial situation.

Each of the four statements has a similar structure. Consider line 10 as an example:

10ƒƒƒƒRobotƒkarelƒƒ=ƒnewƒRobot(prague,ƒ1,ƒ0,ƒDirection.EAST);

On the left side of the equal sign (=) is a variable declaration. A variable declaration
first states the type of the object—in this case Robot—and then the name of the vari
able being declared, karel. A variable uses a name (karel) to refer to a value (in this
case a Robot object), allowing the value to be used easily in many places in the pro
gram. The choice of variable name is up to the programmer. A meaningful name helps
the understanding of people reading the program, including the programmer.

The object is instantiated on the right side of the equal sign. The keyword new signals
that a new object will be constructed. After new, a constructor is named, in this case,
Robot. It must be compatible with the type of the variable on the left side of the equal
sign. For now, “compatible” means the two are identical. Eventually, we will ease this
restriction.

When an object is constructed, the client object may need to provide information for
the constructor to do its job. In this case, the client specifies that the new robot is to be
created in the city named prague at the intersection of Street 1 and Avenue 0, facing
east. Recall the values or arguments provided at line 10:

10ƒƒƒƒRobotƒkarelƒƒ=ƒnewƒRobot(prague,ƒ1,ƒ0,ƒDirection.EAST);

They correspond to the parameters shown in the class diagram:

ƒƒƒƒƒƒRobot(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒDirectionƒaDirection)

The arguments list the city first, then the street, avenue, and direction—in that order.
Furthermore, the types of the values provided match the types given in the parameter
list. prague refers to a City object, just as the parameter list specifies what the first
value must be. Similarly, the second and third values are integers, just as the types for
avenue and street specify.

The type of the Robot constructor’s last parameter is Direction and the value passed
to it in line 10 of Listing 1-1 is Direction.EAST. Direction is a class used to define
values with program-specific meanings. EAST is one of those special values. It should
come as no surprise that WEST, NORTH, and SOUTH are other values defined by the
Direction class. When one of these values is used in a program, its defining class,
Direction, must accompany it.

1.4
T

W
O
 E

XAM
PLE P

RO
G
RAM

S

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 20

20
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

Finally, line 10 ends with a semicolon (;), which marks the end of the statement. The
function of semicolons in Java is similar to periods marking the end of English sentences.

1.4.4 Sending Messages

Lines 13–22 in Listing 1-1 direct the robot from the initial situation to the final situa
tion. They give a precise sequence of instructions the robot must perform to accom
plish the task. If the instructions were performed in a different sequence, the problem
is unlikely to be solved correctly.

Each instruction follows the command invocation pattern observed earlier: give the
name of the object being addressed, a dot, and then the service desired from that
object. For example, karel.move(); instructs the robot karel to execute its move
service. The result is that the robot moves from one intersection to the next intersection
in the direction it is currently facing (unless something blocks its way).

Each of these instructions is one statement in the program. Lines 8-10 are another kind
of statement, declaration statements, because they declare variables and assign initial
values to them. In time, we will learn other kinds of statements that allow the program
to make decisions, execute other statements repeatedly, and so on. Recall that all state
ments end with a semicolon.

1.4.5 Tracing a Program

Simulating the execution of a program, also known as tracing a program, is one way to
understand what it does and verify that the sequence of statements is correct. Tracing a
program is like building a state change diagram, such as the one shown in Figure 1-12,
for each statement in the program. Notice that the diagram covers two statements and
shows the state before each statement and after each statement.

A program almost always involves many objects, so this can involve tracking a lot of
information. Also, a formal state change diagram is difficult to draw and maintain. To
overcome these problems, it’s best to decide at the outset what information is relevant
and to organize it in a table. It seems that the relevant information in the
DeliverParcel program (Listing 1-1) includes the state of the robot and the state of
the parcel, represented by a Thing. For the state of the robot, we will have four columns,
one for each of the four attributes in the class diagram shown in Figure 1-8. For the par
cel we will use a column for its street and another for its avenue. These are listed as head
ings in Table 1-2. If the program contained another robot, we would trace it by adding
another group of four columns to the table.

Command Invocation

Sequential Execution

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 21

21

(figure 1-12) karel

State change diagram

tracing the execution of

two statements

karel.move()

karel.turnLeft()

Robot
street: 1

avenue: 0

 direction: EAST

backpack: Robot
street: 1

avenue: 1
 direction: EAST

backpack: Robot
street: 1

avenue: 1

 direction: NORTH
backpack:

1.4
T

W
O
 E

XAM
PLE P

RO
G
RAM

S

(table 1-2)

A table recording the

change of program

state while tracing the

execution of the

DeliverParcel
program in Listing 1-1

Program Statement

karel parcel

street avenue direction backpack street avenue

1 0 east 1 2

13ƒƒkarel.move();

1 1 east 1 2

14ƒƒkarel.move();

1 2 east 1 2

15ƒƒkarel.pickThing();

1 2 east parcel 1 2

16ƒƒkarel.move();

1 3 east parcel 1 3

17ƒƒkarel.turnLeft();

1 3 north parcel 1 3

18ƒƒkarel.turnLeft();

1 3 west parcel 1 3

19ƒƒkarel.turnLeft();

1 3 south parcel 1 3

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 22

22
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

Program Statement

karel parcel

street avenue direction backpack street avenue

20ƒƒkarel.move();

2 3 south parcel 2 3

21ƒƒkarel.putThing();

2 3 south 2 3

22ƒƒkarel.move();

3 3 south 2 3

(table 1-2) continued

A table recording the

change of program

state while tracing the

execution of the

DeliverParcel
program in Listing 1-1

Like the state change diagram, the table is organized to show the state of the program
both before and after each statement is executed. It does this by inserting the state
ments between the rows that record the program’s state.

The first row of the table gives the initial state as established when the objects are con
structed in lines 8–10. This state reflects the initial situation shown in Figure 1-10. As
we trace the program, we list the statement executed and then the resulting state. The
effect is equivalent to a long series of state change diagrams like the one in Figure 1-12,
but considerably easier to manage.

After tracing the program, we see that the robot finishes on intersection (3, 3) as the
final situation requires. In addition, it has picked up the thing and deposited it on inter
section (2, 3).

Tracing the program helps us understand what it does and increases our confidence in
the correctness of the solution. As you trace a program, you must do exactly what the
program says. It is tempting to take shortcuts, updating the table with what we intend
the program to do. The computer, however, does not understand our intentions. It does
exactly what the program says. If we don’t do the same while tracing, the value of trac
ing is lost and we can no longer claim confidence in the correctness of the solution.

Having performed a trace, we now understand that the sequence of statements in the
program is important. If lines 14 and 15 are reversed, for instance, the robot would try
to pick up the thing before it arrives at the thing’s intersection. The result would be a
broken robot on intersection (1, 1).

Sequential execution is a fundamental pattern in how we solve problems. We often give
directions that follow the form “do _____, and then _____”: “go to the stoplight and
then turn right” or “add the eggs and then beat the batter for two minutes.” The and
then indicates sequential execution.

KEY IDEA

Computers follow the
program exactly.
When tracing the
execution, we must
also be exact.

Sequential Execution

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 23

23

1.4.6 Another Example Program

A second example program is shown in Listing 1-2. Comparing it with the
DeliverParcel program in Listing 1-1 reveals many common elements—and where
the differences are. The initial and final situations are shown in Figure 1-13. In this
program, a robot (mark) must move around a roadblock to meet a friend (ann) on
intersection (2, 1). This program is interesting because it uses multiple objects that
belong to the same class (two robot objects and two wall objects).

One obvious difference between this program and DeliverParcel is the use of Wall
objects. A wall is instantiated using the same pattern as Robot and City objects, as
shown in the following statement:

WallƒblockAve0ƒ=ƒnewƒWall(ny,ƒ0,ƒ2,ƒDirection.WEST);

This statement constructs a wall on the western boundary of the intersection at (0, 2).
This is the wall that prevents mark from proceeding west from its current location. The
object is referenced with the name “blockAve0,” a name chosen by the programmer.

(figure 1-13) 0 1 2 0 1 2
0 0

Initial and final

situations for two robots, 1 1
mark and ann

2 2

In the initial situation, two robots, The final situation, where mark and ann

mark and ann, are on opposite sides of have gone around the roadblock to meet

a roadblock. They would like to meet on intersection (2, 1).

on intersection (2, 1).

You may want to stop here and think about how you would write a program to solve
this problem. What changes would you make to the DeliverParcel program? Then
look at Listing 1-2 and see how much of it makes sense to you.

GoAroundRoadBlock and DeliverParcel have many features in common. If both
programs were written on transparencies and superimposed, they would be identical in
a number of places. In particular, the first six lines are nearly identical, with the excep
tion of one name chosen by the programmers. In addition, both programs have two
closing braces at the end and the organization of the code in the inner most set of
braces is similar—first objects are declared and then messages are sent to them. Both
programs have similar patterns of constructing objects, obtaining services from those
objects, and requiring statements to be in a particular sequence.

1.4
T

W
O
 E

XAM
PLE P

RO
G
RAM

S

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 24

24
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

Listing 1-2: A program where mark goes around a road block and meets ann

1 importƒbecker.robots.*;

2

3 publicƒclassƒGoAroundRoadBlockƒ

4 {

5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

6 ƒƒ{

7 ƒƒƒƒ// Set up the initial situation

8 ƒƒƒƒCityƒƒnyƒƒƒƒƒƒƒƒ=ƒnewƒCity();

9 ƒƒƒƒWallƒƒblockAve0ƒ=ƒnewƒWall(ny,ƒ0,ƒ2,ƒDirection.WEST);

10 ƒƒƒƒWallƒƒblockAve1ƒ=ƒnewƒWall(ny,ƒ1,ƒ2,ƒDirection.WEST);

11 ƒƒƒƒRobotƒmarkƒƒƒƒƒƒ=ƒnewƒRobot(ny,ƒ0,ƒ2,ƒDirection.WEST);

12 ƒƒƒƒRobotƒannƒƒƒƒƒƒƒ=ƒnewƒRobot(ny,ƒ0,ƒ1,ƒDirection.EAST);

13
14 ƒƒƒƒ// mark goes around the roadblock
15 ƒƒƒƒmark.turnLeft();
16 ƒƒƒƒmark.move();
17 ƒƒƒƒmark.move();
18 ƒƒƒƒmark.turnLeft();ƒƒƒƒƒƒ// start turning right as three turns left
19 ƒƒƒƒmark.turnLeft();
20 ƒƒƒƒmark.turnLeft();ƒƒƒƒƒƒ// finished turning right
21 ƒƒƒƒmark.move();
22
23 ƒƒƒƒ// ann goes to meet mark
24 ƒƒƒƒann.turnLeft();ƒƒƒƒƒƒƒ// start turning right as three turns left
25 ƒƒƒƒann.turnLeft();
26 ƒƒƒƒann.turnLeft();ƒƒƒƒƒƒƒ// finished turning right
27 ƒƒƒƒann.move();
28 ƒƒƒƒann.move();
29 ƒƒƒƒann.turnLeft();
30 ƒƒ}
31 }

ch01/roadblock/

Object Instantiation

Command Invocation

Sequential Execution

Multiple Objects

The GoAroundRoadBlock program contains two robots, mark and ann. Each has its
own internal state, which is completely independent of the other. mark can turn and
move without affecting ann; ann can turn and move without affecting mark. The state
change diagram in Figure 1-14 shows an object for mark and another for ann. After
mark turns, ann’s object has not changed (although mark’s direction is now different).

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 25

Robot
street: 0

avenue: 1

 direction: EAST

backpack:

Robot
street: 0

avenue: 2

 direction: WEST

backpack:

Robot
street: 0

avenue: 1

 direction: EAST

backpack:

Robot
street: 0

avenue: 2

 direction: SOUTH
backpack:

mark:ann:

25

(figure 1-14)

State change diagram

illustrating the

independence of two

robot objects

mark.turnLeft();

1.4
T

W
O
 E

XAM
PLE P

RO
G
RAM

S

KEY IDEA

The only way to
change an object’s

attributes should be
via its services.

In a well-designed object-oriented program, an object’s state does not change unless a
message has been sent to the object. When mark is sent the turnLeft message, no mes
sage is sent to ann, so that object doesn’t change. This property of not changing unless an
explicit message is received is called encapsulation. An object builds a capsule or wall
around its attributes so that only the object’s services can change them. One strength of
object-oriented programming is that it makes encapsulation easy. Earlier programming
methodologies did not make encapsulation as easy, with the result that programmers
were often left wondering “Now, how did that information get changed?”

It is possible to write Java programs that do not use encapsulation, but it is not
recommended.

1.4.7 The Form of a Java Program

Let’s turn now to the first six lines and the last two lines of the DeliverParcel and
GoAroundRoadBlock programs. Both programs are almost identical in these areas;
we take Listing 1-1 as our example. For programs involving robots, only one of these
eight lines vary from program to program. The statements we are interested in are
shown in Listing 1-3, with the part that changes shown in a box.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 26

26
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

Listing 1-3: The “housekeeping” statements in a Java program that simulate robots

1 importƒbecker.robots.*; Java Program

2
3 publicƒclassƒDeliverParcelƒ

The programmer chooses this
name for each program.

4 {
5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
6 ƒƒ{

ƒƒƒƒ// lines 7-22 omitted
23 ƒƒ}
24 }

Line 1 makes a large body of code written by other people easily available. The 24 lines
of code contained in Listing 1-1 are not nearly enough to specify everything that this
program does. The program makes use of more than 3,700 lines of code written by the
textbook’s author. That, in turn, uses many tens or even hundreds of thousands of lines
of code written by still other programmers.

All that code is organized into packages. The code written by the author is in the pack
age becker.robots. It is a group of about 50 classes that work together to enable
robot programs. Line 1 makes those classes more easily accessible within the
DeliverParcel program.

The class name on line 3 is simply that—a name by which this class will be known. The
name of the file containing the classes’ source code must be the same as this name, with
“.java” added to the end (for example, “DeliverParcel.java”).

The braces on lines 4 and 24 enclose the statements that are specific to this class.

The special name main appears in every Java program. It marks where execution of the
program begins. The words surrounding main are required and tell Java more about this
code. The braces in lines 6 and 23 enclose all of the statements associated with main.

1.4.8 Reading Documentation to Learn More

The Robot class includes more than 30 services—too many to discuss here.
Furthermore, the software accompanying this book contains more than 100 other
classes. How can you find out about the other classes and all the services they (includ
ing Robot) offer?

The creators of Java have included a facility to extract information from the Java
source code and put it in a form suitable for the World Wide Web. A sample Web page

LOOKING AHEAD

In Section 1.6, we will
see programs that
import packages for
manipulating
a window on
the screen.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 27

27

documenting the Robot class is shown in Figure 1-15. You can use a Web browser to
find it at www.learningwithrobots.com or look in the documentation directory of the
CD that accompanies this book.

1.4
T

W
O
 E

XAM
PLE P

RO
G
RAM

S

(figure 1-15)

Web page showing a

list of the available

packages, classes within

the becker.robots
package, and some of

the documentation for

the Robot class

List of classes in the
becker.robots package

List of available packages

The upper-left panel in the window shows an area labeled “Packages”. It contains
becker.robots and several other packages. Clicking one of these links displays in the
lower-left panel a list of the classes contained in that package. For example, if you click
becker.robots, the lower-left panel displays the classes contained in the
becker.robots package. The classes used in our programs thus far (City, Robot, Wall,
and Thing) are listed here.

Clicking one of the class names displays documentation for that class in the main part
of the window. For example, if you click the Robot class, its documentation appears,
the beginning of which is shown in Figure 1-15. It shows the relationship between the
Robot class and a number of other classes. We’ll learn more about these relationships
in Chapter 2.

Figure 1-16 shows the documentation’s descriptive overview of the Robot class.
The overview is used to describe the purpose of the class and sometimes includes
sample code.

The documentation includes a summary description of each constructor and service
(called methods in the documentation). Figure 1-17 shows the summaries for two
constructors, one of which hasn’t been mentioned in this textbook. Finally, the
documentation also contains detailed descriptions of each constructor and service.
Figure 1-18 shows the detailed description for the move service.

http:www.learningwithrobots.com

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 28

28
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

(figure 1-16)

Descriptive overview of

the Robot class

(figure 1-17)

Summary descriptions of

Robot constructors; each

method has a similar

summary

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 29

29

(figure 1-18)

Detailed description of the

move service in the

Robot documentation

1.5
C

O
M

PILIN
G
 AN

D
 E

XECU
TIN

G
 P

RO
G
RAM

S

1.5 Compiling and Executing Programs

Now that we have seen two programs and discussed the overall form of a Java pro
gram, it is time to discover how to run them on a computer to see them in action. The
exact steps to follow vary from computer to computer, depending on the operating sys
tem (Unix, Windows, Macintosh OS, and so on), which software is being used, and
how that software has been installed. In broad strokes, however, there are three steps:

➤	 Edit the source code in an appropriately named file with a text editor such as
vi (Unix), Notepad (Windows), or TextEdit (Macintosh), or an integrated
development environment (IDE) such as JCreator or jGrasp.

➤	 Translate the program from the Java source code into an internal representa
tion called byte code which is more easily understood by the computer. This
process is called compiling and is performed by a program called a compiler.

➤	 Run the compiled program.

Errors are often revealed by one of the last two steps. You must then go back to the
first step, make changes, and try again. These steps result in a cycle, illustrated in
Figure 1-19, of editing, compiling, and running, which is repeated until the program is
finished. When things go right, the light path is followed, providing the desired results.
When things go wrong, one of the three dark paths is taken and the source code must
be edited again to fix the error.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 30

30

(figure 1-19)

The edit-compile-run cycle

CH
AP

TE
R

1
| P

RO
G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

Edit program's
source code

Compile
the program

Run the
program

Compile-
time
errors

Run
time
errors

Intent
errors

Desired
results

What kinds of things can go wrong? There are three kinds of errors: compile-time errors,
run-time errors, and intent errors. Compile-time errors are exposed when the compiler
translates the program into byte code. Run-time errors are discovered when the program
runs, but attempts to do something illegal. Intent errors are also called logic errors. They
occur when the program does not carry out the programmer’s intentions.

1.5.1 Compile-Time Errors

Compile-time errors occur when the program does not conform to the rules of the Java
language. People can easily recognize (or even overlook) errors in written English.
Computers cannot. The programmer must obey the rules exactly.

Listing 1-4 contains a program with many compile-time errors. Each is explained by
the boxed annotation beside it. You can find the code in ch01/compileErrors/.

Every time the compiler finds an error it prints an error message. These messages are
helpful in finding the errors—be sure to read them carefully and use them. For exam
ple, misplaced semicolons can be a struggle for beginning programmers. The missing
semicolon at line 8 results in an error message similar to the following:

CompileErrors.java:8:ƒ';'ƒexpected
ƒƒƒRobotƒkarelƒ=ƒnewƒRobot(london,ƒ1,ƒ1,ƒDirection.EAST)
ƒƒƒ^

This message has three parts. The first is where the error was found.
“CompileErrors.java” is the name of the file containing the error. It won’t be long

KEY IDEA

The compiler can
help you find
compile-time errors.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 31

31
1.5

C
O
M

PILIN
G
 AN

D
 E

XECU
TIN

G
 P

RO
G
RAM

S

before our programs are large enough to be organized into several files; you need to
know which one contains the error. It is followed by the line number where the error
was found, 8.

Second, “';'ƒexpected” indicates what the compiler identifies as the error.

Third is the line from the program where the compiler found the error. Beneath it is a
caret (^) symbol showing where in the line the error was detected.

ch01/compileErrors/

Listing 1-4: A program with compile-time errors

Missing “.*”
1 importƒbecker.robots;
2
3
4 {
5
6 ƒƒƒƒkarel.move();
7 ƒƒƒƒCityƒ1ondonƒ=ƒnewƒCitƒy(); Name contains a space
8
9

publikƒclassƒCompileErrorsƒ

ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

Misspelled keyword

Missing opening brace

Using an object that has
not yet been declared

Missing10
semicolon11

12
13
14
15
16
17
18 } Statement outside of a service definition

ƒƒƒƒRobotƒkarelƒ=ƒnewƒRobot(1ondon,ƒ1,ƒ1,ƒDirection.EAST)

ƒƒƒƒkaral.move();
ƒƒƒƒkarel.mvoe();
ƒƒƒƒkarel.turnRight();
ƒƒƒƒkarel.turnleft();
ƒƒƒƒmove();
ƒƒƒƒkarel.move;
ƒƒ}
ƒƒkarel.move();

Invalid variable name (begins with
the digit one, not lower case ‘L’)

Misspelled variable name

Misspelled service name

Incorrect capitalization

Message not addressed to an object
Missing parentheses

Undefined service name

If you use an integrated development environment (IDE), it may show errors in a different
format. It may even move the cursor to the line containing the error. No matter what the
format is, however, you should still be able to learn the nature and location of the error.

Sometimes the messages are more cryptic than the one shown in the CompileErrors
example, and occasionally the location of the error is wrong. For example, the com
piler reports many errors if you misspell the variable name at line 8 where it is
declared, but spell it correctly everywhere else. Unfortunately, none of the errors are at
line 8. In other words, one error can cause many error messages, all pointing to the
wrong location.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 32

32
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

Because one error can cause many error messages, a reasonable debugging strategy is
to perform the following tasks:

➤ Compile the program to produce a list of errors.

➤ Fix the most obvious errors, beginning with the first error reported.

➤ Compile the program again to obtain a revised list of the remaining errors.

Furthermore, do these tasks early in your program’s development, and do them often.
Waiting too long to compile your program will often result in many cryptic error mes
sages that are hard to understand. Errors are easier to find and fix when you compile
early and often.

1.5.2 Run-Time Errors

Run-time errors are discovered when the program is actually run or traced. They are
the result of instructions executing in an illegal context. For example, the instruction
karel.move(); will compile correctly (as long as a robot named karel has been
constructed). However, if karel is facing a wall when this instruction executes, it will
break. The instruction is executed in an illegal context.

The error of crashing a robot into a wall is reported in two different ways. First, the
robot’s icon is changed to show that the robot is broken. Second, an informative error
message is printed. An example is shown in Figure 1-20.

KEY IDEA

Compiling early and
often makes finding
compile-time errors
easier.

1 Exception in thread "main" becker.robots.RobotException: A (figure 1-20)

robot at (1, 2) crashed into a wall while moving WEST.
 Error message generated

2 at becker.robots.Robot.breakRobot(Robot.java:558)
at run-time3 at becker.robots.Robot.move(Robot.java:148)

4 at GoAroundRoadBlock.main(GoAroundRoadBlock.java:17)

This error message results from removing line 17 from Listing 1-2. The result is that
mark does not move far enough to go around the roadblock and crashes into it.

The first line of the message contains technical information until the colon (:) charac
ter. A description of what went wrong usually appears after the colon. In this case, we
are told that a robot crashed while moving west.

Lines 2-4 say where in the source code the error occurred and how the program came to
be executing that code. Line 2 says the error happened while the program was executing
line 558 in the source file Robot.java. That might be helpful information if we had
access to Robot.java, but we don’t. It is part of the becker.robots package imported
into our robot programs. Line 3 indicates the error is also related, somehow, to line 148 in
that same source file. Finally, line 4 mentions GoAroundRoadBlock.java, the file shown

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 33

33

in Listing 1-2. At line 17 we find a move instruction, the one that caused the robot to
crash. This is where our efforts to fix the program should start.

One situation that can be confusing for beginning programmers is when the Java sys
tem cannot even begin running your program. Usually, the run-time error message will
contain the “word” NoClassDefFoundError. This means that the Java system can
not find your program to run, perhaps because it has not been successfully compiled or
perhaps because the compiler did not place the compiled version of your program in
the expected place.

1.5.3 Intent Errors

An intent error occurs when the program fails to carry out its intended purpose. The
program may not have any compile-time or run-time errors, yet still fail to accomplish
the job for which it was written. An intent error is also called a logic error.

These errors can be among the hardest to find. The computer can help find compile-
time and run-time errors because it knows something is wrong. With an intent error,
however, the computer cannot tell that something is wrong, and therefore provides no
help other than executing the program. Remember, a computer does what it is told to
do, which might be different from what it is meant to do.

For example, consider a program intended to move a thing from (2, 1) to (1, 1). The
initial and final situations are shown in Figure 1-21.

1.5
C

O
M

PILIN
G
 AN

D
 E

XECU
TIN

G
 P

RO
G
RAM

S

(figure 1-21)

Initial and final situations

for a task to move a thing

Sequential Execution

0 1 2 0 1 2
0 0

1 1

2 2

Initial situation Final situation

Suppose the programmer omitted the turnLeft instruction, as in the following pro
gram fragment:

katrina.move();

katrina.pickThing();

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// should have turned left here

katrina.move();

katrina.putThing();

katrina.move();

As a result, the robot would finish the task at (2, 3) instead of (0, 1), and the thing
would be at (2, 2) instead of (1, 1)—not what was intended.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 34

34
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

Fortunately, the visual nature of robot programs makes many intent errors easy to find.
Debugging intent errors in less visual programs is usually much harder.

1.5.4 A Brief History of Bugs and Debugging

Programming errors of any kind are often called bugs. The process of finding and fix
ing the errors is called debugging. The origin of the term is not certain, but it is known
that Thomas Edison talked about bugs in electrical circuits in the 1870s. In 1947, an
actual bug (a moth) was found in one of the electrical circuits of the Mark II computer
at Harvard University, causing errors in its computations (see Figure 1-22). When the
moth was found, it was taped into the operator’s log book with the notation that it is
the “first actual case of a bug being found.” Apparently, the term was already in use
for non-insect causes of computer malfunctions.

(figure 1-22)

A 1947 entry from a log

book for the Mark II

computer at Harvard

University

1.6 GUI: Creating a Window

We have learned a lot of Java programming in the context of Robot objects. These
concepts include:

➤	 A class, such as Robot or Thing, is like a factory for making as many objects
as you want. Each class or factory only makes one kind of object.

➤	 A new object is instantiated with the new operator, for instance
Robotƒmarkƒ=ƒnewƒRobot(ny,ƒ0,ƒ2,ƒDirection.WEST);.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 35

35

➤	 All objects belonging to the same class have the same services, but each has its
own attribute values that are independent of all other objects.

➤	 A client can invoke an object’s services with the object’s name, a dot, and then
the name of the desired service.

These concepts are not only for robot programs, but apply to every object-oriented
Java program ever written. To illustrate, each chapter of this book includes a section
applying the concepts learned using robots to graphical user interfaces, or GUIs (pro
nounced “gooey”). Applying the concepts to classes supplied with the Java language
that have nothing to do with robots shows you how these concepts can be used in
many other contexts.

Graphical user interfaces are the part of the program that interacts with the human user.
It probably obtains input from the user and displays results to the user. In terms of
what the user sees, the GUI consists of the windows, dialog boxes, lists of items to
select, and so on.

1.6.1 Displaying a Frame

GUIs add a lot of complexity and development time to a program. Fortunately, Java
provides a rich set of resources to help develop interfaces. The beginning point is the
window, called a frame in Java. The simplest possible frame is shown in Figure 1-23.

1.6
G
U
I: C

REATIN
G
 A W

IN
D
O
W

(figure 1-23)

Simplest Java frame
Close button

Maximize button

Minimize button

Though it is empty, the frame nevertheless has substantial functionality. If the user
clicks the close box, the program quits. If the user clicks the minimize box the frame
becomes as small as possible, while clicking the maximize box enlarges the frame to
take up the entire screen. The user may also adjust the size of the frame by clicking and
dragging an edge of the frame.

The program that displays this frame is even simpler than a robot program and is shown
in Listing 1-5. Notice the similarity to Listing 1-1, including the following features:

➤	 Both programs include import statements (although the actual packages dif
fer), the declaration of the class at line 3 (although the class name differs), the
placement of braces, and the declaration of the special service main.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 36

36

➤ Both programs instantiate an object.

➤ Both programs invoke the services of an object.

CH
AP

TE
R

1
| P

RO
G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

Listing 1-5 The EmptyFrame program displays an empty window

1 importƒjavax.swing.*;ƒƒƒƒƒ// use JFrame
2
3 publicƒclassƒEmptyFrame
4 {
5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
6 ƒƒ{ƒ// declare the object
7 ƒƒƒƒJFrameƒframeƒ=ƒnewƒJFrame();
8
9 ƒƒƒƒ// invoke its services

10 ƒƒƒƒframe.setTitle("EmptyFrame");
11 ƒƒƒƒframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 ƒƒƒƒframe.setLocation(250,ƒ100);
13 ƒƒƒƒframe.setSize(150,ƒ200);
14 ƒƒƒƒframe.setVisible(true);
15 ƒƒ}
16 }

ch01/emptyFrame/

Java Program
Object Instantiation

Command Invocation

Sequential Execution

The EmptyFrame program differs from the DeliverParcel program in the kinds of
objects created and the services demanded of them. A JFrame object serves as a container
for information displayed to the user. By default, however, the frame has no title, is not
visible on the screen, has no area for displaying information, and hides the frame when the
close box is clicked (leaving us with no good way to stop the program). The services
invoked in lines 10-14 override those defaults to provide the functionality we need.

The setTitle service causes its argument to be displayed at the top of the frame.

The setDefaultCloseOperation service specifies what the frame object should do
when the close box is clicked. JFrame.EXIT_ON_CLOSE gives a meaningful name to a
particular value; Direction.EAST serves a similar function for robot programmers.

The setLocation service says where the frame should appear. Its first argument is the
distance from the left side of the screen to the left side of the frame. The second argu
ment specifies the distance from the top of the screen to the top of the frame. The
setSize service specifies the size of the frame. The first argument is the width and the
second argument is the height. All of the arguments to these two services are given in
pixels, an abbreviation for picture elements, which are the tiny dots on the screen that
make up the image. The meaning of these arguments is illustrated in Figure 1-24.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 37

37

(figure 1-24)

Relationship of the

arguments to

setLocation and

setSize to the frame’s

location and size; the

outer rectangle

represents the computer

monitor

200

150

250

100

JFrame frame = new JFrame();

...

frame.setLocation(250, 100);

frame.setSize(150, 200);

1.6
G
U
I: C

REATIN
G
 A W

IN
D
O
W

LOOKING AHEAD

true and false are

Finally, the setVisible service specifies whether the frame is visible on the screen. If
the argument is true, the frame will be visible, while a value of false will hide it.

Boolean values used
to represent true or
false answers, and

are covered in detail

1.6.2 Adding User Interface Components

in Chapter 4. A frame with nothing in it is rather boring and useless. We can fix that by setting the
content pane, the part of a frame designed to display information. We can add to the
content pane buttons, textboxes, labels, and other user interface elements familiar to
modern computer users. These buttons, labels, and so on are often called components.
A component is nothing more than an object designed to be part of a graphical user
interface.

An early warning, however: The resulting programs may look like they do something
useful, but they won’t. We are still a long way from writing a graphical user interface
that actually accepts input from the user. The following programs emphasize the
graphical rather than the interface.

Figure 1-25 shows a snapshot of a running program that has a button and a text area
displayed in a frame. The frame’s content pane has been set to hold a JPanel object.
The JPanel, in turn, holds the button and text area. Listing 1-6 shows the source code
for the program.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 38

38
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

(figure 1-25)

Frame with a content pane

containing a button and a

text area; the user typed,

“I love Java!” while the

program was running

Listing 1-6 FramePlay, a program to display a frame containing a button and a text area

ch01/framePlay/ 1 importƒjavax.swing.*;ƒƒƒƒƒ// use JFrame, JPanel, JButton, JTextArea

2

3 publicƒclassƒFramePlayƒ

4 {

5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

6 ƒƒ{ƒ// declare the objects to show

7 ƒƒƒƒJFrameƒframeƒ=ƒnewƒJFrame();

8 ƒƒƒƒJPanelƒcontentsƒ=ƒnewƒJPanel();

9 ƒƒƒƒJButtonƒsaveButtonƒ=ƒnewƒJButton("Save");

10 ƒƒƒƒJTextAreaƒtextDisplayƒ=ƒnewƒJTextArea(5,ƒ10);
11
12 ƒƒƒƒ// set up the contents

Display a Frame
13 ƒƒƒƒcontents.add(saveButton);
14 ƒƒƒƒcontents.add(textDisplay);
15
16 ƒƒƒƒ// set the frame’s contents to display the panel
17 ƒƒƒƒframe.setContentPane(contents);
18
19 ƒƒƒƒ// set up and show the frame
20 ƒƒƒƒframe.setTitle("FramePlay");
21 ƒƒƒƒframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22 ƒƒƒƒframe.setLocation(250,ƒ100);
23 ƒƒƒƒframe.setSize(150,ƒ200);
24 ƒƒƒƒframe.setVisible(true);
25 ƒƒ}
26 }

In lines 7–10, we declare and instantiate several objects. The JPanel instance named
contents is simply a container. It will hold the things we are really interested in, the
button and text area. The button and text area are instances of JButton and
JTextArea, respectively. The JPanel’s add service in lines 13 and 14 adds them to its
list of things to display.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 39

When the button is constructed in line 9, “Save” is passed to the constructor’s para-
meter. This text appears on the button when it is displayed. When the text area is con-
structed in line 10, the number of lines of text it should hold and how many characters
wide it should be are passed as arguments. Both measures are approximate.

You can learn much more about these classes by browsing the online documentation at
java.sun.com/j2se/1.5.0/docs/api/.

If you run the FramePlay program, you will find that the objects used have quite a bit
of built-in functionality. The frame responds to the close, minimize, and maximize
boxes, and resizes when you drag an edge. The save button flashes when clicked, and
you can type in the textbox. This amount of functionality is remarkable for a 26-line
program. As with the robot programs, much of this functionality is due to the pro-
grammers who wrote the classes we are using.

Again, notice the similarity between the FramePlay program and all the other programs
in this chapter. The concepts we learned with the robot programs truly are general and
can be used in all Java programs. In fact, many of the ideas apply to all programs,
whether or not they are written in Java. Some ideas, such as modeling, abstraction, and
patterns apply to lots of different problems, whether or not they have a computer solu-
tion. You are learning a portable set of skills that can be applied in many circumstances.

1.7 Patterns

Many patterns appear in software—problems that appear repeatedly that have the same
solution. A number of these have already been identified for you in the margins of this
text. Figure 1-26 shows the icon used to identify a pattern. Expert software developers
know many patterns and apply an appropriate one to solve the issue at hand, almost
without thinking about it. Much of your work, as you learn to program, will involve
learning to recognize which software patterns apply to the issue you are facing.

39
1.7

P
ATTERN

S

KEY IDEA

The ideas you learn
with robots—such as
classes, objects, and

services—apply to all
object-oriented

programs.

(figure 1-26)

Icon used to identify an

example of a pattern

Software patterns began as a way to capture and discuss big ideas, such as how to struc
ture many classes and objects to model a particular kind of problem. In this book we
extend the idea of patterns to smaller ideas that may cover only one or two lines of code.
As beginning programmers, our attention will be focused primarily on these elementary
patterns.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 40

40
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

Our elementary patterns have five elements: name, context, solution, consequences,
and related patterns. In the pattern expositions they are clearly shown by name and
typography, as shown in Figure 1-27. However, instead of describing an actual pattern,
the figure describes what each section of a pattern involves.

Name: The name gives programmers a common vocabulary with which to
discuss their work. Soon you will be able to say to a classmate, “I think the
Command Invocation pattern applies here,” and your classmate will know the
kind of issue you think needs solving, your proposed solution, and the
consequences of implementing that solution. Naming concepts increases our
ability to work with abstractions and communicate them to others.

Context: The context describes the situations in which the pattern is applicable.
Obviously, the pattern’s context must match the context of your programming
issue for the pattern to be useful.

Solution: The solution describes an approach to resolving the programming
issue. For many patterns, the most appropriate form for the solution is several
lines of code, likely with well-defined places where the code must be customized
for the particular issue at hand. The places to customize appear in italics between
« and ». For other patterns, an appropriate form for the solution is a class diagram
that shows how two or more classes work together to resolve the issue.

Consequences: The consequences describe the natural by-products of applying
this particular pattern. Sometimes these consequences are good, and sometimes
they are bad; sometimes they are some of both. Weighing the consequences is part
of deciding whether this pattern is the one to apply to your issue. It may be that
another pattern can be applied in the same context with a better result.

Related Patterns: Finally, related patterns name patterns that have a different
approach to resolving the issue or are based on the same ideas.

Patterns are found or discovered, not invented. They result from sensing that you are
repeating something you did earlier, investigating it enough to find the common ele
ments, and then documenting it for yourself and others. Because patterns arise from
experience, they are a good way to help inexperienced programmers gain expertise
from experienced programmers.

The patterns listed here should feel familiar. You have seen them a number of times
already, often accompanied with a margin note like the one shown here. Once the pat
tern has been formally presented, however, we will no longer call attention to its appli
cation with margin notes.

1.7.1 The Java Program Pattern

Name: Java Program

Context: You want to write a Java program.

(figure 1-27)

Parts and format of a

pattern description

LOOKING AHEAD

Naming is a powerful
idea. Here we are
naming patterns. In
the next chapter, we
will name a sequence
of instructions. Doing
so increases our
power to think about
complex problems.

Command Invocation

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 41

41

Solution: Implement a class that contains a service named main. In particular,
customize the following template:

importƒ«importedPackage»;ƒƒƒƒƒƒƒƒ// may have 0 or more import statements

publicƒclassƒ«programClassName»ƒ

{ƒ

ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

ƒƒ{ƒ«listƒofƒstatementsƒtoƒbeƒexecuted»

ƒƒ}

}

The import statement makes classes from the named package easier to access. Typical
values for «importedPackage» include becker.robots.* for robot programs, and
java.awt.* and javax.swing.* for programs with graphical user interfaces.

The «className» is chosen by the programmer and must match the filename con
taining the source code.

The «list of statements to be executed» may include statements following
the Object Instantiation pattern and Command Invocation patterns, among others.

Consequences: A class is defined that can be used to begin execution of the program.

Related Patterns: All of the other patterns in this chapter occur within the context of
the Java Program pattern.

1.7.2 The Object Instantiation Pattern

Name: Object Instantiation

Context: A client needs to instantiate or construct an object to carry out various
services for it.

Solution: Instantiate the object using the new keyword and a constructor from the
appropriate class. Provide arguments for all of the constructor’s parameters. Finally,
assign the object reference provided by new to a variable. Examples:

Cityƒmanilaƒ=ƒnewƒCity();
Robotƒkarelƒ=ƒnewƒRobot(manila,ƒ5,ƒ3,ƒDirection.EAST);
JButtonƒsaveButtonƒ=ƒnewƒJButton("save");

In general, a new object is instantiated with a statement matching the following template:

«variableType»ƒ«variableName»ƒ=ƒ

ƒƒƒƒƒƒƒƒƒƒƒnewƒ«className»(«argumentList»);

1.7
P

ATTERN
S

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 42

42
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

The «variableName» is used in the Command Invocation pattern whenever services
must be carried out by the object.

Until we have studied polymorphism in Chapter 12, «variableType» and
«className» will be the same. After that, they will often be different, but related. The
«className», of course, determines what kind of object is constructed. The
«variableName» should reveal the purpose or intent of what it names.

Consequences: A new object is constructed and assigned to the given variable.

Related Patterns: The Command Invocation pattern requires this pattern to
construct the objects it uses.

1.7.3 The Command Invocation Pattern

Name: Command Invocation

Context: A client wants an object to perform one of the services it provides.

Solution: Provide a reference to the object, a dot, the name of the desired service, and
any arguments. Information about how to use the command, including any
arguments it requires, can be found in its documentation. A command invocation is
always terminated with a semicolon. Examples:

karel.move();

collectorRobot.pickThing();

frame.setSize(150,ƒ200);

contents.add(saveButton);

In general, a command is invoked with a statement matching the following template:

«objectReference».«commandName»(«argumentList»);

where «objectReference» is a variable name created using the Object Instantiation
pattern.

Consequences: The command is performed by the named object. It is possible to
invoke a command in an invalid context, resulting in a run-time error.

Related Patterns:
➤	 The Object Instantiation pattern must always precede this pattern to create the

object.

➤	 The Sequential Execution pattern uses this pattern two or more times.

LOOKING AHEAD

We will say
much more about
choosing variable
names wisely in
Section 2.4.2.

LOOKING AHEAD

Queries are invoked in
a different context
than commands.
Although they are both
services, they have
different invocation
patterns.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 43

43

LOOKING AHEAD

Problem 1.4 further
explores the idea of

“correct order.”

LOOKING AHEAD

Long sequences of
statements are hard

to understand. In
Chapter 2 we will
learn methods to

help keep such
sequences short.

1.7.4 The Sequential Execution Pattern

Name: Sequential Execution

Context: The problem you’re working on can be solved by executing a sequence of
steps. The order of the steps matters, because later steps depend on earlier steps to
establish the correct context for them to execute.

Solution: List the steps to be executed in a correct order. A correct order is one where
each statement appears after all the statements upon which it depends. Each statement
is terminated with a semicolon. An example from the DeliverParcel program (see
Listing 1-1) demonstrates the solution:

7 ƒ// Set up the initial situation
8 ƒƒƒƒCityƒpragueƒ=ƒnewƒCity();
9 ƒƒƒƒThingƒparcel=ƒnewƒThing(prague,ƒ1,ƒ2);
10 ƒƒƒƒRobotƒkarelƒ=ƒnewƒRobot(prague,ƒ1,ƒ0,ƒDirection.EAST);
11
12 // Direct the robot to the final situation
13 ƒƒƒƒkarel.move();
14 ƒƒƒƒkarel.move();
15 ƒƒƒƒkarel.pickThing();

Lines 9 and 10 require a city when they are constructed; they therefore must appear
after line 8, where the city is constructed. However, lines 9 and 10 are independent of
each other and can appear in either order.

The robot karel cannot pick up a Thing at (2, 1) until it has reached that intersec
tion. Lines 13 and 14 must therefore come before the pickThing command in line 15
to establish the context for it to execute (that is, move the robot to the intersection con
taining the Thing it picks up).

Consequences: Each statement, except the first one, may depend on statements that
come before it. If any of those statements are out of order or wrong, an error or
unexpected result may appear later in the program, which can make programming a
tedious process.

This model of execution assumes that each statement executes completely before the
next one has begun. It is as if each statement were strung on a thread. Follow the
thread from the beginning and each statement is reached in order. Follow the thread
back through time and you have a complete history of the statements executed prior to
the current statement.

Related Patterns: The Command Invocation pattern is used two or more times by
this pattern.

1.7
P

ATTERN
S

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 44

44
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

1.7.5 The Display a Frame Pattern

Name: Display a Frame

Context: A program must show some visual information to the user.

Solution: Organize the visual information in a JPanel which is displayed within a
JFrame.

importƒjavax.swing.*;ƒƒƒƒƒ// use JFrame, JPanel, JButton, JTextArea

publicƒclassƒ«programClassName»ƒ

{

ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

ƒƒ{ƒ// declare the objects to show

ƒƒƒƒJFrameƒ«frame»ƒ=ƒnewƒJFrame();

ƒƒƒƒJPanelƒ«contents»ƒ=ƒnewƒJPanel();

ƒƒƒƒ«statementsƒtoƒdeclareƒandƒaddƒcomponentsƒtoƒcontents»

ƒƒƒƒ// set the frame’s contents to display the panel

ƒƒƒƒ«frame».setContentPane(«contents»);

ƒƒƒƒ// set up and show the frame

ƒƒƒƒ«frame».setTitle(“«title»”);

ƒƒƒƒ«frame».setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

ƒƒƒƒ«frame».setLocation(«xPos»,ƒ«yPos»);

ƒƒƒƒ«frame».setSize(«width»,ƒ«height»);

ƒƒƒƒ«frame».setVisible(true);

ƒƒƒ}

}

Consequences: The frame is displayed along with the contents of the JPanel. The
JFrame’s functionality is automatically available, including resizing, minimizing, and
closing the frame.

Related Patterns:
➤ This pattern is a specialized version of the Java Program pattern.

➤ The Model-View-Controller pattern (Chapter 13) builds further on this pattern.

1.8 Summary and Concept Map

In this chapter we have learned that programs implement models. Object-oriented pro
grams, such as those written in Java, use software objects to do the modeling. These
software objects offer services to either perform a command or answer a query for a
client. Documentation helps us learn more about the services an object offers.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 45

45

Objects are instantiated from classes, a sort of template or definition for objects.
Classes in the robot world include Robot, City, Wall, and Thing. When instantiating
an object, we often assign it to a variable, allowing us to refer to it using the variable’s
name in many places in the program.

1.8.1 Concept Maps

Each chapter of this textbook includes a concept map as part of the summary. A con
cept map shows the major concepts in the chapter and relates them to each other with
short phrases. The short phrases should be read in the direction of the arrow. For
example, the following portion of the diagram should be read as “objects are instances
of classes.”

1.8
S

U
M

M
ARY AN

D
 C

O
N
CEPT M

AP

classes objectsare instances of

By studying the concept map, you remind yourself of important vocabulary (such as
class, object, and instance in the preceding example) and the relationships between
concepts.

Three suggested ways to use the concept maps as study tools are:

➤	 After reading the chapter but before you look at the concept map, try drawing
your own concept map and then compare it with the one in the chapter. They
will undoubtedly be different, but hopefully will include many of the same
concepts. The differences will identify places for you to clarify your under
standing.

➤	 Try reproducing the concept map but with the arrows running backwards.
You will need to adjust the connecting phrase accordingly. Consider the fol
lowing example:

are templates for classes objects

➤	 The concept maps include the most important concepts, but not all of them.
Try to integrate additional concepts into the map. For example, how could
you include the concepts of constructors, initial situations, and final situa
tions in the following concept map?

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 46

objects classes

attributes

move

Robot and
City

a program

model

pr

arguments

46
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

servi ces

,
turnLeft

oblem to
be solved

par am eters

so
lv

es
 a

 p
ro

bl
em

 u
si

ng

imple
ment

s a

is composed of

abstracts a

are exam
ples of

ar e in stan ces o f

have their own values for

provide values to convey
inf orm ati on to

define

are exam
ples of

define

co
rre

sp
on

d to
ent

ries
in the

from the same class share a common set of

1.9 Problem Set

Problem sets present three types of problems: written exercises, programming exer
cises, and programming projects. Written exercises do not require programming but
may require a computer to read documentation. Programming exercises and projects
both require programming, but to a different degree. Exercises are short, such as
changes to existing code. Programming projects require considerably more effort.

Written Exercises

1.1	 Figure 1-4 shows a class diagram for the Concert class. Create a similar class
diagram for a Book class. It’s part of a program at the local public library that
loans books to library patrons.

1.2	 Trace the following program. In a table similar to Table 1-2, record karel’s
current street, avenue, direction, and contents of its backpack. If a run-time
error occurs, describe what went wrong and at which line. There are no
compile-time errors.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 47

47

1 importƒbecker.robots.*;
2
3 publicƒclassƒTraceƒ
4 {
5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
6 ƒƒ{ƒCityƒparisƒ=ƒnewƒCity();
7 ƒƒƒƒThingƒtheThingƒ=ƒnewƒThing(paris,ƒ1,ƒ2);
8 ƒƒƒƒWallƒwƒ=ƒnewƒWall(paris,ƒ1,ƒ2,ƒDirection.WEST);
9 ƒƒƒƒRobotƒkarelƒ=ƒnewƒRobot(paris,ƒ1,ƒ0,ƒDirection.EAST);
10
11 ƒƒƒƒkarel.move();
12 ƒƒƒƒkarel.turnLeft();
13 ƒƒƒƒkarel.turnLeft();
14 ƒƒƒƒkarel.turnLeft();
15 ƒƒƒƒkarel.move();
16 ƒƒƒƒkarel.turnLeft();
17 ƒƒƒƒkarel.move();
18 ƒƒƒƒkarel.turnLeft();
19 ƒƒƒƒkarel.move();
20 ƒƒƒƒkarel.turnLeft();
21 ƒƒƒƒkarel.pickThing();
22 ƒƒƒƒkarel.move();
23 ƒƒ}
24 }

1.3	 Make a table similar to Table 1-2 and trace the program in Listing 1-2. You
will need to add extra columns so you can record values for both robots.

1.4	 The DeliverParcel program in Listing 1-1 makes extensive use of the
Sequential Execution pattern. For many pairs of consecutive statements, inter
changing the statements causes the program to fail. Give a pair of statements (that
are not identical) where changing the order does not cause the program to fail.

1.5	 In the DeliverParcel program in Listing 1-1, change line 8 to read
Cityƒpragueƒ=ƒnewƒCity(5,ƒ10);. Based on the online documentation
for City, what effect will this change have?

1.6	 The following program contains 12 distinct compile-time errors. List at least
nine of them by giving the line number and a short description of the error.

1 importƒbecker.robots;

2

3 PublicƒclassƒErrorsƒ

4 {

5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

6 ƒƒ{ƒCityƒ2nyƒ=ƒnewƒCity(5,ƒ5);

7 ƒƒƒƒThingƒaThingƒ=ƒnewƒThing(2ny,ƒ2,ƒ1);

8 ƒƒƒƒWallƒeastWallƒ=ƒWall(2,ƒ1,ƒEAST);

9 ƒƒƒƒRobotƒkarelƒ=ƒnewƒRobot(2ny,ƒ0,ƒ1,ƒDirection.EAST);

1.9
P

RO
BLEM

 S
ET

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 48

48
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

10

11 ƒƒƒƒkarel.move();

12 ƒƒƒƒkarel.move();ƒmove();

13 ƒƒƒƒkarel.pickthing();

14 ƒƒƒƒkarel..turnLeft();ƒkarel.turnLeft();

15 ƒƒƒƒkerel.mve();

16 ƒƒƒƒkarel.turnLeft(3);

17 ƒƒƒƒkarel.move;();

18 ƒƒƒƒkarel.putThing();

19 ƒƒ}

20 }

1.7	 The JButtonƒconstructor used in the FramePlay program in Listing 1-6 uses
a string as a parameter. JFrame has a constructor that also has a string as a
parameter. What is the effect of replacing line 7 with JFrameƒframeƒ=ƒnewƒ
JFrame(“Mystery”);? Which line of the existing program should also
change? How? (Hint: Consult the online documentation.)

Programming Exercises

1.8	 Beginning with the program in Listing 1-1, deliberately introduce one compile-
time error at a time. Record the compiler error generated and the cause of the
error. If one error causes multiple messages, list only the first two. Find at least
six distinct compile-time errors.

1.9	 Write a program that creates a robot at (1, 1) that moves north five times,

turns around, and returns to its starting point.

a. Run the program and describe what happens to the robot.

b. Describe a way to use the controls of the running program so you can watch
the robot the entire time it is moving.

c. Consult the online documentation. Describe a way to change the program
so you can watch the robot the entire time it is moving.

1.10 Make a copy of the FramePlay program in Listing 1-6. Add a new

JCheckBox component.

a. Run the program and describe the behavior of the new component.

b. The JCheckBox constructor can take a string as a parameter, just like
JButton. What happens if you use the string “Show All Items”?

1.11 Run the program in Listing 1-2. In your Java development software, choose
Save from the File menu, enter a filename, and click the Save button. Find the
file that was created.

a. Describe the contents of the file.

b. Search the documentation for the City class to find a use for this file.
Describe the use.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 49

49

c. Modify the program to use the file that was created. (Hint: You will need to
construct the robots yourself within main.) Modify the file to place addi
tional walls and things within the city.

Programming Projects

1.9
P

RO
BLEM

 S
ET

(figure 1-28)

Walking around the walls

(figure 1-29)

Fetching the newspaper

1.12 Write a program that begins with the initial situation shown in Figure 1-28.
Instruct the robot to go around the walls counter clockwise and return to its
starting position. Hint: Setting up the initial situation requires eight walls.

0 1 2 3
0

1

2

3

1.13 Every morning karel is awakened when the newspaper, represented by a Thing,
is thrown on the front porch of its house. Instruct karel to retrieve the newspa
per and return to “bed.” The initial situation is as shown in Figure 1-29; in the
final situation, karel is on its original intersection, facing its original direction,
with the newspaper.

0 1 2 3
0

1

2

3

1.14 The wall sections shown in Figure 1-30 represent a mountain (north is up).
Write a program that constructs the situation, and then instructs the robot to
pick up a flag (a Thing), climb the mountain, and plant the flag at the top,
descending down the other side. The robot must follow the face of the moun
tain as closely as possible, as shown by the path shown in the final situation.

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 50

50
CH

AP
TE

R
1

| P
RO

G
RA

M
M

IN
G

W
IT

H
O

BJ
EC

TS

0 1 2 3 4 5 0 1 2 3 4 5
0 0

1 1

2 2

3 3

Initial situation Final situation

1.15 On the way home from the supermarket, karel’s bag rips slightly at the bot
tom, spilling a few expensive items (Things) on the ground. Fortunately,
karel’s neighbor maria notices and calls to him as karel arrives home. This
initial situation is shown on the left in Figure 1-31. Write a program in which
karel and maria both begin picking up the items, meeting as shown in the
final situation. Use the setLabel service in Robot to label each robot.

0 1 2 3
0

1

2

3

M

K

0 1 2 3
0

1

2

3

M K

(figure 1-30)

Initial and final situations

for a robot that climbs a

mountain

(figure 1-31)

Initial and final situations

for robots picking up

dropped items

Initial situation Final situation

1.16 Write a program that begins with the initial situation and ends with the final sit
uation shown in Figure 1-32. In the final situation, the robot originally at (0, 0)
is facing east and the robot originally at (0, 1) is facing west. Alternate the
actions of the two robots so they arrive at their destination at approximately the
same time.

0
0 1 2 0 1 2

0

1 1

2 2

Initial situation Final situation

(figure 1-32)

Initial and final situations

for two robots moving and

meeting each other

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 51

51

LOOKING AHEAD

This program can be
used to choose an

appropriate color for
Listing 2-6.

1.17 The JTextArea class includes the services setText and append. Read the
online documentation to understand what they do and how to use them. The
arguments to both might be something like, “Myƒsecondƒpointƒis...”.

a. Modify the FramePlay program from Listing 1-6 so that it displays a short
sentence as the program runs; it is not typed in by the user as shown in
Figure 1-25.

b. Describe what happens if you use a much longer sentence.

c. Research the JTextArea class. Find a way to display all the words in your
longer sentence.

1.18 Modify the FramePlay program from Listing 1-6 to make the frame about
three times as wide and twice as tall. Instead of adding a JButton and
JTextArea, add a JColorChooser component. Run the program to answer
the following questions:

a. What color results from a red value of 255, a green value of 255, and a blue
value of 200 (255, 255, 200)?

b. How is (255, 255, 0) different from (255, 255, 200)?

c. What color is (255, 193, 0)?

d. The RGB color model specifies the amounts of red, greens and blue that
make up a color. There are other models. The HSB model, for example,
specifies the hue, saturation, and brightness of a color. Specify RGB and
HSB values for a brown color that pleases you. Which model is easiest for
you to use? Why?

1.9
P

RO
BLEM

 S
ET

1 Chapter C5743 40143.ps 11/30/06 1:14 PM Page 52

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 53

Chapter 2 Extending Classes with
Services

Chapter Objectives

After studying this chapter, you should be able to:

➤ Extend an existing class with new commands

➤ Explain how a message sent to an object is resolved to a particular method

➤ Use inherited services in an extended class

➤ Override services in the superclass to provide different functionality

➤ Follow important stylistic conventions for Java programs

➤ Extend a graphical user interface component to draw a scene

➤ Add new kinds of Things and Robots to the robot world

Sometimes an existing class already does almost all of what is needed—but not quite
all. For example, in the previous chapter, you may have found it unnatural to write
karel.turnLeft() three times just to make a robot turn right. By extending a class
we can add related services such as turnRight, allowing programmers to express
themselves using language that better fits the problem.

Other approaches to providing new functionality include modifying the class itself to
include the required functionality or writing a completely new class. These two
approaches will be considered in later chapters.

53

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 54

54

2.1 Understanding Programs: An Experiment

CH
AP

TE
R

2
| E

XT
EN

D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

Let’s try an experiment. Find a watch or a clock that can measure time in seconds.
Measure the number of seconds it takes you to understand the program shown in
Listing 2-1. In particular, describe the path the robot takes, its final position, and its
direction.

Listing 2-1: An experiment in understanding a longer program

1 importƒbecker.robots.*;

2

3 publicƒclassƒLonger

4 {

5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

6 ƒƒ{ƒCityƒaustinƒ=ƒnewƒCity();

7 ƒƒƒƒRobotƒlisaƒ=ƒnewƒRobot(austin,ƒ3,ƒ3,ƒDirection.EAST);

8

9 ƒƒƒƒlisa.move();

10 ƒƒƒƒlisa.move();
11 ƒƒƒƒlisa.move();
12 ƒƒƒƒlisa.turnLeft();
13 ƒƒƒƒlisa.turnLeft();
14 ƒƒƒƒlisa.turnLeft();
15 ƒƒƒƒlisa.move();
16 ƒƒƒƒlisa.move();
17 ƒƒƒƒlisa.move();
18 ƒƒƒƒlisa.turnLeft();
19 ƒƒƒƒlisa.turnLeft();
20 ƒƒƒƒlisa.move();
21 ƒƒƒƒlisa.move();
22 ƒƒƒƒlisa.move();
23 ƒƒƒƒlisa.turnLeft();
24 ƒƒƒƒlisa.move();
25 ƒƒƒƒlisa.move();
26 ƒƒƒƒlisa.move();
27 ƒƒƒƒlisa.turnLeft();
28 ƒƒƒƒlisa.turnLeft();
29 ƒƒ}
30 }

ch02/experiment/

Now, imagine that we had a new kind of robot with commands to turn around, turn
right, and move ahead three times. Time yourself again while you try to understand the

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 55

55

program in Listing 2-2. The robot in this program does something different. How fast
can you accurately figure out what?

ch02/experiment/

Listing 2-2: An experiment in understanding a shorter program

1 importƒbecker.robots.*;
2
3 publicƒclassƒShorter
4 {
5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
6 ƒƒ{ƒCityƒaustinƒ=ƒnewƒCity();
7 ƒƒƒƒExperimentRobotƒlisaƒ=ƒnewƒExperimentRobot(
8 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒaustin,ƒ3,ƒ2,ƒDirection.SOUTH);
9

10 ƒƒƒƒlisa.move3();
11 ƒƒƒƒlisa.turnRight();
12 ƒƒƒƒlisa.move3();
13 ƒƒƒƒlisa.turnAround();
14 ƒƒƒƒlisa.move3();
15 ƒƒƒƒlisa.turnLeft();
16 ƒƒƒƒlisa.move3();
17 ƒƒƒƒlisa.turnAround();
18 ƒƒ}
19 }

2.1
U

N
D
ERSTAN

D
IN

G
 P

RO
G
RAM

S: A
N
 E

XPERIM
EN

T

You probably found the second program easier—and faster—to read and understand.
The results shown in Table 2-1 are from a group of beginning Java programmers who
performed the same experiment.

(table 2-1)

Results of an experiment

in understanding

programs

Program Minimum Time Average Time Maximum Time
(seconds) (seconds) (seconds)

Longer 12 87 360

Shorter 10 46 120

KEY IDEA Why did we comprehend the second program more quickly? We raised the level of abstrac-
Adapt your language tion; the language we used (turnAround, turnRight, move3) matches our thinking more
to express your ideas closely than the first program. Essentially, we created a more natural programming lan
clearly and concisely guage for ourselves.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 56

56
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

Raising the level of abstraction with language that matches our thinking has a number
of benefits.

➤	 Raising the level of abstraction makes it easier to write the program. It’s easier
for a programmer to think, “And then I want the robot to turn around” than
to think, “The robot should turn around so I need to tell it to turn left and
then turn left again.” We can think of a task such as turnAround, deferring
the definition of the task until later. Abstraction allows us to concentrate on
the big picture instead of getting stuck on low-level details.

➤	 Raising the level of abstraction allows us to understand programs better. An
instruction such as turnAround allows the programmer to express her intent.
Knowing the intent, we can better understand how this part of the program
fits with the rest of the program. It’s easier to be told that the programmer
wants the robot to turn around than to infer it from two consecutive
turnLeft commands.

➤	 When we know the intent, it is easier to debug the program. Figuring out
what went wrong when faced with a long sequence of service invocations is
hard. When we know the intent, we can first ask if the programmer is intend
ing to do the correct thing (validation), and then we can ask if the intent is
implemented correctly (verification). This task is much easier than facing the
entire program at once and trying to infer the intent from individual service
invocations.

➤	 We will find that extending the language makes it easier to modify the pro
gram. With the intent more clearly communicated, it is easier to find the places
in the program that need modification.

➤	 We can create commands that may be useful in other parts of the program, or
even in other programs. By reusing old services and creating new services that
will be easy to reuse in the future, we can save ourselves effort. We’re working
smarter rather than harder, as the saying goes.

In the next section, we will learn how to extend an existing class such as Robot to add
new services such as turnAround. We’ll see that these ideas apply to all Java pro
grams, not just those involving robots.

2.2 Extending the Robot Class

LOOKING AHEAD

Quality software is
easier to understand,
write, debug, reuse,
and modify. We will
explore this further in
Chapter 11.

KEY IDEA

Work smarter by
reusing code.

Let’s see how the new kind of robot used in Listing 2-2 was created. What we want is
a robot that can turn around, turn right, and move ahead three times—in addition to
all the services provided by ordinary robots, such as turning left, picking things up, and
putting them down. In terms of a class diagram, we want a robot class that corre
sponds to Figure 2-1.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 57

57

(figure 2-1)

Class diagram for the new

robot class,

ExperimentRobot

ExperimentRobot
int street
int avenue
Direction direction
ThingBag backpack

ExperimentRobot(City aCity, int aStreet,

void move()
void turnLeft()
void pickThing()
void putThing()
void turnAround()
void turnRight()
void move3()

int anAvenue, Direction aDirection)

2.2
E

XTEN
D
IN

G
 TH

E R
OBOT C

LASS

The class shown in Figure 2-1 is almost the same as Robot—but not quite. We would
like a way to augment the existing functionality in Robot rather than implementing it
again, similar to the camper shown in Figure 2-2.

(figure 2-2)

Van extended to be a

camper

This vehicle has a number of features for people who enjoy camping: a bed in the pop-
up top, a small sink and stove, a table, and so on. Did the camper’s manufacturer
design and build the entire vehicle just for the relatively few customers who want such

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 58

58
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

a vehicle for camping? No. The manufacturer started with a simple cargo van and then
added the special options for camping. The cargo van gave them the vehicle’s basic
frame, engine, transmission, driver’s seat, instrument panel, and so on. Using all this
infrastructure from an existing vehicle saved them a lot of work, so they could focus on
the unique aspects required by a camper. The same cargo van, by the way, is also
extended in different ways to carry more passengers.

Just as the camper manufacturer extended a van with additional features, we will extend
Robot with additional services. Java actually uses the keyword extends for this purpose.

Figure 2-3 shows a class diagram in which ExperimentRobot extends Robot. Notice that
the Robot class diagram is exactly the same as Figure 1-8. The ExperimentRobot class
diagram shows only the attributes and services that are added to the Robot class. In the
case of an ExperimentRobot, only services are added; no attributes. The hollow-tipped
arrow between the two classes shows the relationship between them: ExperimentRobot,
at the tail of the arrow, extends Robot, at the head of the arrow.

KEY IDEA

Start with something
that does most of what
you need. Then
customize it for your
particular use.

Robot
int street
int avenue
Direction direction
ThingBag backpack

Robot(City aCity, int aStreet,
int anAvenue, Direction aDirection)

void move()
void turnLeft()
void pickThing()
void putThing()

(figure 2-3)

Class diagram showing

ExperimentRobot
extending Robot

ExperimentRobot

ExperimentRobot(City aCity, int aStreet,
int anAvenue, Direction aDirection)

void turnAround()
void turnRight()
void move3()

2.2.1 The Vocabulary of Extending Classes

When communicating about extending a class, we say that the Robot class is the superclass
and the ExperimentRobot class is the subclass. Unless you’re familiar with the language
of mathematical sets or biology, this use of “sub” and “super” may seem backwards. In
these settings, “super” means a more inclusive set or category. For example, an
ExperimentRobot is a special kind of Robot. We will also define other special kinds of
Robots. Robot is the more inclusive set, the superclass.

KEY IDEA

The class that is
extended is called the
“superclass.” The new
class is called the
“subclass.”

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 59

59

LOOKING AHEAD

When a pattern is
used, an icon appears

in the margin, as
shown here for the

Extended Class
pattern. The patterns

for this chapter are
revisited in

Section 2.8.

Extended Class

We might also say that ExperimentRobot inherits from Robot or that
ExperimentRobot extends Robot.

If you think of a superclass as the parent of a class, that child class can have a grandparent
and even a great-grandparent because the superclass may have its own superclass. It is,
therefore, appropriate to talk about a class’s superclasses (plural) even though it has only
one direct superclass.

In a class diagram such as Figure 2-3, the superclass is generally shown above the sub
class, and the arrow always points from the subclass to the superclass.

2.2.2 The Form of an Extended Class

The form of an extended class is as follows:

1 importƒ«importedPackage»;
2
3 publicƒclassƒ«className»ƒextendsƒ«superClass»
4 {
5 ƒƒƒ«listƒofƒattributesƒusedƒbyƒthisƒclass»
6 ƒƒƒ«listƒofƒconstructorsƒforƒthisƒclass»
7 ƒƒƒ«listƒofƒservicesƒprovidedƒbyƒthisƒclass»
8 }

The import statement is the same here as in the Java Program pattern. Line 3 estab
lishes the relationship between this class and its superclass using the keyword
extends. For an ExperimentRobot, for example, this line would read as follows:

publicƒclassƒExperimentRobotƒextendsƒRobot

Lines 5, 6, and 7 of the code template are slots for attributes, constructors, and services.
In the next section, we will implement a constructor. In the following sections, we will
implement the services turnAround, turnRight, and move3. We will not be adding
attributes to our classes until Chapter 6. Until then, we will use only the attributes inher
ited from the superclass.

2.2.3 Implementing a Constructor

The purpose of the constructor is to initialize each object that is constructed. That is, when
the statement Robotƒkarelƒ=ƒnewƒRobot(austin,ƒ1,ƒ1,ƒDirection.SOUTH) is
executed, the constructor for the Robot class ensures that the attributes street,ƒavenue,
direction, and backpack are all given appropriate values.

We are not adding any attributes to the ExperimentRobot. So what is there to initial
ize? Is a constructor necessary? Yes. Because ExperimentRobot extends the Robot
class, each ExperimentRobot object can be visualized as having a Robot object inside

2.2
E

XTEN
D
IN

G
 TH

E R
OBOT C

LASS

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 60

60
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

of it (see Figure 2-4). We need to ensure that the Robot-inside-the-ExperimentRobot
object is correctly initialized with appropriate values for street, avenue, direction,
and backpack.

ExperimentRobot

ExperimentRobot(City aCity, int aStreet, int anAvenue, Direction aDirection)
void turnAround()
void turnRight()
void move3()

Robot

Robot(City aCity, int aStreet, int anAvenue, Direction aDirection)
void move()
void turnLeft()
void pickThing()
void putThing()

street:
avenue:

direction:
backpack:

(figure 2-4)

Visualizing an

ExperimentRobot as

containing a Robot

The constructor for ExperimentRobot is only four lines long—three if all the para
meters would fit on the same line:

1 publicƒExperimentRobot(CityƒaCity,ƒintƒaStreet,ƒ
2 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒanAvenue,ƒDirectionƒaDirection)
3 {ƒsuper(aCity,ƒaStreet,ƒanAvenue,ƒaDirection);
4 }

Lines 1 and 2 declare the parameters required to initialize the Robot-inside-the-
ExperimentRobot: a city, the initial street and avenue, and the initial direction. Each
parameter is preceded by its type.

Line 3 passes on the information received from the parameters to the Robot-inside
the-ExperimentRobot. Object initialization is performed by a constructor, so you
would think that line 3 would call the constructor of the superclass:

Robot(aCity,ƒaStreet,ƒanAvenue,ƒaDirection);ƒƒƒƒƒ// doesn’t work!

However, the designers of Java chose to use a keyword, super, instead of the name of
the superclass. When super is used as shown in line 3, Java looks for a constructor in
the superclass with parameters that match the provided arguments, and calls it. The
effect is the same as you would expect from using Robot, as shown earlier.

KEY IDEA

The constructor must
ensure the superclass
is properly initialized.

LOOKING AHEAD

Section 2.6 explains
another use for the
keyword super.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 61

61

LOOKING AHEAD

We will explore
parameters further in

Section 4.6 in the
context of writing

services with
parameters.

When an ExperimentRobot is constructed with the following statement, the values
passed as arguments (austin, 3, 2, and Direction.SOUTH) are copied into the para
meters (aCity, aStreet, anAvenue, and aDirection) in the ExperimentRobot
constructor.

ExperimentRobotƒlisaƒ=ƒnewƒExperimentRobot(austin,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ3,ƒ2,ƒDirection.SOUTH);

Then, in line 3, those same values are passed as arguments to the parameters in the
superclass’s constructor.

Two other details about the constructor are that it must have the same name as the
class and it does not have a return type—not even void. If a constructor has a name
different from the class, the compiler considers it a service without a return type, and
issues a compile-time error. If a constructor has a return type, the compiler considers it
a service, and may not display an error until a client tries to use the constructor. Then
the compiler will complain that it can’t find it—because the constructor is being inter
preted as a service.

Listing 2-3 contains the first steps in defining the ExperimentRobot class. It has a
number of the template slots filled in, including imported classes, the class name, and
the extended class’s name. It also includes a constructor, but none of the new services.
Just like the programs we wrote in Chapter 1, this class should be placed in its own file
named ExperimentRobot.java.

2.2
E

XTEN
D
IN

G
 TH

E R
OBOT C

LASS

ch02/experiment/ Listing 2-3: The ExperimentRobot class with a constructor but no services

1 importƒbecker.robots.*;

2

3 publicƒclassƒExperimentRobotƒextendsƒRobot

4 {

5 ƒƒpublicƒExperimentRobot(CityƒaCity,ƒintƒaStreet,ƒ

6 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒanAvenue,ƒDirectionƒaDirection)

7 ƒƒ{ƒsuper(aCity,ƒaStreet,ƒanAvenue,ƒaDirection);

8 ƒƒ}

9

10 ƒƒ// The new services offered by an ExperimentRobot will be inserted here.
11 }

With this modest beginning, we can write a program that includes the following statement:

ExperimentRobotƒlisaƒ=ƒnewƒExperimentRobot(austin,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ3,ƒ2,ƒDirection.SOUTH);

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 62

62
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

The robot lisa can do all things any normal robot can do. lisa can move, turn
left, pick things up, and put them down again. An ExperimentRobot is a kind of
Robot object and has inherited all those services from the Robot class. In fact, the
Robot in line 7 of Listing 2-1 could be replaced with an ExperimentRobot. Even
with no other changes, the program would execute as it does with a Robot.
However, an ExperimentRobot cannot yet respond to the messages turnAround,
turnRight, or move3.

2.2.4 Adding a Service

A service is an idea such as “turn around.” To actually implement this idea, we add a
method to the class, which contains code to carry out the idea. When we want a robot
to turn around, we send a message to the robot naming the turnAround service. This
message causes the code in the corresponding method to be executed.

An analogy may help distinguish services, messages, and methods. Every child can eat.
This is a service provided by the child. It is something the child can do. A message from
a parent, “Come and eat your supper” causes the child to perform the service of eating.
The particular method the child uses to eat, however, depends on the instructions he or
she has received while growing up. The child may use chopsticks, a fork, or a fork and
a knife. The idea (eating) is the service. The message (“eat your supper”) causes the ser
vice to be performed. How the service is performed (chopsticks, fork, and so on) is
determined by the instructions in the method.

The service turnAround may be added to the ExperimentRobot class by inserting
the following method between lines 10 and 11 in Listing 2-3:

publicƒvoidƒturnAround()
{ƒthis.turnLeft();
ƒƒthis.turnLeft();
}

Now the robot lisa can respond to the turnAround message. When a client says
lisa.turnAround(), the robot knows that turnAround is defined as turning left
twice, once for each turnLeft command in the body of turnAround.

Flow of Control

Recall the Sequential Execution pattern from Chapter 1. It says that each statement is
executed, one after another. Each statement finishes before the next one in the sequence
begins. When a program uses lisa.turnAround() we break out of the Sequential
Execution pattern. The flow of control, or the sequence in which statements are exe
cuted, does not simply go to the next statement (yet). First it goes to the statements con
tained in turnAround, as illustrated in Figure 2-5.

KEY IDEA

A class with only a
constructor, like
Listing 2-3, is
complete and can be
used in a program. It
just doesn’t add any
new services.

KEY IDEA

Services are ideas.
Methods contain code
to implement the
idea. Services are
invoked with a
message. The object
responds by
executing a method.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 63

63

(figure 2.5)

Flow of control when

executing methods

2.2
E

XTEN
D
IN

G
 TH

E R
OBOT C

LASS

KEY IDEA

Calling a method
temporarily interrupts

the Sequential
Execution pattern.

public ... main(...) public void turnAround()
{ ...

public void move()...
{ ...}
}

lisa.turnAround();
 lisa.move();

{ this.turnLeft();
 this.turnLeft();

}

When main sends the message lisa.turnAround(), Java finds the definition of
turnAround and executes each of the statements it contains. It then returns to the
statement following lisa.turnAround(). This is an example of a much more gen
eral pattern that occurs each time a message is sent to an object:

➤	 The method implementing the service named in the message is found.

➤	 The statements contained in the method are executed. Unless told otherwise,
the statements are executed sequentially according to the Sequential Execution
pattern.

➤	 Flow of control returns to the statement following the statement that sent the
message.

Look again at Figure 2-5. This same pattern is followed when lisa is sent the move
message, although we don’t know what the statements in the move method are, so they
are not shown in the figure. Similarly, when turnAround is executed, each turnLeft
message it sends follows the same pattern: Java finds the method implementing
turnLeft, executes the statements it contains, and then it returns, ready to execute
the next statement in turnAround.

When we are considering only main, the Sequential Execution pattern still holds.
When we look only at turnAround, the Sequential Execution pattern holds there, too.
But when we look at a method together with the methods it invokes, we see that the
Sequential Execution pattern does not hold. The flow of control jumps from one place
in the program to another—but always in an orderly and predictable manner.

The Implicit Parameter: this

In previous discussions, we have said that parameters provide information necessary
for a method or constructor to do its job. Because turnAround has no parameters, we
might conclude that it doesn’t need any information to do its job. That conclusion is
not correct.

One vital piece of information turnAround needs is which robot it should turn around.
When a client says lisa.turnAround(), the method must turn lisa around, and if a
client says karel.turnAround(), the method must turn karel around. Clearly the
method must know which object it is to act upon.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 64

64
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

This piece of information is needed so often and is so vital that the designers of Java
made accessing it extremely easy for programmers. Whenever a method is invoked
with the pattern «objectReference».«methodName»(…), «objectReference»

becomes an implicit parameter to «methodName». The implicit parameter is the object
receiving the message. In the case of lisa.turnAround(), the implicit parameter is
lisa, and for karel.turnAround(), the implicit parameter is karel.

The implicit parameter is accessed within a method with the keyword this. The state
ment this.turnLeft() means that the same robot that called turnAround will be
instructed to turn left. If the client said lisa.turnAround(), then lisa will be the
implicit parameter and this.turnLeft() will instruct lisa to turn left.

Sometimes when a person learns a new activity with many steps they will mutter
instructions to themselves: “First, I turn left. Then I turn left again.” Executing a
method definition is like that, except that “I” is replaced by “this robot.” You can
think of the ExperimentRobot as muttering instructions to itself: “First, this robot
turns left. Then this robot turns left again.”

public and void Keywords

The two remaining keywords in the method definition are public and void. The key
word public says that this method is available for any client to use. In Section 3.6, we
will learn about situations for which we might want to prevent some clients from using
certain methods. In those situations, we will use a different keyword.

The keyword void distinguishes a command from a query. Its presence tells us that
turnAround does not return any information to the client.

2.2.5 Implementing move3

Implementing the move3 method is similar to turnAround, except that we want the
robot to move forward three times. The complete method follows. Like turnAround,
it is placed inside the class, but outside of any constructor or method.

publicƒvoidƒmove3()
{ƒthis.move();
ƒƒthis.move();
ƒƒthis.move();
}

As with turnAround, we want the same robot that is executing move3 to do the moving.
We therefore use the keyword this to specify which object receives the move messages.

LOOKING AHEAD

Eventually we will
learn how to write a
method with a
parameter so
we can say
lisa.move(50)—
or any other
distance.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 65

65
2.2

E
XTEN

D
IN

G
 TH

E R
OBOT C

LASS

Parameterless
Command

KEY IDEA

An object can send
messages to itself,

invoking its own
methods.

LOOKING AHEAD

Methods calling other
methods is a core

idea of Stepwise
Refinement, the topic

of Chapter 3.

(figure 2-6)

Flow of control when one

method calls another

2.2.6 Implementing turnRight

To tell a robot to turn right, we could say “turn left, turn left, turn left.” We could also
say “turn around, then turn left.” Both work. The first approach results in the follow
ing method:

publicƒvoidƒturnRight()
{ƒthis.turnLeft();
ƒƒthis.turnLeft();
ƒƒthis.turnLeft();
}

The second approach is more interesting, resulting in this method:

publicƒvoidƒturnRight()
{ƒthis.turnAround();
ƒƒthis.turnLeft();
}

The second version works by asking the ExperimentRobot object to execute one of
its own methods, turnAround. The robot finds the definition of turnAround and
executes it (that is, it turns left twice as the definition of turnAround says it should).
When it has finished executing turnAround, it is told to turnLeft one more time.
The robot has then turned left three times, as desired.

This flow of control is illustrated in Figure 2-6. Execution begins with
lisa.turnRight() in the main method. It proceeds as shown by the arrows. Each
method executes the methods it contains and then returns to its client, continuing with the
statement after the method call. Before a method is finished, each of the methods it calls
must also be finished.

public void turnAround()public ... main(...)
{ 	 ...

 lisa.turnRight(); public void turnLeft()
...

public void turnRight()
{ this.turnAround();

 this.turnLeft();

{ this.turnLeft();
 this.turnLeft();

} {
}

...
}

}

This discussion completes the ExperimentRobot class. The entire program is shown
in Listing 2-4.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 66

66
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

Listing 2-4: The complete listing for ExperimentRobot

1 importƒbecker.robots.*;

2

3 // A new kind of robot that can turn around, turn right, and move forward

4 // three intersections at a time.

5 // author: Byron Weber Becker

6 publicƒclassƒExperimentRobotƒextendsƒRobot

7 {

8 ƒƒ// Construct a new ExperimentRobot.

9 ƒƒpublicƒExperimentRobot(CityƒaCity,ƒintƒaStreet,ƒ

10 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒanAvenue,ƒDirectionƒaDirection)
11 ƒƒ{ƒsuper(aCity,ƒaStreet,ƒanAvenue,ƒaDirection);
12 ƒƒ}
13
14 ƒƒ// Turn this robot around so it faces the opposite direction.
15 ƒƒpublicƒvoidƒturnAround()
16 ƒƒ{ƒthis.turnLeft();
17 ƒƒƒƒthis.turnLeft();
18 ƒƒ}
19
20 ƒƒ// Move this robot forward three times.
21 ƒƒpublicƒvoidƒmove3()
22 ƒƒ{ƒthis.move();
23 ƒƒƒƒthis.move();
24 ƒƒƒƒthis.move();
25 ƒƒ}
26
27 ƒƒ// Turn this robot 90 degrees to the right by turning around and then left by 90 degrees.
28 ƒƒpublicƒvoidƒturnRight()
29 ƒƒ{ƒthis.turnAround();
30 ƒƒƒƒthis.turnLeft();
31 ƒƒ}
32 }

ch02/experiment/

2.2.7 RobotSE

You can probably imagine other programs requiring robots that can turn around and
turn right. DeliverParcel (Listing 1-1) could have used turnRight in one place,
while GoAroundRoadBlock (Listing 1-2) could have used it twice. Several of the
programming projects at the end of Chapter 1 could have used either turnAround
or turnRight or both.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 67

67

LOOKING AHEAD

You learn how to
build your own

package of useful
classes in Chapter 9.

LOOKING AHEAD

The turnRight
method in RobotSE

actually turns right
instead of turning left

three times.
Section 3.6

explains how.

KEY IDEA

Classes other than
Robot can also be

extended.

When we write methods that are applicable to more than one problem, it is a good idea
to add that method to a class where it can be easily reused. The becker library has a
class containing commonly used extensions to Robot, including turnRight and
turnAround. It’s called RobotSE, short for “Robot Special Edition.” In the future,
you may want to extend RobotSE instead of Robot so that you can easily use these
additional methods.

2.2.8 Extension vs. Modification

Another approach to making a robot that can turn around and turn right would be to
modify the existing class, Robot. Modifying an existing class is not always possible,
and this is one of those times. The Robot class is provided in a library, without source
code. Without the source code, we have nothing to modify. We say that the Robot class
is closed for modification.

There are other reasons to consider a class closed for modification, even when the
source code is available. In a complex class, a company may not want to risk introduc
ing errors through modification. Or the class may be used in many different programs,
with only a few benefiting from the proposed modifications.

As we’ve seen, however, the Robot class is open for extension. It is programmed in such
a way that those who want to modify its operation can do so via Java’s extension
mechanism. When a class is open for extension it can be modified via subclasses with
out fear of introducing bugs into the original class or introducing features that aren’t
generally needed.

2.3 Extending the Thing Class

Robot is not the only class that can be extended. For example, City is extended by
MazeCity. Instances of MazeCity contain a maze for the robots to navigate. At the
end of this chapter you will find that graphical user interface components can be
extended to do new things as well. In fact, every class can be extended unless its pro
grammer has taken specific steps to prevent extension.

To demonstrate extending a class other than Robot, let’s extend Thing to create a Lamp
class. Each Lamp object will have two services, one to turn it “on” and another to turn it
“off.” When a lamp is “on” it displays itself with a soft yellow circle and when it is “off”
it displays itself with a black circle. Because Lamp extends Thing, lamps behave like
things—robots can pick them up, move them, and put them down again.

2.3
E

XTEN
D
IN

G
 TH

E T
HING C

LASS

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 68

68
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

2.3.1 Exploring the Thing Class

Before attempting to extend the Thing class we should become more familiar with it.
The beginning of its online documentation is shown in Figure 2-7. Part of the informa
tion it provides is the classes Thing extends, also called the inheritance hierarchy. In
this case, Thing extends a class named Sim, and Sim extends Object. The Sim class
defines core methods inherited by everything displayed in a city, including intersec
tions, robots, and things. Below the inheritance hierarchy we are told that Thing is
extended by at least two classes: Light and Wall.

LOOKING AHEAD

The Light subclass
of Thing may be
useful for defining
lamps. We’ll explore
this idea later, in
Section 2.3.6.

Inheritence hierarchy

(figure 2-7)

Part of the documentation

for the Thing class

The summaries for Thing’s four constructors are shown in Figure 2-8. The constructor
we have used so far provides a “default appearance,” which we know from experience is
a yellow circle. The second and third constructors tell us that Thing objects have other
properties such as whether they can be moved (presumably by a robot) and an orienta
tion. The class overview (not shown in Figure 2-8) refers to these properties as well.

The methods listed in the documentation are mostly queries and don’t seem helpful for
implementing a lamp object. They are listed online, of course, and also in Appendix E.
However, the Thing documentation also includes a section titled “Methods Inherited
from Class becker.robots.Sim.” This section lists a setIcon method. Its descrip
tion says “Set the icon used to display this Sim.”

Icons determine how each robot, intersection, or thing object appears within the city.
By changing the icon, we can change how something looks. For example, the following
few lines of code replace deceptiveThing’s icon to make the Thing look like a Wall:

ThingƒdeceptiveThingƒ=ƒnewƒThing(aCityObject,ƒ3,ƒ4);
WallIconƒanIconƒ=ƒnewƒWallIcon();
deceptiveThing.setIcon(anIcon);

LOOKING BACK

The first two lines of
code use the Object
Instantiation pattern
discussed in
Section 1.7.2.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 69

69
2.3

E
XTEN

D
IN

G
 TH

E T
HING C

LASS

(figure 2-8)

Additional documentation

for the Thing class

We will do something similar for our Lamp class. When the lamp is turned on we will
give it a new appearance using setIcon, passing it an icon that shows a soft yellow cir
cle. When the lamp is turned off we will pass setIcon an icon showing a black circle.

2.3.2 Implementing a Simple Lamp Object

We will implement our Lamp class by extending Thing. Our experience with extending
Robot tells us that to extend a class we must complete the following tasks:

➤	 Use the class and extends keywords to specify the class’s name and the
name of the class it extends. (See Section 2.2.2.)

➤	 Write a constructor that will initialize the superclass appropriately. (See
Section 2.2.3.)

➤	 Write methods implementing each of the services offered by the class. (See
Section 2.2.4.)

Knowing these three things, we can write the beginnings of our Lamp class as shown in
Listing 2-5. We still need to replace each ellipsis (…) with additional Java code.

Listing 2-5: The beginnings of a Lamp class

ch02/extendThing/
1 importƒbecker.robots.*;
2

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 70

70
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

Listing 2-5: The beginnings of a Lamp class (continued)

3 publicƒclassƒLampƒextendsƒThing

4 {

5 ƒƒ// Construct a new lamp object.

6 ƒƒpublicƒLamp(...)

7 ƒƒ{ƒsuper(...);

8 ƒƒ}

9

10 ƒƒ// Turn the lamp on.

11 ƒƒpublicƒvoidƒturnOn()

12 ƒƒ{ƒ...

13 ƒƒ}

14

15 ƒƒ// Turn the lamp off.

16 ƒƒpublicƒvoidƒturnOff()

17 ƒƒ{ƒ...

18 ƒƒ}

19 }

Extended Class

Implementing the Constructor

The Lamp constructor must ensure that the attributes in its superclass, Thing, are com
pletely initialized when a lamp is created. Recall that attributes are initialized by calling
one of the constructors in the Thing class using the keyword super. The arguments
passed to super must match the parameters of a constructor in the superclass. The doc
umentation in Figure 2-8 confirms that one of the constructors requires a city, initial
street, and initial avenue as parameters. As with the ExperimentRobot class, this infor
mation will come via the constructor’s parameters. Putting all this together, lines 6, 7,
and 8 in Listing 2-5 should be replaced with the following code:

publicƒLamp(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue)
{ƒsuper(aCity,ƒaStreet,ƒanAvenue);
}

Constructor
Implementing turnOn and turnOff

When the turnOn service is invoked, the lamp should display itself as a soft yellow cir
cle. As we discovered earlier, the appearance is changed by changing the lamp’s icon
using the setIcon method inherited from a superclass.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 71

71

LOOKING BACK

Finding robot
documentation was

discussed in
Section 1.4.8.

KEY IDEA

Documentation is
useful. Bookmark it in
your browser to make

it easy to access.

Parameterless
Command

The robot documentation (in the becker.robots.icons package) describes a num
ber of classes that include the word “Icon” such as RobotIcon, ShapeIcon,
WallIcon, FlasherIcon, and CircleIcon. The last one may be able to help display
a yellow circle. According to the documentation, constructing a CircleIcon requires
a Color object to pass as an argument. We’ll need a Color object before we construct
the CircleIcon object.

In summary, to change the appearance of our Lamp we must complete the following steps:

create a Color object named “onColor”

create a CircleIcon named “onIcon” using “onColor”

call setIcon to replace this lamp’s current icon with “onIcon”

We can learn how to construct a Color object by consulting the online documentation at
http://java.sun.com/j2se/1.5.0/docs/api/ or, if you have already found the documentation
for CircleIcon, click on the link to Color found in the constructor’s parameter list.
The documentation describes seven Color constructors. The simplest one takes three
numbers, each between 0 and 255, that specify the red, green, and blue components of
the color. Using 255, 255, and 200 produces a soft yellow color appropriate for a lamp’s
light. A color chooser is a dialog that displays many colors and can help choose these
three values. Most drawing programs have a color chooser and Problem 1.18 provides
guidance for writing your own color chooser.

We can now convert the preceding steps to Java. Inserting them in the turnOn method
results in the following five lines of code:

publicƒvoidƒturnOn()
{ƒƒColorƒonColorƒ=ƒnewƒColor(255,ƒ255,ƒ200);
ƒƒƒCircleIconƒonIconƒ=ƒnewƒCircleIcon(onColor);
ƒƒƒthis.setIcon(onIcon);
}

The turnOff method is identical except that onColor and onIcon should be appro
priately named offColor and offIcon, and offColor should be constructed with
newƒColor(0,ƒ0,ƒ0).

Completing the Class and Main Method

We have now completed the Lamp class. Listing 2-6 shows it in its entirety. Notice that
it includes two new import statements in lines 2 and 3. The first one gives easier1 access
to CircleIcon; it’s in the becker.robots.icons package. The second one gives
easier access to Color.

2.3
E

XTEN
D
IN

G
 TH

E T
HING C

LASS

1 It is possible to access these classes without the import statement. Every time the class is used, include the
package name. For example, java.awt.ColorƒonColorƒ=ƒnewƒjava.awt.Color(255,ƒ255,ƒ200);

http://java.sun.com/j2se/1.5.0/docs/api

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 72

72
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

Listing 2-6: The Lamp class

1 importƒbecker.robots.*;

2 importƒbecker.robots.icons.*;ƒƒƒƒƒ// CircleIcon

3 importƒjava.awt.*;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// Color

4

5 publicƒclassƒLampƒextendsƒThing

6 {

7 ƒƒ// Construct a new lamp object.

8 ƒƒpublicƒLamp(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue)

9 ƒƒ{ƒsuper(aCity,ƒaStreet,ƒanAvenue);

10 ƒƒ}
11
12 ƒƒ// Turn the lamp on.
13 ƒƒpublicƒvoidƒturnOn()
14 ƒƒ{ƒColorƒonColorƒ=ƒnewƒColor(255,ƒ255,ƒ200);
15 ƒƒƒƒCircleIconƒonIconƒ=ƒnewƒCircleIcon(onColor);
16 ƒƒƒƒthis.setIcon(onIcon);
17 ƒƒ}
18
19 ƒƒ// Turn the lamp off.
20 ƒƒpublicƒvoidƒturnOff()
21 ƒƒ{ƒColorƒoffColorƒ=ƒnewƒColor(0,ƒ0,ƒ0);
22 ƒƒƒƒCircleIconƒoffIconƒ=ƒnewƒCircleIcon(offColor);
23 ƒƒƒƒthis.setIcon(offIcon);
24 ƒƒ}
25 }

ch02/extendThing/

Extended Class

Parameterless
Command

This example illustrates that many classes can be extended, not just the Robot class.
To extend a class, we perform the following tasks:

➤	 Create a new class that includes the following line:

publicƒclassƒ«className»ƒextendsƒ«superClass»ƒ

where «superClass» names the class you want to extend. In this example
the superclass was Thing; in the first example the superclass was Robot.

➤	 Create a constructor for the new class that has the same name as the class.
Make sure it calls super with parameters appropriate for one of the construc
tors in the superclass.

➤	 Add a method for each of the services the new class should offer.

A short test program that uses the Lamp class is shown in Listing 2-7. It instantiates
two Lamp objects, turning one on and turning the other off. A robot then picks one up

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 73

73

and moves it to a new location. The left side of Figure 2-9 shows the initial situation
after lines 7–14 have been executed. The right side of Figure 2-9 shows the result after
lines 17–21 have been executed to move the lit lamp to another intersection. The
actual running program is more colorful than what is shown in Figure 2-9.

(figure 2-9) 0 1 2 3 0 1 2 3
0 0

Program with two Lamp
objects, one “on” at (1, 1) 1 1
and one “off ” at (2, 1) in

the initial situation 2
 2

Initial situation Final situation

2.3
E

XTEN
D
IN

G
 TH

E T
HING C

LASS

ch02/extendThing/

Listing 2-7: A main method for a program that uses the Lamp class

1 importƒbecker.robots.*;

2

3 publicƒclassƒMain

4 {

5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

6 ƒƒ{ƒ// Construct the initial situation.

7 ƒƒƒƒCityƒparisƒ=ƒnewƒCity();

8 ƒƒƒƒLampƒlamp1ƒ=ƒnewƒLamp(paris,ƒ1,ƒ1);

9 ƒƒƒƒLampƒlamp2ƒ=ƒnewƒLamp(paris,ƒ2,ƒ1);

10 ƒƒƒƒRobotƒlampMoverƒ=ƒnewƒRobot(paris,ƒ1,ƒ0,ƒDirection.EAST);
11
12 ƒƒƒƒ// Turn one lamp on and the other off.
13 ƒƒƒƒlamp1.turnOn();
14 ƒƒƒƒlamp2.turnOff();
15
16 ƒƒƒƒ// Use the robot to move one of the lamps.
17 ƒƒƒƒlampMover.move();
18 ƒƒƒƒlampMover.pickThing();
19 ƒƒƒƒlampMover.move();
20 ƒƒƒƒlampMover.putThing();
21 ƒƒƒƒlampMover.move();
22 ƒƒ}
23 }

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 74

74
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

2.3.3 Completely Initializing Lamps

In Listing 2-7, the main method instantiates two Lamp objects in lines 8 and 9, and
then explicitly turns one on and one off in lines 13 and 14. Suppose that lines 13 and
14 were omitted, so that the lamps were turned neither on nor off explicitly. How
would they appear? Unfortunately, they would appear just like any other Thing—as a
medium-sized, bright yellow circle. It seems wrong that a Lamp object should appear to
be a Thing just because the client forgot to explicitly turn it on or off.

The problem is that the Lamp constructor did not completely initialize the object. A
complete initialization for a lamp not only calls super to initialize the superclass, it
also sets the icon so the lamp appears to be either on or off.

A constructor can execute statements other than the call to super. It could, for
example, call setIcon. But to follow the Service Invocation pattern of
«objectReference».«serviceName»(…), we need to have an object. The object
we want is the object the constructor is now creating.

The methods we have written often use the implicit parameter, this, to refer to the object
executing the method. The implicit parameter, this, is also available within the construc
tor. It refers to the object being constructed. We can write this.setIcon(…); within the
constructor. Think of this as referring to this object, the one being constructed.

The new version of the constructor is then as follows. It initializes the superclass with the
call to super, and then finishes the initialization by replacing the icon with a new one.

1 publicƒLamp(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue)
2 {ƒsuper(aCity,ƒaStreet,ƒanAvenue);
3 ƒƒColorƒoffColorƒ=ƒnewƒColor(0,ƒ0,ƒ0);
4 ƒƒCircleIconƒoffIconƒ=ƒnewƒCircleIcon(offColor);
5 ƒƒthis.setIcon(offIcon);
6 }

Calling super must be the first statement in the constructor. It ensures that the Thing-
inside-the-Lamp is appropriately initialized so it can handle the call to this.setIcon.

You may recognize lines 3–5 as being identical to the body of turnOff. Do we really
need to type in the code twice, and then fix it twice if we discover a bug or want to
change how a Lamp looks when it is off? No. Recall that an object can call its own
methods. We saw this concept when ExperimentRobot called turnAround from the
turnRight method. Similarly, the constructor can call turnOff directly, a much bet
ter solution.

1 publicƒLamp(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue)
2 {ƒsuper(aCity,ƒaStreet,ƒanAvenue);
3 ƒƒthis.turnOff();
4 }

LOOKING BACK

The implicit
parameter was
discussed in
more depth in
Section 2.2.4.

KEY IDEA

Initializing the
superclass is the first
thing to do inside a
constructor.

Constructor

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 75

75

2.3.4 Fine-Tuning the Lamp Class (optional)

The Lamp class can be fine-tuned in several ways to be more visually pleasing.

Changing the Size of an Icon

A turned-off Lamp appears as large as the yellow circle of light cast by a lamp that is
on, which is not realistic. It’s also unrealistic to represent a lamp with an icon that is as
large as an intersection.

To solve this problem, we need a way to make a smaller icon. The documentation for
CircleIcon includes a method, setSize, for this purpose. Its parameter is a number
between 0.0 and 1.0. A value of 1.0 makes it full size, 0.001 makes it extremely small,
and 0.5 makes it half size. The size must be larger than 0.0.

With this knowledge, let’s change turnOff to make a smaller icon:

publicƒvoidƒturnOff()
{ƒColorƒoffColorƒ=ƒnewƒColor(0,ƒ0,ƒ0);
ƒƒCircleIconƒoffIconƒ=ƒnewƒCircleIcon(offColor);

Parameterless ƒƒoffIcon.setSize(0.25);
Command ƒƒthis.setIcon(offIcon);

}

The only change in this code, compared to Listing 2-6, is to add the extra method call.

Transparency

To make the lamp more realistic, the light from a lamp should be semi transparent to
let the intersection show through. With the previous change to turnOff and a small
change to turnOn, the initial situation will look like Figure 2-11 instead of Figure 2
10. Unfortunately, the difference is not as striking in print as it is on-screen in full color.

To obtain a transparent color, we can again use a service CircleIcon inherits from its
superclass. setTransparency takes a number between 0.0 and 1.0 where a value of
0.0 is completely opaque and 1.0 is completely transparent. For the lamp icon a value
of about 0.5 works well. The new version of turnOn follows:

publicƒvoidƒturnOn()

{ƒColorƒonColorƒ=ƒnewƒColor(255,ƒ255,ƒ200);

ƒƒCircleIconƒonIconƒ=ƒnewƒCircleIcon(onColor);

ƒƒonIcon.setSize(0.75);

ƒƒonIcon.setTransparency(0.5);

ƒƒthis.setIcon(onIcon);

}

2.3
E

XTEN
D
IN

G
 TH

E T
HING C

LASS

http:onIcon.setSize(0.75
http:offIcon.setSize(0.25

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 76

76
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

(figure 2-10) 0 1 2 3 0 1 2 3
0 0

Original initial

situation (left) 1 1

(figure 2-11)
2 2

New initial

situation (right)

2.3.5 Other Subclasses of Thing

The becker.robots package includes several subclasses of Thing that have already KEY IDEA

been defined. They are similar to Lamp, except that someone else did the programming, The Thing class

and they have been put into the becker.robots package. Interested students may can be extended

enjoy using them to give additional variety to their programs. in many ways.

One subclass of Thing is called Flasher. It represents the flashing lights used by road
maintenance crews to mark hazards. A Flasher is like a Lamp except that when it is
turned on, it flashes. An example is shown in Figure 2-12. The flasher at the origin is
turned on. The flasher beside it is turned off.

0 1 2
0

1

2

(figure 2-12)
Flasher turned on

The appearance of Flasher turned off
Flashers and

Both streetlights Streetlights
are turned on

Another provided subclass of Thing is Streetlight. Two instances are shown at (2, 1)
and (2, 2). Like walls, streetlights can occupy different positions on an intersection.
These streetlights occupy the southwest and northwest corners of their respective inter
sections. They were created with the following code:

StreetlightƒsLight1ƒ=ƒ
ƒƒƒƒƒƒnewƒStreetlight(prague,ƒ2,ƒ1,ƒDirection.SOUTHWEST);
StreetlightƒsLight2ƒ=ƒ
ƒƒƒƒƒƒnewƒStreetlight(prague,ƒ2,ƒ2,ƒDirection.NORTHWEST);

Another similarity to walls is that streetlights cannot be picked up and carried by
robots. One of the constructors to Thing includes a parameter that controls whether
robots can pick the thing up; the Streetlight constructor makes use of that feature.

The streetlights shown in Figure 2-12 are turned on. Streetlights that are turned off
show only the pole in the corner of the intersection. An intersection may have more
than one streetlight.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 77

77
2.3

E
XTEN

D
IN

G
 TH

E T
HING C

LASS

LOOKING AHEAD

This is an example of
polymorphism. Learn

more in Chapter 12.

2.3.6 Fun with Lights (optional)

We have already seen how lamps can be turned off and turned on in the main method
(see Listing 2-7). The same can be done with Flashers and Streetlights. It is also
possible for robots to turn lights on or off, provided the robot and the light are on the
same intersection. This requires programming concepts that won’t be fully explained
until Section 12.1.5, but using them follows a simple pattern and offers more possibil
ities for creatively using robots.

The key is the Light class that we noticed in the documentation shown in Figure 2-7.
It has two methods named turnOn and turnOff and is the superclass for Flasher
and Streetlight. If we extend Light when we write the Lamp class, all three sub
classes are, in some sense, lights that can be turned on and off.

In a subclass of Robot we can use an inherited method, examineLights. It examines
the robot’s current intersection for a Light object. If it finds one, it makes it accessible
to the robot. If a light does not exist on the intersection, an error will be printed and
the program will stop. Listing 2-8 shows most of a subclass of Robot that makes use of
examineLights. A SwitchBot’s switchLights method may be used where there
are four intersections in a row, each one with a light on it.

ch02/switchLights/

Listing 2-8: A subclass of Robot that manipulates lights

1 importƒbecker.robots.*;
2
3 // A robot that switches lights on and off.
4 publicƒclassƒSwitchBotƒextendsƒRobot
5 {
6 ƒƒ// Insert a constructor here.
7
8 ƒƒ// Switch every other light off and the remaining lights on.
9 ƒƒpublicƒvoidƒswitchLights()

10 ƒƒ{ƒthis.move();
11 ƒƒƒƒthis.examineLights().next().turnOff();
12 ƒƒƒƒthis.move();
13 ƒƒƒƒthis.examineLights().next().turnOn();
14 ƒƒƒƒthis.move();
15 ƒƒƒƒthis.examineLights().next().turnOff();
16 ƒƒƒƒthis.move();
17 ƒƒƒƒthis.examineLights().next().turnOn();
18 ƒƒƒƒthis.move();
19 ƒƒ}
20 }

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 78

78
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

Notice that lines 11, 13, 15, and 17 have three method calls. This is permitted when a
method returns an object. That method call may then be followed with a call to
another method. The second method call must be appropriate for the object returned
by the first method.

The Robot class also has methods named examineThings and examineRobots that
can be used similarly. The Intersection and City classes have similar methods
available.

2.4 Style

As programs become more complex, presenting them clearly to anyone who reads
them (including ourselves) becomes vitally important. Attention to presentation,
choosing names wisely, indenting, and commenting code all contribute to a program’s
clarity. In the course of writing and debugging your programs, you will be studying
them more thoroughly than anyone else. It’s to your advantage to make your programs
as understandable as possible.

2.4.1 White Space and Indentation

White space is the empty space between the symbols in a program. The Java compiler
ignores white space, but its presence (or absence) is important to people reading the
program. Consider the program in Listing 2-9. It is identical to the ExperimentRobot
class in Listing 2-4, except that the white space and comments have been removed.
Both classes execute in exactly the same way, but one is considerably easier to read and
understand than the other. In particular, Listing 2-9 makes it difficult to see the struc
ture of the class: that there is one constructor and three methods, where each method
begins, what the method names are, and so on.

KEY IDEA

Everyone, especially
you, benefits
from good
programming style.

KEY IDEA

Use white space to
highlight the logical
structure of your
program.

Listing 2-9: A class without white space

1 importƒbecker.robots.*;ƒpublicƒclassƒExperimentRobotƒextends
2 Robotƒ{ƒpublicƒExperimentRobot(CityƒaCity,ƒintƒaStreet,ƒintƒ
3 anAvenue,ƒDirectionƒaDirection)ƒ{ƒsuper(aCity,ƒaStreet,ƒ
4 anAvenue,ƒaDirection);}ƒpublicƒvoidƒturnAround()ƒ{
5 this.turnLeft();ƒthis.turnLeft();ƒ}ƒpublicƒvoidƒmove3(){ƒ
6 this.move();ƒthis.move();ƒthis.move();ƒ}ƒpublicƒvoidƒ
7 turnRight()ƒ{ƒthis.turnAround();ƒthis.turnLeft();ƒ}}

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 79

79
2.4

S
TYLE

The following recommendations concerning white space are considered good pro
gramming practice:

➤	 Begin each statement on a new line.

➤	 Include at least one blank line between blocks of code with different purposes.
For instance, Listing 1-2 includes blank lines between the statements that con
struct the required objects and the statements that direct the robot mark
around the road block. There is another blank line between the instructions to
mark and the instructions to ann.

➤	 Line up curly braces so that the closing brace is directly beneath the open
ing brace.

➤	 Indent everything inside a pair of braces by a consistent number of spaces (this
book uses two).

Many conventions govern indenting programs and lining up braces. None of them are
right or wrong, but are subject to personal preference. Some people like the preceding
style shown through this textbook because it is easy to ensure that braces match.

Nevertheless, your instructor or future employer may have other conventions, com
plete with reasons to support their preference. As an employee (or student), you will
need to accommodate their preferences.

Programs are available that can reformat code to make it adhere to a specific set of
conventions. This book’s Web site contains references to at least one such program. It
is often possible to configure your IDE so that using a code reformatter is as easy as
clicking a button.

2.4.2 Identifiers

The symbols that make up a Java program are divided into three groups: special sym
bols, reserved words, and identifiers. Special symbols include the braces { and }, peri
ods, semicolons, and parentheses. Reserved words, also called keywords, have a special
meaning to the compiler. They include class, package, import, public, and int. A
complete list of reserved words is shown in Table 2-2. Finally, identifiers are names: the
names of variables (karel), the names of classes (Robot), the names of services
(move), and the names of packages (becker.robots).

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 80

80

abstract

assert

boolean

break

default

do

double

else

goto

if

implements

import

package

private

protected

public

this

throw

throws

transient

(table 2-2)

Java reserved words.

const and goto are

reserved but not

currently used

byte enum instanceof return true

case extends int short try

catch false interface static void

char final long strictfp volatile

class finally native super while

const float new switch

continue for null synchronized

CH
AP

TE
R

2
| E

XT
EN

D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

Programmers have lots of choice in the names they use as identifiers. Wise choices
make a program much easier to read and understand, thereby increasing the likelihood
that it is correct. Programs with well-chosen identifiers are self-documenting and need
fewer explanatory comments.

A well-chosen identifier clearly indicates the purpose of the thing it names. It is better
to name a class Robot than R, for instance. Naming an icon onIcon is much better
than on or icon or even just i.

Balanced with the need for a clear intent are readability and brevity for the
sake of the person who must type the name over and over. Naming a robot
robotThatMovesTheThingFrom2_1To3_2 is clearly overkill.

When naming parts of their program, most Java programmers use conventions estab
lished by Java’s creators. The name of a class, for example, should be a descriptive, sin
gular noun such as Robot, Wall, or Lamp. Class names begin with an uppercase letter
followed by lowercase letters. If the name is composed of two or more words, such as
CircleIcon, then capitalize each word.

The name of a variable should be a descriptive noun or noun phrase: warningLamp,
westWall, or a robot named collectorRobot in a program where lots of things are
collected. The variable name should describe what the variable represents. A variable
name begins with a lowercase letter. Names composed of more than one word should
have the first letter of each subsequent word capitalized, as in collectorRobot.
Variable names can also contain digits and underscores after the first letter, but not
spaces, tabs, or punctuation.

KEY IDEA

A name should clearly
reveal the purpose of
what it names.

KEY IDEA

Naming conventions
make it easier to
recognize what an
identifier represents.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 81

81
2.4

S
TYLE

A method name should be a verb or verb phrase that describes what the method does.
Like a variable name, a method name begins with a lowercase letter. In names com
posed of two or more words, the subsequent words are capitalized. Examples we have
seen so far include move, turnLeft, turnAround, and setLocation.

Capitalization matters in identifiers. westWall is not the same as westwall. The Java
compiler notices the difference between the uppercase W and the lowercase w—even if
we don’t—and treats them as two different identifiers. Table 2-3 summarizes the Java
naming conventions.

(table 2-3)

Summary of naming

conventions

Identifier Conventions Examples

Class A descriptive singular noun, beginning with an uppercase
letter. If the name is composed of several words, each
word begins with a capital letter.

Robot
Lamp
CircleIcon

Method A descriptive verb or verb phrase, beginning with a
lowercase letter. If the method name is composed of
several words, each word, except the first, begins with a
capital letter.

move
pickThing
canPickThing
setSize

Variable A descriptive noun or noun phrase, beginning with a
lowercase letter. If the name is composed of several
words, each word, except the first, begins with a
capital letter.

karel
newYorkCity

KEY IDEA

Comments do
not affect the

execution of the
program.

2.4.3 Comments

Comments are annotations inserted by the programmer to help others understand how
to use the code she is writing, how it works, or how to modify it. The comments help
establish the context of a statement or block of code so that readers can more quickly
understand the code. Comments are for people; they do not affect the execution of the
program. In this way, they are like white space.

An excellent practice is to first write a comment that states what this section of your
program must do. Then write the code to implement your comment. Clearly state in
English what you are trying to do, then explain how in Java. This two-part practice
helps keep things clear in your mind, minimizing errors and speeding debugging.

Java has three different kinds of comments: single-line comments, multi-line comments,
and documentation comments.

Single-Line Comments

A single-line comment begins with two consecutive slashes and extends to the end of
the line. Single-line comments have already been used in the programs in Chapter 1 to

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 82

82
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

document the purpose of a block of code. The first line in the following block of code
is a single-line comment:

// Use the robot to move one of the lamps.

lampMover.move();

lampMover.pickThing();

lampMover.move();

lampMover.putThing();

lampMover.move();

The comment explains the intent of the code; it does not repeat how the code works. A
reader may then consider whether the intent is appropriate at this point in the pro
gram, and whether the code correctly carries out the intent.

It is also possible to put a single-line comment at the end of a line of code, as shown in
the following line from the FramePlay program in Chapter 1:

importƒjavax.swing.*;ƒƒƒ// use JFrame, JPanel, JButton, JTextArea

Multi-Line Comments

If you have more to say than will fit on a single line consider using a multi-line comment.
A multi-line comment begins with /* and extends, possibly over many lines, until the
next */. The following example is a multi-line comment extending over three lines.

/* Set up the initial situation to match the figure given for problem 5.

It consists of eight walls positioned to form a 2x2 square.

*/

Such a comment should go immediately before the first line of code that implements
what is described.

Another use of a multi-line comment is to temporarily remove some lines of code, per
haps so another approach can be tested without losing previous work. For example, in
Section 2.2.6, we explored two ways to implement turnRight. The programmer
could have started with the solution that uses turnLeft three times. Perhaps she then
thought of the other solution, which turns around first. If she wasn’t quite sure the sec
ond solution would work, her code might have looked like this:

publicƒvoidƒturnRight()

{ƒ/*

ƒƒthis.turnLeft();

ƒƒthis.turnLeft();

ƒƒthis.turnLeft();

ƒƒ*/

ƒƒthis.turnAround();

ƒƒthis.turnLeft();

}

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 83

83
2.4

S
TYLE

KEY IDEA

Use single-line
comments to

annotate code and
multi-line

comments to
comment out

existing code.

KEY IDEA

Document the
purpose of each

class, constructor,
and method.

This practice is called commenting out code. One of the consequences of using the next
*/ to end a comment is that a multi-line comment can not include another (nested)
multi-line comment. That is, you can’t comment out multi-line comments. For this rea
son, some programmers reserve multi-line comments for commenting out code, using
single-line comments for actual annotations.

Documentation Comments

Single-line and multi-line comments explain the intent of the code for people reading
the code. Documentation comments are used to generate Web-based documentation
like that shown in Figure 1-15 through Figure 1-18. They describe the purpose of a
class, constructor, or method and provide information useful to people who want to
use them without understanding how they work internally.

Each class, constructor, and method should have a documentation comment. The com
ment must appear immediately before the class, method, or constructor is declared;
that is, immediately before the line containing publicƒclassƒ«className»

extendsƒ«superClass» or publicƒvoidƒ«methodName»().

A documentation comment is similar to a multi-line comment, except that it begins
with /** rather than /*. Another difference is that a documentation comment may
contain tags to identify specific information that should be displayed distinctively on a
Web page. For example, the documentation comment for a class may contain the
@author tag to identify the person who wrote the class.

One of the most important tags is @param. It allows you to document each parameter’s
purpose. The @param tag is followed by the name of the parameter and a description
of that parameter.

Listing 2-10 shows the ExperimentRobot listing again, this time with appropriate
documentation comments.

Listing 2-10: A listing of ExperimentRobot showing appropriate documentation

1 importƒbecker.robots.*;

2

3 /** A new kind of robot that can turn around, turn right, and move forward three intersections

4 * at a time.

5 * @author Byron Weber Becker */

6 publicƒclassƒExperimentRobotƒextendsƒRobot

7 {

8 ƒƒ/** Construct a new ExperimentRobot.

9 ƒƒ* @param aCity The city in which the robot will be located.

10 ƒƒ* @param aStreet The robot’s initial street.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 84

84
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

Listing 2-10: A listing of ExperimentRobot showing appropriate documentation (continued)

11	 ƒƒ* @param anAvenue The robot’s initial avenue.
12 ƒƒ* @param aDirection The robot’s initial direction. */
13 ƒƒpublicƒExperimentRobot(CityƒaCity,ƒintƒaStreet,
14 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒanAvenue,ƒDirectionƒaDirection)
15 ƒƒ{ƒsuper(aCity,ƒaStreet,ƒanAvenue,ƒaDirection);
16 ƒƒ}
17
18 ƒƒ/** Turn the robot around so it faces the opposite direction. */
19 ƒƒpublicƒvoidƒturnAround()
20 ƒƒ{ƒthis.turnLeft();
21 ƒƒƒƒthis.turnLeft();
22 ƒƒ}
23
24 ƒƒ/** Move the robot forward three times. */
25 ƒƒpublicƒvoidƒmove3()
26 ƒƒ{ƒthis.move();
27 ƒƒƒƒthis.move();
28 ƒƒƒƒthis.move();
29 ƒƒ}
30

31 ƒƒ/** Turn the robot right 90 degrees by turning left. */

32 ƒƒpublicƒvoidƒturnRight()
33 ƒƒ{ƒthis.turnAround();
34 ƒƒƒƒthis.turnLeft();
35 ƒƒ}
36 }

2.4.4 External Documentation (advanced)

The tool that extracts the documentation comments and formats them for the Web is
known as javadoc. Your development environment might have a simpler way to run
this tool; if it does not, you can perform the following steps on a computer running
Windows (with analogous steps on other computers).

➤	 Open a window for a command-prompt.

➤	 Change directories to the directory containing the Java source code.

➤	 Run javadoc, specifying the Java files to process and where the output should be
placed.

➤	 View the result with a Web browser.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 85

85
2.4

S
TYLE

For example, suppose we want to generate documentation for the three classes used in
the experiment at the beginning of the chapter and that the files reside in the directory
E:\experiment. In the command-prompt window, enter the following commands
(the >ƒis called a prompt and is displayed by the system to indicate that it is ready to
accept your input).

>ƒE:
>ƒcdƒexperiment
>ƒjavadocƒ–dƒdocƒ–classpathƒe:/robots/becker.jarƒ*.java

The first two commands change the focus of the command prompt, first to the correct
disk drive (E:), and then to the correct directory on that disk (experiment). The last
command starts the program that produces the Web pages. This javadoc command
has three sets of parameters:

➤	 -dƒdoc specifies that the documentation should be placed in a directory
named doc.

➤	 -classpathƒe:/robots/becker.jar indicates where to find the becker
library. It allows javadoc to include relevant information about robot classes.
You will need to replace the path given here with the location of the library on
your computer.

➤	 *.java means that javadoc should process all the files in the current direc
tory that end with .java.

Depending on how your software is installed, the system may not find the javadoc pro
gram. In that case, you need to find javadoc’s location on the disk drive and provide the
complete path to it. For example, on my system, I used the search feature of the Windows
Explorer program to search for javadoc. The results told me that the program was in
C:\java\jdk1.5\bin\javadoc.exe. I could then modify the last line as follows:

>ƒC:\java\jdk1.5\bin\javadocƒ–dƒdocƒ–classpathƒe:/robots/becker.jarƒ*.java

Alternatively, you may be able to set your system’s path variable to include the direc
tory containing javadoc.

2.5 Meaning and Correctness

Nothing prevents a programmer from implementing a method called move3 with 5,
10, or even 100 calls to move. In fact, nothing requires a method named move3 to even
contain move commands. It could be defined as follows:

publicƒvoidƒmove3()

{ƒthis.turnLeft();

ƒƒthis.pickThing();

Parameterless ƒƒthis.turnLeft();
Command }

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 86

86
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

If we defined the move3 method this way, someone else reading our program would be
confused and surprised. Over time, we could confuse ourselves, introducing errors into
the program in spite of defining move3 ourselves to behave in this manner.

The meaning of a command is the list of commands contained in its body, not its name.
When a program is executed, the command does exactly what the commands in the
body instruct it to do. There is no room for interpretation.

A good programmer gives each command a meaningful name. Another person should
be able to make a reasonable guess about what the command does from its name.
There should be no surprises such as the robot picking something up in the middle of a
command whose name does not imply picking things up.

When we write new programs, it is common to trace the program by hand to verify
how it behaves. Because the command name only implies what it does, it is important
to trace the actual instructions in each command. The computer cannot and does not
interpret the names of commands when it executes a program; we shouldn’t either
when we trace a program manually.

The correctness of a command is determined by whether it fulfills its specification. The
specification is a description of what the method is supposed to do. The specification
might be included in the method’s documentation or in the problem statement given by
your instructor. A command may be poorly named, but still correct. For instance, the
specification of ExperimentRobot at the beginning of the chapter requires a com
mand to turn the robot around. It could have been given the idiotic name of doIt. As
long as doIt does, indeed, turn the robot around (and nothing else) the specification is
met and the command is correct.

Because the move3 command is simple, it is easy to convince ourselves that it is cor
rect. Many other commands are much more complex, however. The correctness of
these commands must be verified by writing test programs that execute the com
mand, checking the actual result against the expected result. This practice is not fool
proof, however. Conditions in which the command fails may not be tested and go
undetected.

A correct command, such as move3, can be used incorrectly. For example, a client can
place an ExperimentRobot facing a wall. Instructing this robot to move3 will result
in an error when the robot attempts to move into the wall. In this case, we say the com
mand’s preconditions have not been met. Preconditions are conditions that must be
true for a command to execute correctly.

KEY IDEA

Use meaningful
names.

KEY IDEA

Correct methods meet
their specifications.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 87

87

2.6 Modifying Inherited Methods

KEY IDEA

A subclass can make
limited modifications
to inherited methods

as well as add
new methods.

ch02/override/

Extended Class

Besides adding new services to an object, sometimes we want to modify existing ser
vices so that they do something different. We might use this facility to make a dancing
robot that, when sent a move message, first spins around on its current intersection and
then moves. We might build a kind of robot that turns very fast even though it contin
ues to move relatively slowly, or (eventually), a robot that checks to see if something is
present before attempting to pick it up. In a graphical user interface, we might make a
special kind of component that paints a picture on itself. In all of these situations, we
replace the definition of a method in a superclass with a new definition. This replace
ment process is called overriding.

2.6.1 Overriding a Method Definition

To override the definition of a method, you create a new method with the same name,
return type, and parameters in a subclass. These constitute the method’s signature. As an
example, let’s create a new kind of robot that can turn left quickly. That is, we will over
ride the turnLeft method with a new method that performs the same service differently.

You may have noticed that the online documentation for Robot includes a method
named setSpeed, which allows a robot’s speed to be changed. Our general strategy
will be to write a method that increases the robot’s speed, turns, and then returns the
speed to normal. Turning quickly doesn’t seem to be something we would use often, so
it has not been added to RobotSE. On the other hand, it seems reasonable that fast-
turning robots need to turn around and turn right, so our new class will extend
RobotSE.

As the first step in creating the FastTurnBot class, we create the constructor and the
shell of the new turnLeft method, as shown in Listing 2-11.

Listing 2-11: An incomplete class which overrides turnLeft

1 importƒbecker.robots.*;
2
3 /** A FastTurnBot turns left very quickly relative to its normal speed.
4 * @author Byron Weber Becker */
5 publicƒclassƒFastTurnBotƒextendsƒRobotSE
6 {
7 ƒƒ/** Construct a new FastTurnBot.
8 ƒƒ* @param aCity The city in which the robot appears.
9 ƒƒ* @param aStreet The street on which the robot appears.

10 ƒƒ* @param anAvenue The avenue on which the robot appears.
11 ƒƒ* @param aDirection The direction the robot initially faces. */

2.6
M

O
D
IFYIN

G
 IN

H
ERITED

 M
ETH

O
D
S

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 88

88
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

Listing 2-11: An incomplete class which overrides turnLeft (continued)

12 ƒƒpublicƒFastTurnBot(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue,
13 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒDirectionƒaDirection)
14 ƒƒ{ƒsuper(aCity,ƒaStreet,ƒanAvenue,ƒaDirection);

Constructor
15 ƒƒ}
16
17 ƒƒ/** Turn 90 degrees to the left, but do it more quickly than normal. */
18 ƒƒpublicƒvoidƒturnLeft()
19 ƒƒ{
20 ƒƒ}
21 }

When this class is instantiated and sent a turnLeft message, it does nothing. When
the message is received, Java starts with the object’s class (FastTurnBot) and looks
for a method matching the message. It finds one and executes it. Because the body of
the method is empty, the robot does nothing.

How can we get it to turn again? We cannot write this.turnLeft(); in the body of
turnLeft. When a turnLeft message is received, Java finds the turnLeft method
and executes it. The turnLeft method then executes this.turnLeft, sending
another turnLeft message to the object. Java finds the same turnLeft method and
executes it. The process of executing it sends another turnLeft message to the object,
so Java finds the turnLeft method again, and repeats the sequence. The program
continues sending turnLeft messages to itself until it runs out of memory and
crashes. This problem is called infinite recursion.

What we really want is the turnLeft message in the FastTurnBot class to execute
the turnLeft method in a superclass. We want to send a turnLeft message in such a
way that Java begins searching for the method in the superclass rather than the object’s
class. We can do so by using the keyword super instead of the keyword this. That is,
the new definition of turnLeft should be as follows:

publicƒvoidƒturnLeft()
{ƒsuper.turnLeft();
}

We have returned to where we started. We have a robot that turns left at the normal
speed. When a FastTurnBot is sent a turnLeft message, Java finds this turnLeft
method and executes it. This method sends a message to the superclass to execute its
turnLeft method, which occurs at the normal speed.

To make the robot turn faster, we add two calls to setSpeed, one before the call to
super.turnLeft() to increase the speed, and one more after the call to decrease the

LOOKING AHEAD

Recursion occurs
when a method calls
itself. Although
recursion causes
problems in this case,
it is a powerful
technique.

KEY IDEA

Using super instead
of this causes Java to
search for a method in
the superclass rather
than the object’s class.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 89

89

speed back to normal. The documentation indicates that setSpeed requires a single
parameter, the number of moves or turns the robot should make in one second.

The default speed of a robot is two moves or turns per second. The following method
uses setSpeed so the robot turns 10 times as fast as normal, and then returns to the
usual speed.

publicƒvoidƒturnLeft()
{ƒthis.setSpeed(20);
ƒƒsuper.turnLeft();
ƒƒthis.setSpeed(2);
}

The FastTurnBot class could be tested with a small program such as the one in
Listing 2-12. Running the program shows that speedy does, indeed, turn quickly
when compared to a move.

2.6
M

O
D
IFYIN

G
 IN

H
ERITED

 M
ETH

O
D
S

ch02/override/

Listing 2-12: A program to test a FastTurnBot

1 importƒbecker.robots.*;

2

3 /** A program to test a FastTurnBot.

4 * @author Byron Weber Becker */

5 publicƒclassƒMainƒextendsƒObject

6 {

7 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

8 ƒƒ{ƒCityƒcairoƒ=ƒnewƒCity();

9 ƒƒƒƒFastTurnBotƒspeedyƒ=ƒnewƒFastTurnBot(

10 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcairo,ƒ1,ƒ1,ƒDirection.EAST);
11
12 ƒƒƒƒspeedy.turnLeft();
13 ƒƒƒƒspeedy.move();
14 ƒƒƒƒspeedy.turnLeft();
15 ƒƒƒƒspeedy.turnLeft();
16 ƒƒƒƒspeedy.turnLeft();
17 ƒƒƒƒspeedy.turnLeft();
18 ƒƒƒƒspeedy.turnLeft();
19 ƒƒƒƒspeedy.move();
20 ƒƒ}
21 }

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 90

90
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

2.6.2 Method Resolution

So far, we have glossed over how Java finds the method to execute, a process called
method resolution. Consider Figure 2-13, which shows the class diagram of a
FastTurnBot. Details not relevant to the discussion have been omitted, including con
structors, attributes, some services, and even some of the Robot’s superclasses (repre
sented by an empty rectangle). The class named Object is the superclass, either
directly or indirectly, of every other class.

When a message is sent to an object, Java always begins with the object’s class, looking
for a method implementing the message. It keeps going up the hierarchy until it either
finds a method or it reaches the ultimate superclass, Object. If it reaches Object
without finding an appropriate method, a compile-time error is given.

Let’s look at several different examples. Consider the following code:

FastTurnBotƒspeedyƒ=ƒnewƒFastTurnBot(...);
speedy.move();

To execute the move method, Java begins with speedy’s class, FastTurnBot, in the
search for the method. When Java doesn’t find a method named move in
FastTurnBot, it looks in RobotSE and then in Robot, where a method matching the
move method is found and executed.

As another example, consider the following code:

RobotSEƒspecialƒ=ƒnewƒRobotSE(...);

special.move();

The search for a move method begins with RobotSE, the class that instantiated special.
It doesn’t matter that RobotSE has been extended by another class; what matters is that
when special was constructed, the programmer used the constructor for RobotSE.
Therefore, searches for methods begin with RobotSE.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 91

91

(figure 2-13) Object
Class diagram of a

FastTurnBot

Robot

void turnLeft()
void move()
...

RobotSE

void turnAround()
void turnRight()

FastTurnBot

void turnLeft()

. . .

2.6
M

O
D
IFYIN

G
 IN

H
ERITED

 M
ETH

O
D
S

KEY IDEA

Overriding a method
can affect other

methods that call it,
even methods in a

superclass.

LOOKING AHEAD

Written Exercise 2.4
asks you to trace

similar examples.

KEY IDEA

The search for the
method matching a

message sent to
super begins in the

method’s superclass.

Once again, consider speedy. What happens if speedy is sent the turnAround message?
The search for the turnAround method begins with speedy’s class, FastTurnBot. It’s
found in RobotSE and executed. As it is executed, it calls turnLeft. Which turnLeft
method is executed, the one in FastTurnBot or the one in Robot?

The turnLeft message in turnAround is sent to the implicit parameter, this. The
implicit parameter is the same as the object that was originally sent the message, speedy.
So Java begins with speedy’s class, searching for turnLeft. It finds the method that turns
quickly and executes it. Therefore, a subclass can affect how methods in a superclass are
executed.

If turnAround is written as follows, the result would be different.

publicƒvoidƒturnAround()
{ƒsuper.turnLeft();
ƒƒsuper.turnLeft();
}

Now the search for turnLeft begins with the superclass of the class containing the
method, or Robot. Robot contains a turnLeft method. It is executed, and the robot
turns around at the normal pace.

Suppose you occasionally want speedy to turn left at its normal speed. Can you some
how skip over the new definition of turnLeft and execute the normal one, the one

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 92

92
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

that was overridden? No. If we really want to execute the original turnLeft, we
should not have overridden it. Instead, we should have simply created a new method,
perhaps called fastTurnLeft.

2.6.3 Side Effects

FastTurnBot has a problem, however. Suppose that Listing 2-12 contained the state
ment speedy.setSpeed(20); just before line 12. This statement would speed
speedy up dramatically. Presumably, the programmer wanted speedy to be speedier
than normal all of the time. After its first turnLeft, however, speedy would return to
its normal pace of 2 moves per second.

This phenomenon is called a side effect. Invoking turnLeft changed something it
should not have changed. Our programmer will be very annoyed if she must reset the
speed after every command that turns the robot. Ideally, a FastTurnBot returns to its
previous speed after each turn.

The programmer can use the getSpeed query to find out how long the robot currently
takes to turn. This information can be used to adjust the speed to its original value after the
turn is completed. The new version of turnLeft should perform the following steps:

set the speed to 10 times the current speed

turn left

set the speed to one-tenth of the (now faster) speed

The query this.getSpeed() obtains the current speed. Multiplying the speed by 10
and using the result as the value to setSpeed increases the speed by a factor of 10.
After the turn, we can do the reverse to decrease the speed to its previous value, as
shown in the following implementation of turnLeft:

publicƒvoidƒturnLeft()
{ƒthis.setSpeed(this.getSpeed()ƒ*ƒ10);
ƒƒsuper.turnLeft();
ƒƒthis.setSpeed(this.getSpeed()ƒ/ƒ10);
}

Using queries and doing arithmetic will be discussed in much more detail in the fol
lowing chapters.

2.7 GUI: Extending GUI Components

KEY IDEA

Not only are side
effects annoying, they
can lead to errors.
Avoid them where
possible; otherwise,
document them.

LOOKING AHEAD

Another approach is
to remember the
current speed. When
the robot is finished
turning, set the speed
to the remembered
value. More in
Chapters 5 and 6.

The Java package that implements user interfaces is known as the Abstract Windowing
Toolkit or AWT. A newer addition to the AWT is known as Swing. These packages con
tain classes to display components such as windows, buttons, and textboxes. Other
classes work to receive input from the mouse, to define colors, and so on.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 93

93

The AWT and Swing packages make extensive use of inheritance. Figure 2-14 contains
a class diagram showing a simplified version of the inheritance hierarchy. Many classes
are omitted, as are many methods and all attributes.

(figure 2-14) Object

Component

int getHeight()
int getWidth()
boolean isVisible()
void setBackground(Color c)
void setLocation(int x, int y)
void setSize(int x, int y)
void setVisible(boolean b)
void setPreferredSize(Dimension d)

Window

void toFront()
void toBack()
void pack()

void setContentPane(Container pane)
void setDefaultCloseOperation(int op)
void setTitle(String title)

JComponent

void paintComponent(Graphics g)
void setBackground(Color c)
void setVisible(boolean b)

Container

void add(Component c)

JTextArea

void append(String s)
void paintComp...(...)

JButton

void paintComp...(...)

JPanel

void paintComp...(...)

JColorChooser

Color getColor()
void paintComp...(...)

JFrame

Simplified class diagram

showing the inheritance

hierarchy for some AWT
and Swing classes

2.7
G
U
I: E

XTEN
D
IN

G
 G

U
I C

O
M

PO
N
EN

TS

One new aspect of this class diagram is that some classes have two or more subclasses. For
example, Container is the superclass for both Window and JComponent. The effect is
that Window objects and JComponent objects (and their subclasses) have much in com-
mon—the set of services they inherit from the Container and Component classes.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 94

94
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

The class diagram reveals several new pieces of information:

➤	 When we implemented the FramePlay program in Listing 1-6, we sent six differ
ent messages to a JFrame object: setContentPane, setTitle,

setDefaultCloseOperation, setLocation, setSize, and setVisible.

We now realize that only three of these are actually declared by the JFrame class.

The other three services are offered by JFrame because they are inherited from

Component.

➤	 Because JFrame, JPanel, JButton, and so on, all indirectly extend

Component, they can all answer queries about their width, height, and visibil
ity, and can all2 set their background color, position, size, and visibility.

➤	 The JComponent class overrides two of the services provided by Component.

JComponent must be doing something extra for each of those services.

➤	 The statement contents.add(saveButton); in the FramePlay program

added a button to an instance of JPanel. We now see that add is actually a

service of the Container class, inherited by JPanel.

➤	 Each of the classes extending JComponent inherits the method

paintComponent. Perhaps if this method were overridden, we could affect how

the component looks. This result would, indeed, be the case and is the topic of the

next section.

2.7.1 Extending JComponent

In this section we will write a program that paints a picture. Figure 2-15 shows a sim
ple stick figure. When viewed in color, the pants are blue, the shirt is red, and the head
is yellow.

(figure 2-15)

Simple stick figure

2 There is, unfortunately, some fine print. The statements above are true, but in some circumstances you
can’t see the results. For example, setting the background color of a JFrame doesn’t appear to have an
effect because the content pane completely covers the JFrame, and you see the content pane’s color.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 95

95

Our strategy is to create a new class, StickFigure, which extends JComponent. We
choose to extend JComponent because it is the simplest of the components shown in
the class diagram, and it doesn’t already have its own appearance. We will extend it by
overriding paintComponent, the method responsible for the appearance of the com
ponent. As we did with the several components in the FramePlay program in Listing
1-6, the stick figure component will be placed in a JPanel. The JPanel will be set as
the content pane in a JFrame.

Listing 2-13 shows the beginnings of the StickFigure class. It provides a parameter
less constructor and nothing more. The constructor doesn’t need parameters because
JComponent has a constructor that does not need parameters. Our constructor calls
JComponent’s constructor by invoking super without parameters.

The constructor performs one important task: in lines 13–14 it specifies a preferred
size for the stick figure component. The preferred size says how many pixels wide and
high the component should be, if possible. Line 13 creates a Dimension object 180
pixels wide and 270 pixels high. The next line uses this object to set the preferred size
for the stick figure.

2.7
G
U
I: E

XTEN
D
IN

G
 G

U
I C

O
M

PO
N
EN

TS

ch02/stickFigure/

Extended Class
Constructor

Listing 2-13: An extended JComponent

1 importƒjavax.swing.*;ƒƒƒƒƒ// JComponent
2 importƒjava.awt.*;ƒƒƒƒƒƒƒƒ// Dimension
3
4 /** A new kind of component that displays a stick figure.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒStickFigureƒextendsƒJComponent
8 {
9 ƒƒpublicƒStickFigure()

10 ƒƒ{ƒsuper();
11
12 ƒƒƒƒ// Specify the preferred size for this component
13 ƒƒƒƒDimensionƒprefSizeƒ=ƒnewƒDimension(180,ƒ270);
14 ƒƒƒƒthis.setPreferredSize(prefSize);
15 ƒƒ}
16 }

It is also possible to reduce lines 13 and 14 down to a single line:

this.setPreferredSize(newƒDimension(180,ƒ270));

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 96

96
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

This creates the object and passes it to setPreferredSize without declaring a vari
able. We can avoid declaring the variable if we don’t need to refer to the object in the
future (as with Wall and Thing objects), or we can pass it to the only method that
requires it as soon as it’s created, as we do here.

Now would be a good time to implement the main method for the program. By com
piling and running the program early in the development cycle, we can often catch
errors in our thinking that may be much more difficult to change later on. Listing 2-14
shows a program for this purpose. Running it results in an empty frame as shown in
Figure 2-16. It follows the Display a Frame pattern and consequently it is similar to the
FramePlay program in Listing 1-6.

KEY IDEA

Sometimes we don’t
need a variable to
store object
references.

Listing 2-14: A program that uses a class extending JComponent

1 importƒjavax.swing.*;

2

3 /** Create a stick figure and display it in a frame.

4 *

5 * @author Byron Weber Becker */

6 publicƒclassƒMain

7 {

8 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

9 ƒƒ{ƒ// Declare the objects to show.

10 ƒƒƒƒJFrameƒframeƒ=ƒnewƒJFrame();
11 ƒƒƒƒJPanelƒcontentsƒ=ƒnewƒJPanel();
12 ƒƒƒƒStickFigureƒstickFigƒ=ƒnewƒStickFigure();
13
14 ƒƒƒƒ// Add the stick figure to the contents.
15 ƒƒƒƒcontents.add(stickFig);
16
17 ƒƒƒƒ// Display the contents in a frame.
18 ƒƒƒƒframe.setContentPane(contents);
19 ƒƒƒƒframe.setTitle(“Stick Figure”);
20 ƒƒƒƒframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
21 ƒƒƒƒframe.setLocation(250,ƒ100);
22 ƒƒƒƒframe.pack();
23 ƒƒƒƒframe.setVisible(true);
24 ƒƒ}
25 }

ch02/stickFigure/

One difference between this program and the FramePlay program and the pattern is
in how the frame is sized. The previous program explicitly set the size of the frame
using the setSize method. This version uses the method pack in line 22. This method
uses the preferred sizes of all the components to calculate the best size for the frame.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 97

97

The result of running this program is shown in Figure 2-16. It looks exactly like an empty
JFrame because the JComponent is invisible until we override paintComponent to
change its appearance.

(figure 2-16)

Result of running the

program in Listing 2-14

with the incomplete

StickFigure class from

Listing 2-13

LOOKING AHEAD

We are practicing
incremental

development: code a
little, test a little,

code a little, test a
little. For more on

development
strategies, see

Chapter 11.

2.7.2 Overriding paintComponent

To actually draw the stick figure, we need to override paintComponent to provide it
with additional functionality. We know from both the class diagram in Figure 2-14 and
the online documentation that paintComponent has a parameter of type Graphics.
This parameter is often named simply g. We will have much more to say about para
meters in later chapters. For now, we will just say that g is a reference to an object that
is used for drawing. It is provided by the client that calls paintComponent and may
be used by the code contained in the paintComponent method.

The superclass’s implementation of paintComponent may have important work to
do, and so it should be called with super.paintComponent(g). It requires a
Graphics object as an argument, and so we pass it g, the Graphics object received as
a parameter. Doing so results in the following method. The method still has not added
any functionality, but adding it to Listing 2-13 between lines 14 and 15 still results in a
running program.

publicƒvoidƒpaintComponent(Graphicsƒg)
{ƒsuper.paintComponent(g);
}

The Graphics parameter, g, provides services such as drawRect, drawOval,
drawLine, and drawString, each of which draw the shape described in the service’s
name. A companion set of services includes fillRect and fillOval, each of which
also draws the described shape and then fills the interior with a color. The color used is

2.7
G
U
I: E

XTEN
D
IN

G
 G

U
I C

O
M

PO
N
EN

TS

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 98

98
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

determined by the most recent setColor message sent to g. The color specified is used
until the next setColor message.

All of the draw and fill methods require parameters specifying where the shape is to
be drawn and how large it should be. Like positioning a frame, measurements are
given in relation to an origin in the upper-left corner, and are in pixels.

Figure 2-17 shows the relationship between the parameters and the figure that is
drawn. For drawRect and drawOval, the first two parameters specify the position of
the upper left corner of the figure, while the third and fourth parameters specify the
width and height. For an oval, the width and height are of the smallest box that can
contain the oval. This box is called the bounding box and is shown in Figure 2-17 as a
dashed line. Of course, the bounding box is not actually drawn on the screen.

30

50

30
50

100

140

100

140

(figure 2-17)

Relationship between the

arguments and the effects

of four drawing methods

g.drawRect(30, 50, 140, 100); g.drawOval(30, 50, 140, 100);

30

50

30

50 100

140

g.drawLine(30, 50, 140, 100); g.drawString(“Drawing a String”, 30, 50);

In each of these methods, the order of the arguments is x before y and width before height.

The parameters for a line are different from the parameters for rectangles and ovals.
The first two parameters specify one end of the line in relation to the origin, while the
last two parameters specify the other end of the line in relation to the origin.

The drawString method takes a string as the first parameter and the position of the
first letter as the second and third parameters.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 99

99
2.7

G
U
I: E

XTEN
D
IN

G
 G

U
I C

O
M

PO
N
EN

TS

With this background information, we can finally add the statements to draw the stick
figure. The complete code for the stickFigure class is given in Listing 2-15. Running
it with the main method in Listing 2-14 produces the image shown in Figure 2-15.

Listing 2-15: Overriding paintComponent to draw a stick figure

ch02/stickFigure/
1 importƒjavax.swing.*;ƒƒƒƒƒ// JComponent

2 importƒjava.awt.*;ƒƒƒƒƒƒƒƒ// Dimension

3

4 /** A new kind of component that displays a stick figure.

5 *

6 * @author Byron Weber Becker */

7 publicƒclassƒStickFigureƒextendsƒJComponent

8 {

9 ƒƒpublicƒStickFigure()

10 ƒƒ{ƒsuperƒ();
11 ƒƒƒƒDimensionƒprefSizeƒ=ƒnewƒDimension(180,ƒ270);Constructor
12 ƒƒƒƒthis.setPreferredSize(prefSize);

13 ƒƒ}

14

15 ƒƒ// Paint a stick figure.

16 ƒƒpublicƒvoidƒpaintComponent(Graphicsƒg)

17 ƒƒ{ƒsuper.paintComponent(g);

18
Parameterless

Command 19 ƒƒƒƒ// Paint the head.

20 ƒƒƒƒg.setColor(Color.YELLOW);

21 ƒƒƒƒg.fillOval(60,ƒ0,ƒ60,ƒ60);

22

23 ƒƒƒƒ// Paint the shirt.

24 ƒƒƒƒg.setColor(Color.RED);

25 ƒƒƒƒg.fillRect(0,ƒ60,ƒ180,ƒ30);

26 ƒƒƒƒg.fillRect(60,ƒ60,ƒ60,ƒ90);

27

28 ƒƒƒƒ// Paint the pants.

29 ƒƒƒƒg.setColor(Color.BLUE);

30 ƒƒƒƒg.fillRect(60,ƒ150,ƒ60,ƒ120);

31 ƒƒƒƒg.setColor(Color.BLACK);

32 ƒƒƒƒg.drawLine(90,ƒ180,ƒ90,ƒ270);

33 ƒƒ}

34 }

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 100

100
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

2.7.3 How paintComponent Is Invoked

You may have noticed that the paintComponent method is not called from any
where in Listing 2-15 or the client code shown in Listing 2-14. Look all through the
code, and you will not find an instance of the Command Invocation pattern
stickFig.paintComponent(g);. Yet we know it is invoked because it paints the
stick figure. How?

In the Sequential Execution pattern in Chapter 1, we described statements as being
executed one after another, as if they were strung on a thread of string. A computer
program can have two or more of these threads, each with their own sequence of
statements. The program we just wrote has at least two threads. The first one is in the
main method. It creates a JFrame and invokes a number of its commands such as
setDefaultCloseOperation and setVisible. When it gets to the end of the main
method, that thread ends.

When a JFrame is instantiated, a second thread begins. This is not a normal occur
rence when an object is instantiated; JFrame’s authors deliberately set up the new
thread. JFrame’s thread monitors the frame and detects when it has been damaged and
must be repainted. A frame can be damaged in many ways. It is damaged when the user
resizes it by dragging a border or clicking the minimize or maximize buttons. It’s dam
aged when it is first created because it hasn’t been drawn yet. It’s also damaged if
another window is placed on top of it and then moved again. In each of these cases, the
second thread of control calls paintComponent, providing the Graphics object that
paintComponent should draw upon.

2.7.4 Extending Icon

We learned in Section 2.3.1 that Icon is the class used to represent images of things in
the robot world—robots, intersections, things, flashers, walls, and so on—all use icons
to display themselves. As you might expect, Icon has been extended a number of times
to provide different icons for different kinds of things. The documentation references
classes named FlasherIcon, RobotIcon, WallIcon, and so on.

You, too, can extend the Icon class to create your own custom icons. The example
shown in Figure 2-18 was produced by the code shown in Listing 2-16.

As with any other subclass, it gives the name of the class it extends (line 5). Before that are
the packages it relies on. In this case, it imports the Icon class from the
becker.robots.icons package and the Graphics class from java.awt.

LOOKING AHEAD

We will use this
capability in
Section 3.5.2 to make
two or more robots
move simultaneously.

KEY IDEA

paintComponent is
called by “the system.”
We don’t call it.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 101

101

(figure 2-18)

Custom robot icon

2.7
G
U
I: E

XTEN
D
IN

G
 G

U
I C

O
M

PO
N
EN

TS

One difference, when compared to extending JComponent, is that we must override a
method named paintIcon instead of paintComponent. This fact can be gleaned
from reading the documentation for Icon. Like paintComponent, paintIcon has a
parameter of type Graphics to use for the actual drawing.

An icon is always painted in a standard 100 × 100 pixel space facing north. Lines 14–23
in Listing 2-16 draw the robot in this position. Other parts of the robot system scale and
rotate the icons, as necessary.

Listing 2-16: Code for a customized robot icon

1 importƒbecker.robots.icons.*;ƒƒƒƒƒ// Icon
2 importƒjava.awt.*;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// Graphics, Color
3
4 /** Create a robot icon that has arms. */
5 publicƒclassƒArmRobotIconƒextendsƒIcon
6 {
7 ƒƒ/** Create a new icon for a robot. */
8 ƒƒpublicƒArmRobotIcon()
9 ƒƒ{ƒsuper();

10 ƒƒ}
11
12 ƒƒ/** Paint the icon. */
13 ƒƒpublicƒvoidƒpaintIcon(Graphicsƒg)
14 ƒƒ{ƒg.setColor(Color.BLACK);
15
16 ƒƒƒƒ// body
17 ƒƒƒƒg.fillRoundRect(35,ƒ35,ƒ30,ƒ30,ƒ10,ƒ10);
18 ƒƒƒƒ// shoulders
19 ƒƒƒƒg.fillRect(25,ƒ45,ƒ10,ƒ10);
20 ƒƒƒƒg.fillRect(65,ƒ45,ƒ10,ƒ10);
21 ƒƒƒƒ// arms
22 ƒƒƒƒg.fillOval(25,ƒ25,ƒ10,ƒ30);
23 ƒƒƒƒg.fillOval(65,ƒ25,ƒ10,ƒ30);
24 ƒƒ}
25 }

ch02/extendIcon/

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 102

102

Use the setIcon method to change the icon used to display a robot. One way to call
setIcon is to create a new class of robots, as shown in Listing 2-17.

CH
AP

TE
R

2
| E

XT
EN

D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

Listing 2-17: An ArmRobot uses an ArmRobotIcon to display itself

1 importƒbecker.robots.*;
2
3 /** A robot with an icon that shows arms. */
4 publicƒclassƒArmRobotƒextendsƒRobot
5 {
6 ƒƒ/** Construct a new ArmRobot.
7 ƒƒ* @param aCity The City where the robot will reside.
8 ƒƒ* @param aStreet The robot’s initial street.
9 ƒƒ* @param anAvenue The robot’s initial avenue.

10 ƒƒ* @param aDirection The robot’s initial direction. */
11 ƒƒpublicƒArmRobot(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue,
12 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒDirectionƒaDirection)
13 ƒƒ{ƒsuper(aCity,ƒaStreet,ƒanAvenue,ƒaDirection);
14 ƒƒƒƒthis.setIcon(newƒArmRobotIcon());
15 ƒƒ}
16 }

ch02/extendIcon/

2.8 Patterns

In this chapter we’ve seen patterns to extend a class, write a constructor, and imple
ment a parameterless command. These are all extremely common patterns; so com
mon, in fact, that many experienced programmers wouldn’t even recognize them as
patterns. We’ve also seen a much less common pattern to draw a picture.

2.8.1 The Extended Class Pattern

Name: Extended Class

Context: You need a new kind of object to provide services for a program you are writ
ing. An existing class provides objects with closely related services.

Solution: Extend the existing class to provide the new or different services required.
For example, the following listing illustrates a new kind of robot that provides a ser
vice to turn around.

importƒbecker.robots.*;
publicƒclassƒTurnAroundBotƒextendsƒRobot
{

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 103

103

ƒƒƒpublicƒTurnAroundBotƒ(CityƒaCity,ƒintƒaStreet,

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒanAvenue,ƒDirectionƒaDirection)

ƒƒƒ{ƒsuper(aCity,ƒaStreet,ƒanAvenue,ƒaDirection);

ƒƒƒ}

ƒƒƒpublicƒvoidƒturnAround()

ƒƒƒ{ƒthis.turnLeft();

ƒƒƒƒƒthis.turnLeft();

ƒƒƒ}

}

This listing also makes use of the Constructor and Method patterns. More generally, a
Java class uses the following code template:

importƒ«importedPackage»;ƒƒƒ// may have 0 or more import statements

publicƒclassƒ«className»ƒextendsƒ«superClass»

{ƒ«listƒofƒattributesƒusedƒbyƒthisƒclass»

ƒƒ«listƒofƒconstructorsƒforƒthisƒclass»

ƒƒ«listƒofƒservicesƒprovidedƒbyƒthisƒclass»

}

The Java Program pattern can be seen as a special version of the Class pattern, which
has no constructors or attributes and contains only the specialized service named main.

Consequences: Objects instantiated from a subclass respond to the same messages as
objects instantiated from the superclass. Instances of the subclass may behave differ
ently from instances of the superclass, depending on whether methods have been over
ridden. The subclass’s objects may also respond to messages not defined by the
superclass.

It should make sense for the client using the subclass to also use any of the methods in
its superclass. If not, think carefully about the superclass; it may have been chosen
incorrectly. If there is no class to serve as the superclass, use Object, a class that con
tains the minimal set of methods required of every Java class.

Related Patterns:
➤	 The Constructor pattern is always applied within an instance of the Extended

Class pattern.

➤	 The Parameterless Command pattern is always applied within an instance of
the Extended Class pattern.

2.8.2 The Constructor Pattern

Name: Constructor

Context: Instances of a class must be initialized when they are constructed.

2.8
P

ATTERN
S

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 104

104
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

Solution: Add a constructor to the class. A constructor has the same name as the class
and is usually preceded by the keyword public. It often has parameters so that the
client constructing the object can provide initialization details at run time. The con
structor must also ensure that the object’s superclass is appropriately initialized, using
the keyword super. The types of the parameters passed to super should match the
types required by one of the constructors in the superclass. Constructors and their
parameters should always have a documentation comment.

Following is an example of a constructor that simply initializes its superclass with val
ues received via its parameters:

/** Construct a new special edition robot.
* @param aCity The city containing the robot.
* @param str The robot’s initial street.
* @param ave The robot’s initial avenue.
* @param dir The robot’s initial direction. */
publicƒRobotSE(CityƒaCity,ƒintƒstr,ƒintƒave,ƒDirectionƒdir)
{ƒsuper(aCity,ƒstr,ƒave,ƒdir);
}

More generally, a constructor makes a call to super and may then execute other Java
statements to initialize itself.

/**«Descriptionƒofƒwhatƒthisƒconstructorƒdoes.»
*ƒ@paramƒ«parameterName»ƒ«Descriptionƒofƒparameter»
*/
publicƒ«className»(«parameterƒlist»)
{ƒsuper(«arguments»);
ƒƒ«listƒofƒJavaƒstatements»
}

If the parameter list is empty, the documentation comment does not contain any
@param tags. Otherwise, the documentation comment contains one @param tag for
each parameter.

Consequences: A constructor should ensure that each object it creates is completely and
consistently initialized to appropriate values. Doing so leads to higher quality software.

In some circumstances the compiler supplies a missing constructor, but don’t rely on
the compiler to do so. If you always supply a constructor, you increase your chances of
remembering to initialize everything correctly. You also minimize the possibility that
future changes will break your software.

Related Patterns: The Constructor pattern always occurs within a pattern for a class.
The Extended Class pattern is one such pattern.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 105

105

2.8.3 The Parameterless Command Pattern

Name: Parameterless Command

Context: You are writing or extending a class and need to provide a new service to
clients. The service does not require any information other than the object to act upon
(the implicit parameter) and does not return any information.

Solution: Use a parameterless command with the following form:

/**ƒ«Descriptionƒofƒtheƒcommand.»

*/

publicƒvoidƒ«commandName»()

{ƒ«listƒofƒstatements»

}

One example that implements this pattern is the turnAround method:

/** Turn the robot around to face the opposite direction. */
publicƒvoidƒturnAround()

{ƒthis.turnLeft();

ƒƒthis.turnLeft();

}

Consequences: The new service is available to any client of objects instantiated from
this class. In future chapters we will see replacements for the public keyword that
make the command’s use more restricted.

Related Patterns: The Parameterless Command pattern always occurs within a pattern
for a class. The Extended Class pattern is one such pattern.

2.8.4 The Draw a Picture Pattern

Name: Draw a Picture

Context: You want to show an image to the user that is constructed from ovals, rectan
gles, lines, and strings.

Solution: Extend JComponent and override the paintComponent method to draw
the image. Display the new component inside a frame using the Display a Frame pat
tern.

In general, the code for the extension of JComponent will be as follows:

importƒjava.awt.*;

importƒjavax.swing.*;

publicƒclassƒ«className»ƒextendsƒJComponent

{

2.8
P

ATTERN
S

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 106

106
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

ƒƒƒpublicƒ«className»()

ƒƒƒ{ƒsuperƒ();

ƒƒƒƒƒthis.setPreferredSize(

ƒƒƒƒƒƒƒƒƒƒnewƒDimension(«prefWidth»,ƒ«prefHeight»));

ƒƒƒ}

ƒƒƒ// Draw the image.

ƒƒƒpublicƒvoidƒpaintComponent(Graphicsƒg)

ƒƒƒ{ƒsuper.paintComponent(g);

ƒƒƒƒƒ«statementsƒusingƒgƒtoƒdrawƒtheƒimage»

ƒƒƒ}

}

Consequences: The component will display the image drawn in paintComponent,
but it is not very smart about the image size and may give some strange results if the
frame is resized. These issues will be addressed in Section 4.7.1.

Related Patterns:
➤	 The extended component can be displayed using the Display a Frame pattern.

➤	 The Draw a Picture pattern is a specialization of the Extended Class pattern
and contains an example of the Constructor pattern.

2.9 Summary and Concept Map

Extending an existing class is one way to customize a class with new or modified ser
vices. Instances of the resulting class (subclass) can be visualized as having an instance
of the existing class (superclass) inside it. The subclass’s constructor must ensure that
the superclass is initialized by calling super with appropriate arguments.

The subclass inherits all of the methods from the superclass. New methods added to
the subclass may call methods in the superclass or other methods in the subclass. When
a message is sent to an object, the process of determining which method to execute is
called method resolution. Method resolution always starts with the class used to
instantiate the object, unless the method is called using super in which case method
resolution begins with the superclass of the class making the call.

A method in the subclass overrides an existing method when it has the same name and
parameter types as a method in one of the superclasses. The overridden method may be
called using the keyword super.

The components used to display graphical user interfaces make extensive use of inher
itance and overriding. For example, one overrides the paintComponent method to
alter the appearance of a component.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 107

107

Style is an important part of writing understandable programs. White space, indenta
tion, and choice of identifiers all make a significant contribution to the overall clarity
of the program.

a class superclass

constructors objects

methods

services

statements

style
whitespace,
indentation,
comments

initialize

ha
s

is a
“tem

plate”
for

extends a

is a

inherits attributes from its

inherits services from its

m
ay contain

may o
verr

ide m
ethods fro

m a

implement

name a group of

should be formatted with appropriate

are important elements of

2.9
S

U
M

M
ARY AN

D
 C

O
N
CEPT M

AP

2.10 Problem Set

Written Exercises

2.1 Based on what you now know about the getSpeed and setSpeed services
from Section 2.6.1, revise the Robot class diagram shown in Figure 1-8.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 108

108
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

2.2	 Consider a robot that implements turnRight as shown in Listing 2-4 and
implements turnAround by calling turnRight twice.

a. Describe what a robot executing this version of turnAround does.

b. How much time does this version of turnAround require compared to the

version in Listing 2-4?

2.3	 Write a new constructor for the RobotSE class. Robots constructed with this
new constructor will always be placed at the origin of the city facing EAST.

2.4	 Add arrows to Figure 2-19, which is similar to Figure 2-6, showing the follow
ing method calls:

a. Method calls resulting from bob.turnLeft()

b. Method calls resulting from lisa.turnLeft()

c. Method calls resulting from lisa.turnAround1()

d. Method calls resulting from lisa.turnAround2()

To keep the diagrams uncluttered, answer each part of the question on a sepa
rate copy of the diagram and omit arrows the second time a method is called

from the same place (for example, do not draw arrows for the second call to

turnLeft in turnAround1).

(figure 2-19)

Illustrating method calls

and method resolution

… class Main
… main(…)
{…
 RobotSE bob = …
 FastTurnBot lisa =
 …
 bob.turnLeft();
 lisa.turnLeft();
 lisa.turnAround1();
 lisa.turnAround2();
}

… FastTurnBot …
 extends RobotSE

{
 … void turnLeft()
 { this.setSpeed(20);
 super.turnLeft();
 this.setSpeed(2);
 }
}

… class RobotSE
 extends RobotSE

{
 … void turnAround1
 { this.turnLeft();
 this.turnLeft();

 }

 … void turnAround2
 { super.turnLeft();
 super.turnLeft();

 }
}

… class Robot …
{
 … void move()
 { …
 }

 … void turnLeft()
 { …
 }

 … void setSpeed()
 { …
 }

 … int getSpeed()
 {
 }
}

2.5	 The change from the initial situation to the final situation shown in Figure 2-20 is
accomplished by sending the robot exactly one move message. Ordinarily such a
stunt would cause the robot to crash. There are at least three fundamentally differ
ent approaches to solving this seemingly impossible problem. Explain two of them.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 109

109

(figure 2-20) 0 1 2 0 1 2

0 0

A seemingly

impossible situation	 1 1

2 2

Initial situation Final situation

Programming Exercises

2.6	 Write a new class, MileMover, that includes two methods: moveMile moves a
robot forward 10 intersections, and move1000Miles which moves the robot for
ward 1,000 miles. Your solution should be much shorter than 1,000 lines of code.

2.7	 Instances of the BackupBot class can respond to the backup message by mov
ing to the intersection immediately behind it, facing their original direction.

a. Create the BackupBot class by extending Robot.

b. Arrange for the backup method to take the same amount of time as the
move method.

c. Create the BackupBot class by extending RobotSE and taking advantage of
the methods it contains.

2.8	 Extend RobotSE to create a LeftDancer class. A LeftDancer, when sent a
move message, ends up at the same place and facing the same direction as a
normal robot. But it gets there more “gracefully.” A LeftDancer first moves
to the left, then forward, and then to the right.

2.9	 Extend RobotSE to create a TrailBot class. A TrailBot leaves behind a trail
of “crumbs” (Thing objects) whenever it moves. Arrange for instances of
TrailBot to always start with 100 Things in its backpack. (Hint: Check out
the Robot constructors in the documentation.)

a. Add a trailMove method. When called, it leaves a “crumb” on the current
intersection and moves forward to the next intersection. move still behaves
as usual.

b. Arrange for a TrailBot to always leave a “crumb” behind when it moves.

2.10 Extend Robot to make a new class, PokeyBot. PokeyBots ordinarily make one
move or turn every two seconds (that is, 0.5 moves per second). However, the
statement pokey.setSpeed(3) makes a robot named pokey go faster until a
subsequent setSpeed command is given. Write a program that instantiates a
PokeyBot and verifies that it moves more slowly than a standard Robot. Also
verify that setSpeed works as described. Hint: You do not need to override
move or turnLeft.

2.10
P

RO
BLEM

 S
ET

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 110

110
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

2.11 Implement turnLeft as discussed in Section 2.6.1 but using
this.turnLeft() instead of super.turnLeft(). Run a test program and
describe what happens, using a diagram similar to Figure 2-5 to illustrate what
happened. (Hint: You may not be able to read the first line of the resulting
error message. It probably says something about “Stack Overflow,” which
means the computer ran out of memory. A little bit of memory is used each
time a method is called until that method is finished executing.)

Programming Projects

2.12	 karel the robot has taken up diving. Write a program that sets up the follow
ing situation with karel at the top of the diving board. The single message
dive should cause it to do a triple front flip (turn completely around three
times) at the location shown while it dives into the pool (see Figure 2-21).
karel is an instance of the Diver class.

karel starts here.

karel performs a
triple flip here.

karel ends here.

2.13 You would like to send a greeting to astronauts in the International Space
Station orbiting Earth. Create a WriterBot class that can be used to “write”
the message “Hello” by lighting bonfires (Things). The final situation is
shown in Figure 2-22. The WriterBot class will contain a method to write
each letter.

a. Write a main method that uses a single WriterBot to write the entire mes
sage. Instantiate the robot with at least 48 Things in its backpack. (Check the
documentation for the Robot or RobotSE class for an alternate constructor.)

b. Write a main method that uses five WriterBots, one for each letter.
Instantiate each robot with enough Things to write its assigned letter.

(figure 2-21)

Diving into a pool

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 111

111
2.10

P
RO

BLEM
 S

ET

(figure 2-22)

Friendly message

(figure 2-23)

Soccer field with

practicing robots

2.14 Write a program where robots practice playing soccer, as shown in Figure 2-23.
Your program will have four SoccerBot robots. Each has methods to
advance, advanceLeft, and advanceRight. Each of these methods begins
with picking up the “ball” (a Thing), moving it in the pattern shown, and then
dropping it.

a. Write a main method that sets up the city as shown and directs the four
players to move the ball along the path shown by the arrows.

b. Write a subclass of City, SoccerField, that arranges the “goals” as
shown. Add the ball and soccer players in the main method, as usual. (Hint:
The Wall constructor requires a City. Which city? “this” city.)

advance

advanceLeft advanceRight

advanceRight

2.15 When a Lamp is on all that is visible is a soft yellow circle representing the
“light.” The “lamp” itself doesn’t show unless it is off. Read the documenta
tion for CompositeIcon. Then modify Listing 2-6 to make Lamp objects show
both the “lamp” and the “light” when they are on.

2.16 In Section 2.3.2, we extended the Thing class, and in Section 2.2.4, we saw
that this can be used to invoke methods inherited from the superclass.

a. Use these techniques to extend JFrame to obtain CloseableJFrame,
which sets its default close operation, automatically opens to a default
position and size of your choice, and is visible. Write a test program to
ensure your new class works.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 112

112
CH

AP
TE

R
2

| E
XT

EN
D
IN

G
 C

LA
SS

ES
 W

IT
H
 S

ER
VI

CE
S

b. Modify your solution so the client creating the frame can specify its position
and size via parameters.

2.17 Extend the functionality of JFrame so that a simple program containing the
following code:

publicƒstaticƒvoidƒmain(String[]ƒargs)
{ƒColorChooserFrameƒccfƒ=ƒnewƒColorChooserFrame();
}

will cause a frame containing a JColorChooser to appear on the screen,
appropriately sized. See Programming Project 1.18 for background.

2.18 Sketch a scene on graph paper that uses a combination of several rectangles,
ovals, lines, and perhaps strings (text). Write a program that displays your scene.

2.19 Extend the Icon class as shown in Figure 2-24. The grid is to aid you in paint
ing; it is not intended to be displayed by your icons.

a. Choose one of the icons shown in Figure 2-24 to implement. Instantiate a
Thing and use its setIcon method to display your icon.

b. Introduce a Car class to the robot world. A Car is really a Robot, but uses
a CarIcon, as shown in Figure 2-24.

c. Write a TreeIcon class that appears approximately as shown in Figure 2-24,
using at least three shades of green. Extend Thing to make a Tree class and
construct a city with several trees in it. Robots should not be able to pick up
and move trees.

d. Create a Lake class that extends Thing and is displayed with a LakeIcon
as shown in Figure 2-24. Robots should not be able to pick up and move
lakes, and if they try to enter a lake, they break. Research the Thing class to
discover how to implement these features.

e. Write an R10Icon for an advanced type of Robot, as shown in Figure 2-24.
Research the setFont method in the Graphics class and the Font class to
label the robot. Construct a city with at least one robot that uses your icon.

f. Extend Wall to create a Building class. Use a BuildingIcon, as shown
in Figure 2-24, to display your buildings. Robots should not be able to pass
through or over your buildings.

g. Write a DetourIcon. Use it in DetourSign, an extension of Thing. You
will need to research the Polygon class and then use the fillPolygon
method in the Graphics class. Research the Thing class to learn how to
make your sign block robots from entering or exiting the intersection on the
NORTH side. You may assume that the sign will always be placed on the
north side of the intersection.

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 113

113
2.10

P
RO

BLEM
 S

ET

(figure 2-24)

Patterns for icons

CarIcon TreeIcon LakeIcon

R10Icon BuildingIcon DetourIcon

2 Chapter C5743 40143.ps 11/30/06 1:17 PM Page 114

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 115

Chapter 3 Developing Methods

Chapter Objectives

After studying this chapter, you should be able to:

➤	 Use stepwise refinement to implement long or complex methods

➤	 Explain the advantages to using stepwise refinement

➤	 Use pseudocode to help design and reason about methods before code is written

➤	 Use multiple objects to solve a problem

➤	 Use inheritance to reduce duplication of code and increase flexibility

➤	 Explain why some methods should not be available to all clients and how to
appropriately hide them

In Chapter 2, we wrote new services such as turnRight and turnAround. These ser
vices were very simple, consisting of only a few steps to accomplish the task.

In this chapter, we will examine techniques for implementing much more complex ser
vices that require many steps to accomplish the task.

115

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 116

116

3.1 Solving Problems

CH
AP

TE
R

3
| D

EV
EL

O
PI

N
G

M
ET

H
O
D
S

Writing programs involves solving problems. One model1 describes problem solving as
a process that has four activities: defining the problem, planning the solution, imple
menting the plan, and analyzing the solution.

When programming, the solution is called an algorithm. An algorithm is a finite set of
step-by-step instructions that specifies a process of moving from the initial situation to the
final situation. That is, an algorithm is the “solution” spelled out in a step-by-step manner.

We find many algorithms in our lives. A recipe for lasagna is an algorithm, as are the
directions for assembling a child’s wagon. Even bottles of shampoo have algorithms
printed on them:

wet hair with warm water

gently work in the first application of shampoo

rinse thoroughly and repeat

While people may have no trouble interpreting this algorithm, it is not precise enough
for computers. How much warm water? How much shampoo? What does it mean to
“gently work in?” How many times should it be repeated? Once? A hundred times?
Indefinitely? Is it necessary to wet the hair (again) for the repeated applications?

Not all algorithms are equally effective. Good algorithms share five qualities. Good
algorithms are:

➤ correct

➤ easy to read and understand

➤ easy to debug

➤ easy to modify to solve variations of the original task

➤ efficient2

This chapter is about designing algorithms, particularly algorithms that can be
encoded as computer programs and executed by a computer. This concept is not new—
from the very beginning of this text, we have been writing algorithms and turning them
into programs. Now we will focus more deliberately on the process.

1 G. Polya, How to Solve It, Princeton University Press, 1945, 1973.

2 Meaning that the algorithm does not require performing more steps than necessary. Efficiency

should never compromise the first guideline, and only rarely should it compromise the other three.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 117

117

3.2 Stepwise Refinement

3.2
S

TEPW
ISE R

EFIN
EM

EN
T

Stepwise refinement is a method of constructing algorithms. An algorithm to solve a com
plex problem may be written by decomposing the problem into smaller, simpler sub
problems, each with its own algorithm. Each sub-problem solves a logical step in the
larger problem. The problem as a whole is solved by solving all of the subproblems.

When algorithms are expressed as computer programs, algorithms are encoded in meth
ods. Stepwise refinement encourages us to write each method in terms of other methods
that implement one logical step in solving the problem. In this way, we can write pro
grams that are more likely to be correct, simple to read, and easy to understand.

It may appear natural to define all the new classes and services needed for a task first,
and then write the program using these services. But how can we know what robots
and which new services are needed before we write the program? Stepwise refinement
tells us to first write the program using any robots and service names we desire, and
then define these robots and their services. That is, we write the main method first, and
then we write the definitions of the new services we used. Finally, we assemble the class
containing main and any new classes we wrote into a complete program.

We will explore this process more concretely by writing a program for the task shown
in Figure 3-1. The initial situation represents a harvesting task that requires one or
more robots to pick up a rectangular field of Things. The robot(s) may start and finish
wherever is most convenient.

(figure 3-1)

Harvesting task
0

0

1

1 2 3 4 5 6
0

0

1

1 2 3 4 5 6

2 2

3 3

4 4

5 5

6 6

7 7

Initial situation Final situation

The first step is to develop an overall plan to guide us in writing a robot program to
perform the given task. Planning is often best done as a group activity. Sharing ideas

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 118

118
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

in a group allows members to present different plans that can be thoughtfully exam
ined for strengths and weaknesses. Even if we are working alone, we can think in a
question-and-answer pattern, such as the following:

Question	 How many robots do we need to perform this task?

Answer	 We could do it with one robot that walks back and forth over all of the
rows to be harvested, or we could do it with a team of robots, where each
robot picks some of the rows.

Question	 How many shall we use?

Answer Let’s try it with just one robot, named mark, for now. That seems simpler LOOKING AHEAD

than using several robots. In Section 3.5, we’ll
find that these are not
well-founded Question	 Where should mark start?
assumptions.

Answer	 Probably at one of the corners. Then it doesn’t need to go back to harvest
rows behind it. Let’s pick intersection (1, 0), facing the first row it will pick.

With these decisions made about how many robots to use and where to start, we can be
more definite about the initial situation. The revised version appears in Figure 3-2.

0
0 1 2 3 4 5 6

0
0 1 2 3 4 5 6 (figure 3-2)

Revised situations

1 1

2 2

3 3

4 4

5 5

6 6

7 7

Revised initial situation Revised final situation

3.2.1 Identifying the Required Services

Now that the initial situation is complete, we turn our attention to identifying the ser
vices mark must offer.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 119

119

Question What do we want mark to do?

Answer Harvest all the things in the field.

Question So it sounds like we need a new service, perhaps called harvestField.
Does mark need to have any other services?

Answer Well, the initial situation doesn’t actually put mark in the field. We could
either adjust the initial situation so it starts at (1, 1) or simply call move
before it harvests the field. Other than that, harvestField seems to be
the only service required.

Once the services required have been identified, we can make use of them in writing the
main method. At this point, we won’t worry about the fact that they don’t exist yet.

We briefly move from planning to implementing our plan. We will call the new class of
robots Harvester and implement the main method in a class named HarvestTask.

Defining a city with 30 Things would clutter Listing 3-1 significantly. To avoid this,
the City class has a constructor, used in line 10, that can read a file to determine where
Things are positioned. The requirements for such a file are described in the online doc
umentation for the City class.

3.2
S

TEPW
ISE R

EFIN
EM

EN
T

ch03/harvest/

Listing 3-1: The main method for harvesting a field of things

1 importƒbecker.robots.*;
2
3 /** A program to harvest a field of things 5 columns wide and 6 rows high.
4 *
5 * @author Byron Weber Becker */
6 publicƒclassƒHarvestTask
7 {
8 ƒƒpublicƒstaticƒvoidƒmainƒ(String[]ƒargs)
9 ƒƒ{

10 ƒƒƒƒCityƒstLouisƒ=ƒnewƒCity("Field.txt");
11 ƒƒƒƒHarvesterƒmarkƒ=ƒnewƒHarvester(
12 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstLouis,ƒ1,ƒ0,ƒDirection.EAST);
13
14 ƒƒƒƒmark.moveƒ();
15 ƒƒƒƒmark.harvestField();
16 ƒƒƒƒmark.moveƒ();
17 ƒƒ}
18 }

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 120

120
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

3.2.2 Refining harvestField

We now know that the Harvester class must offer a service named harvestField
that harvests a field of things. As we develop this service, we will follow the same pat
tern as before—asking ourselves questions about what it must do and what services we
want to use to implement the harvestField service.

Using other services to implement harvestField builds on the observation we made
in Section 2.2.4 when we implemented turnRight: methods may use other methods
within the same class. Recall the declaration of turnRight:

publicƒvoidƒturnRight()
{ƒthis.turnAround();
ƒƒthis.turnLeft();
}

When we implemented turnRight, we noticed that turnAround, a method we had
already written, would be useful. However, to implement harvestField, we are turn
ing that process around. We need to write a method, harvestField, and begin by
asking which methods we need to help make writing harvestField easier. These
methods are called helper methods. We will write harvestField as if those methods
already existed. Helper methods are used frequently enough to qualify as a pattern.

Eventually, of course, we will have to write each of the helper methods. It may be that
we will have to follow the same technique for them as well: defining the helper meth
ods in terms of other services that we wish we had. Each time we do so, the helper
methods should be simpler than the method we are writing. Eventually, they will be
simple enough to be written without helper methods.

We must be realistic when imagining which helper methods would be useful to imple
ment harvestField. Step 2 in Figure 3-3—“then a miracle occurs”—would not be
an appropriate helper method.

KEY IDEA

Write a long or
complex method
using helper
methods.

Helper Method

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 121

121

(figure 3-3)

A rather vague step

3.2
S

TEPW
ISE R

EFIN
EM

EN
T

First Refinement Attempt

If you are working in a group to develop a program, a conversation between a Java
expert and a novice to define the helper methods might proceed as follows. Even if you
are working alone, it is still helpful to hold a “conversation” like this with yourself.

Expert	 So, what does a Harvester robot need to do to pick a field of things?

Novice	 Harvest all the things in each of the rows of the field.

Expert	 How could a Harvester robot harvest just one row?

Novice	 It could move west to east across the northern-most unharvested row of
things, picking each thing as it moves.

Expert	 How could it harvest the entire field?

KEY IDEA Novice At the end of each row, the robot could turn around and move back to the
Use a helper method western side of the field, move south one block, face east, and repeat the

when doing the actions listed earlier. It could do so for each row of things in the field. Since
same thing the field has six rows, the robot needs to repeat the actions six times.

several times.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 122

122
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

Expert	 If you were to write this down in an abbreviated form, what would it look like?

Novice	 pick all the things in one row
return to the start of the row
move south one block

pick all the things in one row

return to the start of the row

move south one block

pick all the things in one row

return to the start of the row

move south one block

Performing the actions in these nine lines would harvest the first three rows of
the field. They need to be repeated to harvest the last three rows.

Analysis of the First Refinement Attempt

Before we continue with this plan, we should analyze it, looking at its strengths and
weaknesses. Are we asking for the right helper methods? Are there other ways of
solving the problem that might work better? Our analysis might proceed as follows:

Expert	 What are the strengths of this plan?

Novice	 The plan simplifies the harvestField method by defining three simpler meth
ods, using each one several times.

Expert	 What are the weaknesses of the plan?

Novice	 The same three lines are repeated over and over. Maybe we should have
harvestField defined as

harvest one row

harvest one row

harvest one row

and so on. The method to harvest one row could be defined using the helper
methods mentioned earlier.

Expert	 That’s easy enough to do. Any other weaknesses in this plan?

Novice	 The Harvester robot makes some “empty trips.”

Expert	 What do you mean by “empty trips?”

Novice	 The robot returns to the starting point on the row that was just harvested.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 123

123

Expert	 Why is this bad?

Novice	 It seems like a better solution to have the robot doing productive work (as
opposed to just moving) in both directions. I know that if I were picking that
field personally, I’d look for every efficiency I could find!

Instead of harvesting only one row and then turning around and returning to
the start, the Harvester robot could pick all the things in one row, move
south one row, and come back to the west, harvesting a second row. It could
then move one row south to begin the entire process over for the next two
rows. If mark repeats these steps one more time, the entire field of things will
be harvested, as shown in Figure 3-4.

(figure 3-4)

Harvesting the field in two

directions

7

Expert How would you write that in an abbreviated form?

Novice Well, harvestField would be defined as follows:

harvest two rows
position for next harvest
harvest two rows
position for next harvest
harvest two rows

Again we analyze this new plan for its strengths and weaknesses.

Expert	 What advantage does this offer over the first plan?

Novice	 Now the robot makes only six trips across the field instead of 12. There are
no empty trips.

3.2
S

TEPW
ISE R

EFIN
EM

EN
T

0
0 1 2 3 4 5 6

1

2

3

4

5

6

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 124

124
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

Expert	 What are the weaknesses of this new plan?

Novice	 The robot harvests two rows at a time. If the field had an odd number of
rows, we would have to think of something else.

When we are planning solutions, we should be very critical and not just accept the first
plan as the best. We now have two different plans, and you can probably think of sev
eral more. Let’s avoid the empty trips and implement the second plan.

Implementing harvestField

Recall the brief form of the idea:

harvest two rows

position for next harvest

harvest two rows

position for next harvest

harvest two rows

Let’s turn each of these statements into invocations of methods named harvestTwoRows
and positionForNextHarvest. We can then begin implementation of the Harvester
class and harvestField in particular, as shown in Listing 3-2.

The listing includes the complete implementation of harvestField as well as stubs
for harvestTwoRows and positionForNextHarvest. A method that has just
enough code to compile, but not to actually do its job is called a stub. Stubs are useful
for at least three reasons:

➤	 Stubs serve as placeholders for work that must still be completed. The associ
ated documentation records our ideas for what the methods should do, help
ing to jog our memory when we come back to actually implement the
methods. In large programs with many methods, a span of days or even
months might elapse before you have a chance to complete the method. If you
are part of a team, perhaps someone else can implement the method based on
the stub and its documentation.

➤	 A stub allows the program to be compiled even though it is not finished. When
we compile the program, the compiler may catch errors that are easier to find
and fix now rather than later. Waiting to compile until the entire program is
written may result in so many interrelated errors that debugging becomes very
difficult.

➤	 A compiled program can be run, which may allow some early testing to be
performed that validates our ideas (or uncovers bugs that are easier to fix now
rather than later). We might run the program to verify that the initial situation
is correctly set up, for instance.

LOOKING AHEAD

This brief form
is called pseudocode.
We’ll learn more
about it in
Section 3.4.

Helper Method

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 125

125

ch03/harvest/

Helper Method

3.2
S

TEPW
ISE R

EFIN
EM

EN
T

Listing 3-2: An incomplete implementation of the Harvester class

1 importƒbecker.robots.*;
2
3 /** A class of robot that can harvest a field of things. The field must be 5 things wide
4 * and 6 rows high.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒHarvesterƒextendsƒRobotSE
8 {
9 ƒƒ/** Construct a new Harvester robot.

10 ƒƒ* @param aCity The city where the robot will be created.
11 ƒƒ* @param str The robot's initial street.
12 ƒƒ* @param ave The robot's initial avenue.
13 ƒƒ* @param dir The initial direction, one of Direction.{NORTH, SOUTH, EAST, WEST}. */
14 ƒƒpublicƒHarvester(CityƒaCity,ƒ
15 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒstr,ƒintƒave,ƒDirectionƒdir)
16 ƒƒ{ƒsuper(aCity,ƒstr,ƒave,ƒdir);
17 ƒƒ}
18
19 ƒƒ/** Harvest a field of things. The robot is on the northwest corner of the field. */
20 ƒƒpublicƒvoidƒharvestField()
21 ƒƒ{ƒthis.harvestTwoRows();
22 ƒƒƒƒthis.positionForNextHarvest();
23 ƒƒƒƒthis.harvestTwoRows();
24 ƒƒƒƒthis.positionForNextHarvest();
25 ƒƒƒƒthis.harvestTwoRows();
26 ƒƒ}
27
28 ƒƒ/** Harvest two rows of the field, returning to the same avenue but one street
29 ƒƒ* farther south. The robot must be facing east. */
30 ƒƒpublicƒvoidƒharvestTwoRows()
31 ƒƒ{ƒ// Incomplete.
32 ƒƒ}
33
34 ƒƒ/** Go one row south and face east. The robot must be facing west. */
35 ƒƒpublicƒvoidƒpositionForNextHarvest()
36 ƒƒ{ƒ// Incomplete.
37 ƒƒ}
38 }

We must now begin to think about planning the instructions harvestTwoRows and
positionForNextHarvest.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 126

126
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

3.2.3	 Refining harvestTwoRows

Our plan contains two subtasks: one harvests two rows and the other positions the
robot to harvest two more rows. The planning of these two subtasks must be just as
thorough as the planning was for the overall task. Let’s begin with harvestTwoRows.

Expert	 What does harvestTwoRows do?

Novice	 harvestTwoRows must harvest two rows of things. One is harvested as the
Harvester robot travels east and the second is harvested as it returns to the west.

Expert	 What does the robot have to do?

Novice	 It must pick things and move as it travels east. At the end of the row of things,
it must move south one block, face west, and return to the western edge of the
field, picking things as it travels west. In an abbreviated form, it must com
plete the following tasks:

harvest one row while moving east

go south to the next row

harvest one row while moving west

We analyze this plan as before, looking for strengths and weaknesses.

Expert	 What are the strengths of this plan?

Novice	 It seems to solve the problem.

Expert	 What are the weaknesses of this plan?

Novice	 Possibly one—we have two different instructions that harvest a single row
of things.

Expert	 Do we really need two different harvesting instructions?

Novice	 We need one for going east and one for going west.

Expert	 Do we really need a separate method for each direction?

Novice	 Harvesting is just a series of pickThings and moves. The direction the robot
is moving does not matter. If we plan goToNextRow carefully, we can use one
instruction to harvest a row of things when going east and the same instruc
tion for going west.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 127

127

By reusing a method, we make the program smaller and potentially easier to under
stand. The new plan is as follows:

harvest one row
go to the next row
harvest one row

Translating this idea to Java, we arrive at the following method and stubs, which
should be added to the code in Listing 3-2.

28
29
30
31
32
33
34
35

/** Harvest two rows of the field, returning to the same avenue but one street
* farther south. The robot must be facing east. */
publicƒvoidƒharvestTwoRows()
{ƒthis.harvestOneRow();
ƒƒthis.goToNextRow();
ƒƒthis.harvestOneRow();
}

Helper Method

36
37
38
39
40

/** Harvest one row of five things. */
publicƒvoidƒharvestOneRow()
{ƒ// incomplete
}

41
42
43
44

/** Go one row south and face west. The robot must be facing east. */
publicƒvoidƒgoToNextRow()
{ƒ// incomplete
}

This doesn’t look good! Every time we implement a method, we end up with even
more methods to implement. We now have three outstanding methods,
positionForNextHarvest, harvestOneRow, and goToNextRow, all needing to be
finished. Rest assured, however, that these methods are getting more and more specific.
Eventually, they will be implemented only in terms of already existing methods such as
move, turnLeft, and pickThing. Then the number of methods left to implement will
begin to decrease until we have completed the entire program.

KEY IDEA

Implement the
methods in

execution order.

We have a choice of which of the three methods to refine next. One good strategy is to
choose the first uncompleted method we enter while tracing the program. This strategy
allows us to run the program to verify that the work done thus far is correct. Applying
this strategy indicates that we should work on harvestOneRow next.

3.2.4 Refining harvestOneRow

We now focus our efforts on harvestOneRow.

Expert What does harvestOneRow do?

3.2
S

TEPW
ISE R

EFIN
EM

EN
T

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 128

128
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

Novice	 Starting on the first thing and facing the correct direction, the robot must har
vest each of the intersections that it encounters, stopping on the location of
the last thing in the row.

Expert	 What does the Harvester robot have to do?

Novice	 It must harvest the intersection it’s on and then move to the next intersection.
It needs to do that five times, once for each thing in the row.

harvest an intersection

move

harvest an intersection

move

harvest an intersection

move

harvest an intersection

move

harvest an intersection

move

Expert	 Are you sure? It seems to me that it moves right out of the field.

Novice	 Right! The last time it doesn’t need to move to the next intersection. It can just
go to the next row of the field.

We can implement harvestOneRow and harvestIntersection as follows.

/** Harvest one row of five things. */
publicƒvoidƒharvestOneRow()

{ƒthis.harvestIntersection();

ƒƒthis.move();

ƒƒthis.harvestIntersection();

ƒƒthis.move();

ƒƒthis.harvestIntersection();

ƒƒthis.move();

ƒƒthis.harvestIntersection();

ƒƒthis.move();

ƒƒthis.harvestIntersection();

}

/** Harvest one intersection. */
publicƒvoidƒharvestIntersection()

{ƒthis.pickThing();

Helper Method}

It may seem silly to define a method such as harvestIntersection that contains
only one method. There are two reasons why it is a good idea:

➤	 The language of the problem has been about “harvesting,” not “picking.” This

method carries that language throughout the program, making the program easier

to understand.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 129

129

➤	 What it means to harvest an intersection may change. By isolating the concept
of harvesting an intersection in this method, we provide a natural place to
make future changes. For example, suppose a future field requires harvesting
two things on each intersection. With the helper method, we need to add just
one pickThing to the harvestIntersection method. Without the helper
method, we would need to change the program at five places in the
harvestOneRow method.

3.2.5	 Refining goToNextRow

Let’s now plan goToNextRow.

Expert	 What does goToNextRow do?

Novice	 It moves the Harvester robot south one block to the next row and faces it in
the opposite direction. I think we can implement this one without creating any
new helper methods, like this:

turn right

move

turn right

3.2.6	 Refining positionForNextHarvest

At last, we have only one stub to complete, positionForNextHarvest.

Expert	 What does positionForNextHarvest do?

Novice	 It moves the Harvester robot south one block to the next row.

Expert	 Didn’t we do that already? Why can’t we use the instruction goToNextRow?

Novice	 The robot isn’t in the correct situation. When executing goToNextRow, the
robot is on the eastern edge of the field facing east. When it executes
positionForNextHarvest, it has just finished harvesting two rows and is
on the western edge of the field facing west.

Take a moment to simulate the goToNextRow instruction on paper. Start with a
Harvester robot facing west and see where the robot is when you finish simulating the
instruction.

Expert	 What does the robot have to do?

Novice	 It must turn left, not right, to face south, move one block, and turn left again
to face east.

3.2
S

TEPW
ISE R

EFIN
EM

EN
T

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 130

130
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

The implementation of this new method follows:

/** Position the robot for the next harvest by moving one street south and facing west. */
publicƒvoidƒpositionForNextHarvest()

{ƒthis.turnLeft();

ƒƒthis.move();

ƒƒthis.turnLeft();

}

All of the method stubs have now been completed.

3.2.7 The Complete Program

Because we have spread this class out over several pages, the complete program is
printed in Listing 3-3 so that you will find it easier to read and study.

Listing 3-3: The complete Harvester class

1 importƒbecker.robots.*;
2
3 /** A class of robot that can harvest a field of things. The field must be 5 things wide
4 * and 6 rows high.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒHarvesterƒextendsƒRobotSE
8 {
9 ƒƒ/** Construct a new Harvester robot.

10 ƒƒ* @param aCity The city where the robot will be created.
11 ƒƒ* @param str The robot's initial street.
12 ƒƒ* @param ave The robot's initial avenue.
13 ƒƒ* @param dir The initial direction, one of Direction.{NORTH, SOUTH, EAST, WEST}. */
14 ƒƒpublicƒHarvester(CityƒaCity,ƒ
15 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒstr,ƒintƒave,ƒDirectionƒdir)
16 ƒƒ{ƒsuper(aCity,ƒstr,ƒave,ƒdir);
17 ƒƒ}
18
19 ƒƒ/** Harvest a field of things. The robot is on the northwest corner of the field. */
20 ƒƒpublicƒvoidƒharvestField()
21 ƒƒ{ƒthis.harvestTwoRows();
22 ƒƒƒƒthis.positionForNextHarvest();
23 ƒƒƒƒthis.harvestTwoRows();
24 ƒƒƒƒthis.positionForNextHarvest();
25 ƒƒƒƒthis.harvestTwoRows();
26 ƒƒ}

ch03/harvest/

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 131

131
3.2

S
TEPW

ISE R
EFIN

EM
EN

T

Listing 3-3: The complete Harvester class (continued)

27
28 ƒƒ/** Harvest two rows of the field, returning to the same avenue but one
29 ƒƒ* street farther south. The robot must be facing east. */
30 ƒƒpublicƒvoidƒharvestTwoRows()
31 ƒƒ{ƒthis.harvestOneRow();
32 ƒƒƒƒthis.goToNextRow();
33 ƒƒƒƒthis.harvestOneRow();
34 ƒƒ}
35
36 ƒƒ/** Harvest one row of five things. */
37 ƒƒpublicƒvoidƒharvestOneRow()
38 ƒƒ{ƒthis.harvestIntersekction();
39 ƒƒƒƒthis.move();
40 ƒƒƒƒthis.harvestIntersection();
41 ƒƒƒƒthis.move();
42 ƒƒƒƒthis.harvestIntersection();
43 ƒƒƒƒthis.move();
44 ƒƒƒƒthis.harvestIntersection();
45 ƒƒƒƒthis.move();
46 ƒƒƒƒthis.harvestIntersection();
47 ƒƒ}
48
49 ƒƒ/** Go one row south and face west. The robot must be facing east. */
50 ƒƒpublicƒvoidƒgoToNextRow()
51 ƒƒ{ƒthis.turnRight();
52 ƒƒƒƒthis.move();
53 ƒƒƒƒthis.turnRight();
54 ƒƒ}
55
56 ƒƒ/** Go one row south and face east. The robot must be facing west. */
57 ƒƒpublicƒvoidƒpositionForNextHarvest()
58 ƒƒ{ƒthis.turnLeft();
59 ƒƒƒƒthis.move();
60 ƒƒƒƒthis.turnLeft();
61 ƒƒ}
62
63 ƒƒ/** Harvest one intersection. */
64 ƒƒpublicƒvoidƒharvestIntersection()
65 ƒƒ{ƒthis.pickThing();
66 ƒƒ}
67 }

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 132

132
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

3.2.8 Summary of Stepwise Refinement

Stepwise refinement can be viewed as an approach to bridging the gap between the
method we need (harvestField) and the methods we already have (move,
pickThing, and so on). The methods we already have available are sometimes called
the primitives. For drawing a picture, the primitives include drawRect and drawLine.

Figure 3-5 shows the situation near the beginning of the design process. We know we
want a method to harvest a field and we know that robots can move, pick things up,
turn left, and so on. The question is, how do we bridge the gap between them?
Stepwise refinement helps fill in intermediate methods, as shown in Figure 3-6, in an
orderly manner to help solve the problem.

(figure 3-5)
harvestField()

Gap between the

method we need and

the primitives we have

?
available

pickThing() move() turnRight() turnLeft()

Design is best performed starting at the top of the diagram and working down. This
approach is often called top-down design. Stepwise refinement is simply another name
for top-down design.

(figure 3-6)

Bridging the gap between

the method we need and

the primitives we have

available

harvestField()

move() turnLeft()turnRight()pickThing()

harvestTwoRows() positionForNextHarvest

harvestOneRow()

harvestIntersection()

Bo
tt

om
-u

p

Top-dow
n goToNextRow()

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 133

133

Sometimes we may have a flash of intuition and realize that harvesting one row would
be a useful step in harvesting a field and that such a method could be easily constructed
with the move and pickThing methods. When such an insight occurs before being
derived in a top-down design, it’s called bottom-up design. Bottom-up design happens
within the context of top-down design.

It is also useful to make a distinction between top-down and bottom-up implementation.
A top-down design may be done only on paper using pseudocode or even a diagram such
as Figure 3-6. When actually writing the methods, we can start at the top and work
down (as we did in this section of the book) or we can start at the bottom and work up.
One advantage of the top-down approach is that it matches the design process. A signif
icant advantage of the bottom-up approach is that methods can be implemented and
tested before the entire program is complete. Testing methods as they are written almost
always improves the correctness of the overall program.

3.3 Advantages of Stepwise Refinement

3.3
A

D
VAN

TAG
ES O

F S
TEPW

ISE R
EFIN

EM
EN

T

Developing programs using stepwise refinement has a number of advantages. The pro
grams we create are more likely to be:

➤ Easy to understand

➤ Free of programming errors

➤ Easy to test and debug

➤ Easy to modify

All of these advantages follow from a few simple facts. First, as we noted in Section 1.1.1,
most people can only manage about seven pieces of information at once. By breaking each
problem into a small number of subproblems, the stepwise refinement technique helps us
avoid information overload.

Furthermore, stepwise refinement imposes a structure on the problem. Related parts
are kept together in methods; unrelated parts will be in different methods.

Finally, by identifying each of these related parts (methods) with well-chosen names,
we can think at a higher level of abstraction; we can think about what the part does
rather than how it does it.

We now investigate each of the four advantages of stepwise refinement.

3.3.1 Understandable Programs

Writing understandable programs is as important as writing correct ones; some say that
it is even more important, since most programs initially have a few errors, and under
standable programs are easier to debug. Successful programmers are distinguished from

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 134

134
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

ineffective ones by their ability to write clear and concise programs that someone else can
read and quickly understand. What makes a program easy to understand? We present
three criteria.

➤	 Each method, including the main method, is composed of a few easily under
stood statements, including method calls.

➤	 Each method has a single, well-defined purpose, which is succinctly described
by the method’s name.

➤	 Each method can be understood by examining the statements it contains and
understanding the purpose of the methods it calls. Understanding the method
should not depend on knowing how other methods work. It should only
depend upon the methods’ purposes.

Each of these criteria help limit the number of details a person must keep in mind at
one time.

If a method cannot correctly accomplish its purpose unless it begins in a certain situa
tion, that fact should be documented. For example, an instruction directing a robot to
always pick something up should indicate in a comment where that thing must appear:

publicƒclassƒCollectorƒextendsƒRobot
{
ƒƒ/** Collects one thing from the next intersection. Breaks the robot if nothing is present. */
ƒƒpublicƒvoidƒcollectOneThing()
ƒƒ{ƒthis.move();ƒ
ƒƒƒƒthis.pickThing();ƒ
ƒƒ}
}

3.3.2 Avoiding Errors

Many novices think that all of the planning, analyzing, tracing, and simulating of pro
grams shown in the Harvester example take too much time. They would rather start
typing their programs into a computer immediately, without planning first.

What really takes time is correcting mistakes. These mistakes fall into two broad
categories.

The first category is planning mistakes. They result in execution and intent errors and
happen when we write a program without an adequate plan. Planning mistakes can
waste a lot of programming time. They are usually difficult to fix because large seg
ments of the program may have to be modified or discarded. Careful planning and
thorough analysis of the plan can help avoid planning mistakes.

The second category is programming mistakes. They result in compile-time errors and
happen when we actually write the program. Programming mistakes can be spelling,
punctuation, or other similar errors. Compiling the program each time we complete a

KEY IDEA

A T-shirt slogan: Days
of programming can
save you hours of
planning.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 135

135

LOOKING AHEAD

In Section 7.1.1, we
will learn to write

small programs
designed to test
single methods.

method helps find such errors so that they can be fixed. If we write the entire program
before compiling it, we will undoubtedly have many errors to correct, some of which
may be multiple instances of the same error. By using stubs and compiling often, we
can both reduce the overall number of errors introduced at any one time and help pre
vent multiple occurrences of the same mistake.

Stepwise refinement is a tool that allows us to plan, analyze, and implement our plans
in a way that should lead to a program containing a minimum of errors.

3.3.3 Testing and Debugging

Removing programming errors is easier in a program that has been developed using
stepwise refinement. Removing errors has two components: identifying errors, and fix
ing the errors. Stepwise refinement helps in both steps.

First, each method can be independently tested to identify errors that may be present.
When writing a program, we should trace each method immediately after it is written
until we are convinced that it is correct. Then we can forget how the method works
and just remember what it does. Remembering should be easy if we name the method
accurately, which is easiest if the method does only one thing.

Errors that are found by examining a method independently are the easiest ones to fix
because the errors cannot have been caused by some other part of the program. When
testing an entire program at once, this assumption cannot be made. If methods have
not been tested independently, it is often the case that one has an error that does not
become obvious until other methods have executed—that is, the signs of an error can
first appear far from where the error actually occurs, making debugging difficult.

Second, stepwise refinement imposes a structure on our programs, and we can use
this structure to help us find bugs in a completed program. When debugging a pro
gram, we should first determine which of the methods is malfunctioning. Then we
can concentrate on debugging that method, while ignoring the other parts of the pro
gram, which are irrelevant to the bug. For example, suppose our robot makes a
wrong turn and tries to pick up a thing from the wrong place. Where is the error? If
we use helper methods to write our program, and each helper method performs one
specific task (such as positionForNextHarvest) or controls a set of related tasks
(such as harvestTwoRows), then we can usually determine the probable location of
the error easily and quickly.

3.3
A

D
VAN

TAG
ES O

F S
TEPW

ISE R
EFIN

EM
EN

T

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 136

136
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

3.3.4 Future Modifications

Programs are often modified because the task to perform has changed in some way or
there is an additional, related task to perform. Programs that have been developed using
stepwise refinement are easier to modify than those that are not for the following reasons:

➤	 The structure imposed on the program by stepwise refinement makes it easier
to find the appropriate places to make modifications.

➤	 Methods that have a single purpose and minimal, well-defined interactions
with the rest of the program can be modified with less chance of creating a bug
elsewhere in the program.

➤	 Single-purpose methods can be overridden in subclasses to do something
slightly different.

We can illustrate these points with an example modifying the Harvester class. Figure 3-7
shows two situations that differ somewhat from the original harvesting task. In the first
one, each row has six things to harvest instead of just five. In the second, there are eight
rows instead of six.

Obviously, this problem is very similar to the original harvesting problem. It would be
much simpler to modify the Harvester program than to write a completely new program.

How difficult would it be to modify the Harvester class to accomplish the new har
vesting tasks? We have two different situations to consider.

The first situation is one in which the original task has really changed, and it there
fore makes sense to change the Harvester class itself. In this case, harvesting
longer rows can be easily accommodated by adding the following statements to the
harvestOneRow method:

this.move();

this.harvestIntersection();

A similar change to the harvestField method would solve the problem of harvesting
additional rows.

LOOKING AHEAD

Repetition and
parameters
(Chapters 4 and 5)
will help our code
adapt to variations
of the same problem.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 137

137

(figure 3-7) 0 1 2 3 4 5 6
0

Two variations of the
0 1 2 3 4 5 6

harvesting task 0 1

1 2

32

43

54

65

6 7

7 8

Longer rows More rows

Our use of stepwise refinement in developing the original program aids this change
tremendously. Stepwise refinement led us to logical subproblems. By naming them
appropriately, it was easy to find where to change the program and how to change it.
Furthermore, because the interactions between the methods were few and well defined,
we could make the changes without creating a bug elsewhere in the program.

A second situation to consider is where we still need to solve the original problem—
that is, it is inappropriate to change the original Harvester class, because it is still
needed. We can then use inheritance to solve the new problem. By overriding
harvestOneRow, we can make modifications to harvest longer rows, and by overrid
ing harvestField, we can harvest more (or fewer) rows. A new robot class to harvest
longer rows is shown in Listing 3-4.

3.3
A

D
VAN

TAG
ES O

F S
TEPW

ISE R
EFIN

EM
EN

T

Listing 3-4: An extended version of Harvester that harvests longer rows

ch03/harvestLongRow/
1 importƒbecker.robots.*;
2
3 /** A kind of Harvester robot that harvests fields with 6 things per row rather than just 5.
4 *
5 * @author Byron Weber Becker */
6 publicƒclassƒLongRowHarvesterƒextendsƒHarvester
7 {ƒ/** Construct the harvester. */
8 ƒƒpublicƒLongRowHarvester(Cityƒacity,ƒ
9 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒstr,ƒintƒave,ƒDirectionƒdir)

10 ƒƒ{ƒsuper(acity,ƒstr,ƒave,ƒdir);
11 ƒƒ}

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 138

138
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

Listing 3-4: An extended version of Harvester that harvests longer rows (continued)

12
13 ƒƒ/** Override the harvestOneRow method to harvest the longer row. */
14 ƒƒpublicƒvoidƒharvestOneRow()
15 ƒƒ{ƒsuper.harvestOneRow();ƒƒƒƒƒƒƒƒƒ// harvest first 5 intersections
16 ƒƒƒƒthis.move();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// harvest one more
17 ƒƒƒƒthis.harvestIntersection();
18 ƒƒ}
19 }

3.4 Pseudocode

Sometimes it is useful to focus more on the algorithm than on the program implementing
it. When we focus on the program, we also need to worry about many distracting details,
such as placing semicolons appropriately, using consistent spelling, and even coming up
with the names of methods. Those details can consume significant mental energy—
energy that we would rather put into thinking about how to solve the problem.

Pseudocode is a technique that allows us to focus on the algorithms. Pseudocode is a
blending of the naturalness of our native language with the structure of a programming
language. It allows us to think about an algorithm much more carefully and accurately
than we would with only natural language, the language we use in everyday speech, but
without all the details of a full programming language such as Java. Think of it as your
own personal programming language.

We’ve been using pseudocode for a long time without saying much about it. When
planning our first program in Chapter 1, we presented the pseudocode for the algo
rithm before we wrote the program:

move forward until it reaches the thing,

pick up the thing

move one block farther

turn right

move a block

put the thing down

move one more block

Looking back for text set in this distinctive font, you’ll also see that we used
pseudocode in Chapter 2 when we developed the Lamp class and overrode turnLeft
to make a faster-turning robot. We’ve also used it extensively in this chapter.

KEY IDEA

Pseudocode is a
blend of natural and
programming
languages.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 139

139

There are several advantages to using pseudocode:

➤	 Pseudocode helps us think more abstractly. As we discussed briefly in
Section 1.1.1, abstractions allow us to “chunk” information together into
higher level pieces so that we don’t need to remember as much. In this case,
pseudocode enables us to chunk together many lower-level steps into a single
higher-level step, such as pick all the things in one row. Such higher-
level thinking, however, comes at a cost: less precision. This lack of precision
may allow us to accidentally slip in a “miracle” (see the cartoon in Figure 3-3),
but overall, the benefits of using pseudocode outweigh the costs.

➤	 Pseudocode allows us to simulate, or trace, our program very early in its
development. We can trace the program after only scratching out a few lines
on paper. If we find a bug, it is much easier to change and fix it than if we
had invested all the time and energy into obeying the many details of the
Java language.

➤	 If we are working with other people, even nontechnical users, pseudocode can
provide a common language. With it, we can describe the algorithm to others.
They might see a special case we missed or a more efficient approach, or even
help implement it in a programming language.

➤	 Algorithms expressed with pseudocode can be converted into any computer
programming language, not just Java.

Pseudocode’s usefulness increases as the complexity of the algorithm you are designing
increases. In the next chapter, we will introduce Java constructs that allow us to choose
whether to execute some statements. Other constructs allow us to repeat statements.
These constructs are very powerful and vital to writing interesting programs—but they
also add complexity, a complexity that pseudocode can help manage in the early stages
of programming.

3.5 Variations on the Theme

3.5
V

ARIATIO
N
S O

N
 TH

E T
H
EM

E

Consider again the field harvesting task discussed in Section 3.2. There are many vari
ations. Perhaps several robots are available to perform the task, or instead of harvest
ing things, the robot needs to plant things. This section explores these variations. In the
process, we will see that early in the development of the Harvester class we made a
key assumption that we should use a single robot. This assumption needlessly compli
cated the program; we should have explored more alternatives. We will also see how to
make the computer appear to do several things at once, such as six robots all harvest
ing a row of things simultaneously.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 140

140
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

3.5.1 Using Multiple Robots

One approach to solving the harvesting problem is to use several robots, which we
briefly considered early in the process. In this approach, each robot harvests only a
part of the field. For example, our main method could be modified to instantiate three
robots, each of which harvests two rows. The initial situation is shown in Figure 3-8
and in the program in Listing 3-5. mark will harvest the first two rows; lucy the mid
dle two rows; and greg the last two rows. Of course, the work does not need to be
divided evenly. If there were only two robots, one could harvest two rows, and the
other could harvest four rows.

0
0

1

2

1 2 3 4 5 6 (figure 3-8)

Harvesting a field with

three robots each

harvesting two rows

3

4

5

6

Listing 3-5: The main method for harvesting a field with three robots

ch03/
1 importƒbecker.robots.*;

harvestWithThree/
2

3 /** Harvest a field of things using three robots.

4 *

5 * @author Byron Weber Becker */

6 publicƒclassƒHarvestTaskƒextendsƒObject

7 {

8 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

9 ƒƒ{

10 ƒƒƒƒCityƒstLouisƒ=ƒnewƒCity(“Field.txt”);
11 ƒƒƒƒHarvesterƒmarkƒ=ƒnewƒHarvester(
12 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstLouis,ƒ1,ƒ0,ƒDirection.EAST);
13 ƒƒƒƒHarvesterƒlucyƒ=ƒnewƒHarvester(
14 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstLouis,ƒ3,ƒ0,ƒDirection.EAST);
15 ƒƒƒƒHarvesterƒgregƒ=ƒnewƒHarvester(
16 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstLouis,ƒ5,ƒ0,ƒDirection.EAST);

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 141

141
3.5

V
ARIATIO

N
S O

N
 TH

E T
H
EM

E

Listing 3-5: The main method for harvesting a field with three robots (continued)

17
18 ƒƒƒƒmark.move();
19 ƒƒƒƒmark.harvestTwoRows();
20 ƒƒƒƒmark.move();
21
22 ƒƒƒƒlucy.move();
23 ƒƒƒƒlucy.harvestTwoRows();
24 ƒƒƒƒlucy.move();
25
26 ƒƒƒƒgreg.move();
27 ƒƒƒƒgreg.harvestTwoRows();
28 ƒƒƒƒgreg.move();
29 ƒƒ}
30 }

ch03/harvestWithSix/

In fact, the original problem does not specify the number of robots to use, where they
start, or where they finish. Perhaps the simplest solution is to have six robots each har
vesting one row, and ending on the opposite side of the field. The initial and final situ
ations are shown in Figure 3-9. If we had chosen this solution, the Harvester class
would have consisted of only harvestOneRow and harvestIntersection—much
simpler than what we actually implemented.

(figure 3-9)

Harvesting with six robots
0

0 1 2 3 4 5 6

7

Initial situation

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

Final situation

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 142

142
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

3.5.2 Multiple Robots with Threads (advanced)

In the previous example, which uses six robots, one robot finishes its entire row before
the next one begins to harvest its row. The entire task takes about six times as long as
harvesting a single row, even though we have six robots.

If we were paying a group of people an hourly wage to perform this task, we would be
pretty upset with this strategy. We would want them working simultaneously so that
the entire job is done in about the same amount of time it takes one person to harvest
one row.

In this section, we’ll explore how to make the robots (appear to) do their work simul
taneously. This material is normally considered advanced, but robots provide a clear
introduction to these ideas, and it’s a fun way to stimulate your thinking about other
ways to do things. Check with your instructor to find out if he or she expects you to
know this material.

Example: ThreadedRowHarvester

When you have several robots working simultaneously, each robot must be self-contained.
The main method will start each robot, after which your robots will perform their tasks
independently. This approach implies that each robot must be instantiated from a subclass
of Robot, which “knows” what to do without further input from the program. We’ll call
this subclass ThreadedRowHarvester.

The instructions each robot should execute after it’s started are placed in a specially
designated method named run in the ThreadedRowHarvester. The run method is
free to call other methods to get the job done. In our case, we call the HarvestOneRow
and move methods, as shown in the following method. The run method should be
inserted in the ThreadedRowHarvester class. harvestOneRow is defined as in the
Harvester class.

/** What the robot does after its thread is started. */
publicƒvoidƒrun()
{ƒthis.move();
ƒƒthis.harvestOneRow();
ƒƒthis.move();
}

In the main method, we need to construct six ThreadedRowHarvester robots, one
for each row. However, instead of instructing each robot to harvest a row, we start
each robot’s thread. The run method defined earlier then instructs the robot what to

KEY IDEA

The run method
contains the
instructions
the thread will
execute.

Multiple Threads

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 143

143

ch03/
harvestWithSix

Threads/

do. A thread is started with two statements, one to create a Thread object and one to
call its start method. For a robot named karel, use the following statements:

ThreadedRowHarvesterƒkarelƒ=ƒnewƒThreadedRowHarvester(...);
...
ThreadƒkarelThreadƒ=ƒnewƒThread(karel);
karelThread.start();

The start method in the last statement invokes the run method, which contains the
instructions for the robot. For this strategy to work, the Thread class must be assured
that the ThreadedRowHarvester class actually has a run method. You do so by
adding implements Runnable to the line defining the class:

publicƒclassƒThreadedRowHarvesterƒextendsƒRobotƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒRunnable

This statement is your promise to the compiler that ThreadedRowHarvester will
include all of the methods listed in the Runnable interface. The run method is the only
method listed in the documentation for Runnable.

In summary, three things need to be completed to start a thread:

➤	 Include the instructions for the robot in a specially designated method called run.

➤	 Implement the interface Runnable to tell Java that your class is set up to run
in a thread.

➤	 Start the thread.

In this example, each thread performs identical tasks, which need not be the case. We
could, for instance, set up two threads with robots harvesting two rows each, and two
more threads with robots harvesting one row each.

About Threads

A thread starts a new flow of control. We learned in the Sequential Execution pattern
that each flow of control is a sequence of statements, one after the other, where each
statement finishes before the next one begins.

The main method begins execution in its own thread. As long as we don’t start any new
threads, execution proceeds one statement after another, as shown in Figure 3-10. This
figure supposes that we have two robots named mark and lucy. The main method first
calls mark.harvestOneRow(); and then lucy.harvestOneRow();. Between these
calls, many other statements are executed, one after the other.

3.5
V

ARIATIO
N
S O

N
 TH

E T
H
EM

E

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 144

144
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

(figure 3-10)

Flow of control with only

one thread

this.move();

this.pickThing();

mark.harvestOneRow();

this.move();

this.pickThing();

lucy.harvestOneRow();

this.move();

this.pickThing();

this.move();

(and so on...)

this.move();

this.pickThing();

this.move();

(and so on...)

When we have two or more flows of control, execution switches among them. The
statements within each flow of control still execute in order with respect to each other,
but statements from a different thread might execute between them. This concept is
illustrated in Figure 3-11.

The main method’s flow of control starts a thread for mark and then for lucy, rep
resented by the light arrow between the two left-most boxes.

But now that we have three threads of control (one for main, one for mark, and one for
lucy), the execution switches between all three threads, as represented by the heavier
arrows. Execution switches among the threads so quickly that it appears that all the
robots are moving simultaneously, though they are not (unless you are fortunate enough
to have a computer with at least as many processors as the program has threads). The
computer’s operating system ensures that each thread runs at least a little bit before stop
ping it and starting another thread. It also ensures that every thread is eventually run.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 145

145

(figure 3-11) main’s thread mark’s thread lucy’s thread

One possible flow of

control with three threads this.move();

this.pickThing();

this.move();

this.pickThing();

(and so on...)

lucyThread.start();

markThread.start();

thread terminates

thread terminates

this.move();

3.5
V

ARIATIO
N
S O

N
 TH

E T
H
EM

E

this.move();

this.pickThing();

this.move();

this.pickThing();

this.move();

(and so on...)

thread terminates

Notice that although execution switches among the threads, the statements within each
thread are still executed in the same order as before. The only difference is that state
ments from another thread might be executed between the statements.

Complexities

This simple example glosses over some complexities. For instance, each robot’s task in
these examples is independent of the tasks performed by the other robots. If a seventh
robot collected all the things harvested by the first six robots, it would need a way to
wait for those robots to finish their task before starting.

In the next chapter, we will explore ways that programs can make decisions. For exam
ple, a robot can check if a Thing is present on the intersection. Suppose mark is pro
grammed to check for a Thing on the current intersection. If there is one, mark picks
it up; otherwise, mark goes on to the next intersection. But the check is in one program
statement and the call to pickThing is in another. lucy, running in another thread,

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 146

146
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

might come along and snatch the thing between those two statements. So the thing
mark thought was there disappears, and mark breaks when it executes pickThing.

In spite of these and other complexities, threads are a useful tool in many applications.
For example, animations run in their own threads. Many word processors figure out
page breaks in a separate thread so that the user can continue typing at the same time.
Printing usually has a separate thread so that the user can do other work instead of
waiting for a slow printer. Graphical user interfaces usually run in one or more threads
so that they can continue to respond to the user even while the program is carrying out
a time-consuming command.

3.5.3 Factoring Out Differences

Suppose that instead of picking one thing from each intersection in the field, we want
to plant a thing at each intersection. Other alternatives include picking two things or
counting the total number of things in the field.

Each of these programs is similar to the harvesting task. In particular, the part that con
trols the movement of the robot over the field is the same for all of these problems; it is
only the task at each intersection that differs. The original task of harvesting things is
only one example of a much more general problem: traversing a rectangular area and
performing a task at each intersection.

If we started with this view of the problem, we might design the program differently.
Instead of solving the harvesting problem directly, we could design a
TraverseAreaRobot that traverses a rectangular area. At each intersection, it calls a
method named visitIntersection that is defined to do nothing, as follows:

publicƒvoidƒvisitIntersection()
{
}

By overriding this method in different subclasses, we can create robots that harvest
each intersection or plant each intersection, and so on. A class diagram illustrating this
approach is shown in Figure 3-12.

It may seem strange to include a method like visitIntersection that does nothing.
However, this method must be present in TraverseAreaRobot because other meth
ods in that class call it. On the other hand, we don’t know what to put in the method
because we don’t know if the task is harvesting or planting the field, and so we simply
leave it empty, ready to be overridden to perform the appropriate action.

LOOKING AHEAD

In Section 10.7, we’ll
learn how to use a
thread to perform
animation in a user
interface.

KEY IDEA

Think about variations
of the problem early in
the design.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 147

147

(figure 3-12) RobotSE

3.6
P

RIVATE AN
D
 P

RO
TECTED M

ETH
O
D
S

Class diagram for a group

of classes for working

with fields TraverseAreaRobot

TraverseAreaRobot(...)
void traverseArea()
void traverseTwoStreets()
void traverseOneStreet()
void goSouthWhenFacingEast()
void goSouthWhenFacingWest()
void visitIntersection()

Planter(...)
void visitIntersection()

Harvester

Harvester(...)
void visitIntersection()

Planter

Template Method

Of course, we could have solved the planting problem by extending the Harvester
class and overriding harvestIntersection. The approach shown in Figure 3-12 dif
fers from that in two ways. The first difference is that we planned for various tasks to
occur at each intersection and named the methods accordingly. It is confusing to over
ride a method named harvestIntersection so that it plants something instead of
harvesting.

The second difference is that the TraverseAreaRobot class deliberately does nothing
when it visits an intersection. Instead, visitIntersection serves as an intentional
point where subclasses can modify the behavior of traverseArea. In fact, the docu
mentation for visitIntersection and traverseArea should explicitly describe
the possibilities of overriding the method. In a sense, traverseArea is a template for
a common activity, which is modified by overriding visitIntersection.

3.6 Private and Protected Methods

The TraverseAreaRobot class makes available six new services: traverseArea,
traverseTwoStreets, traverseOneStreet, goSouthWhenFacingEast,
goSouthWhenFacingWest, and visitIntersection. Should these all be available
to all clients? For example, should a client such as main be able to invoke the
goSouthWhenFacingEast method? After all, it was developed as a helper method,
not as a service to be offered by a TraverseAreaRobot. Perhaps a client should not
be allowed to invoke it.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 148

148
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

Recall that a client is an object that uses the services of another object, called the server.
The client uses the server’s services by invoking its corresponding method with the
Command Invocation pattern described in Section 1.7.3:

«objectReference».«methodName»(«parameterList»);

The client is the class that contains code, such as karel.move(), joe.traverseArea(),
or even this.goSouthWhenFacingEast(). In these cases, karel, joe, and this are
the «objectReference»s.

Java has a set of access modifiers that control which clients are allowed to invoke a
method. The access modifier is placed as the first keyword before the method signature.

So far, we have used the access modifier public, as in public void traverseArea().
The keyword public allows any client to access the method. Like a public telephone, any
one who comes by can use it.

The access modifier private is at the other end of the scale. It says that no one except
clients who belong to the same class, may invoke the method, and that the method may not
be overridden. Staying private is what we want for many helper methods.
goSouthWhenFacingEast, for example, was designed to help traverseTwoStreets
do its work; it should not be called from outside of the class where it was declared. It
should therefore be declared as follows:

privateƒvoidƒgoSouthWhenFacingEast()

A middle ground is to use the protected access modifier. Protected methods may be
invoked from clients that are also subclasses. Like all methods, protected methods can
also be invoked from within the class defining them.

Using protected on the traverseOneStreet and visitIntersection methods
would be appropriate. It would allow us to override and use those methods in a subclass
to traverse longer streets. We also did this in Section 3.3.4 when we overrode
harvestOneRow to harvest a longer row. This approach is shown in Listing 3-6 and
Listing 3-7. Listing 3-8 shows code that does not compile because it attempts to use
protected and private methods.

KEY IDEA

Public methods may
be invoked by
any client.

KEY IDEA

Private methods can
only be invoked by
methods defined in
the same class.

KEY IDEA

Protected methods
can be used from
subclasses.

Listing 3-6: Using protected and private access modifiers in TraverseAreaRobot

1 publicƒclassƒTraverseAreaRobotƒextendsƒRobotSE
2 {ƒpublicƒTraverseAreaRobot(...)ƒƒƒƒƒƒƒƒƒƒ{ƒƒƒƒƒ...ƒƒƒƒƒ}
3
4 ƒƒpublicƒvoidƒtraverseArea()ƒƒƒƒƒƒƒƒƒƒƒƒƒ{ƒƒƒƒƒ...ƒƒƒƒƒ}
5
6 ƒƒprivateƒvoidƒtraverseTwoStreets()ƒƒƒƒƒƒ{ƒƒƒƒƒ...ƒƒƒƒƒ}
7

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 149

149
3.6

P
RIVATE AN

D
 P

RO
TECTED M

ETH
O
D
S

Listing 3-6: Using protected and private access modifiers in TraverseAreaRobot

(continued)

8 ƒƒprotectedƒvoidƒtraverseOneStreet()ƒƒƒƒƒ{ƒƒƒƒƒ...ƒƒƒƒƒ}
9

10 ƒƒprivateƒvoidƒgoSouthWhenFacingEast()ƒƒƒ{ƒƒƒƒƒ...ƒƒƒƒƒ}
11
12 ƒƒprivateƒvoidƒgoSouthWhenFacingWest()ƒƒƒ{ƒƒƒƒƒ...ƒƒƒƒƒ}
13
14 ƒƒprotectedƒvoidƒvisitIntersection()ƒƒƒƒƒ{ƒƒƒƒƒ...ƒƒƒƒƒ}
15 }

Listing 3-7: Using protected methods in a subclass of TraverseAreaRobot

1 publicƒclassƒTraverseWiderAreaRobotƒextendsƒTraverseAreaRobot
2 {ƒpublicƒTraverseWiderAreaRobot(...)ƒƒƒƒƒ{ƒƒƒƒƒ...ƒƒƒƒƒ}
3
4 ƒƒprotectedƒvoidƒtraverseOneStreet()
5 ƒƒ{ƒsuper.traverseOneStreet(); // traverse first 5 intersections
6 ƒƒƒƒthis.move(); // traverse one more
7 ƒƒƒƒthis.visitIntersection();
8 ƒƒ}
9 }

Listing 3-8: A program that fails to compile because it attempts to use private and
protected methods

1 publicƒclassƒDoesNotWorkƒ
2 {ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
3 ƒƒ{ƒ...
4 ƒƒƒƒTraverseAreaRobotƒkarelƒ=ƒnewƒTraverseAreaRobot(...);
5 ƒƒƒƒ...
6 ƒƒƒƒkarel.traverseArea(); // works—method is public
7 ƒƒƒƒkarel.traverseTwoStreets(); // compile error
8 ƒƒƒƒ // traverseTwoStreets is private
9 ƒƒƒƒkarel.visitIntersection(); // compile error

10 ƒƒƒƒƒ // visitIntersection is protected
11 ƒ}
12 }

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 150

150
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

It is also possible to omit the access modifier. The result is called “package” access. It
restricts the use of the method to classes in the same package. The becker.robots
package sometimes uses package access to make services available within all classes in
the package that should not be available to students. For example, Robot actually has
a turnRight method (contrary to what you read in Section 1.2.3), but it has package
access, so most clients can’t use it. RobotSE, however, is in the same package and thus
has access to it. It makes turnRight publicly available with the following method,
which overrides turnRight with a less restrictive access modifier.

publicƒvoidƒturnRight()
{ƒsuper.turnRight();
}

Students should not need to use package access.

As a rule of thumb, beginning programmers should declare methods as private
except in the following cases:

➤	 The method is specifically designed to be a public service. In this case, you
should declare it as public.

➤	 The method is used only by a subclass. In this case, you should declare it as
protected.

Access modifiers are often shown in class diagrams with the symbols +, #, and –. They
stand for public, protected, and private access, respectively. Figure 3-13 shows a
class diagram for the Harvester class that includes these symbols.

KEY IDEA

Declare methods to
be private unless
you have a specific
reason to do
otherwise.

(figure 3-13) RobotSE

TraverseAreaRobot

+TraverseAreaRobot(...)
+void traverseArea()
-void traverseTwoStreets()
#void traverseOneStreet()
-void goSouthWhenFacingEast()
-void goSouthWhenFacingWest()
#void visitIntersection()

+Planter(...)

Harvester

+Harvester(...)
visitIntersection() #void visitIntersection() #void

Planter

Showing the accessibility of

the helper methods in the

TraverseAreaRobot
class

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 151

151

3.7 GUI: Using Helper Methods

3.7
G
U
I: U

SIN
G
 H

ELPER M
ETH

O
D
S

KEY IDEA

Helper methods are a
powerful way to help

organize a class.

Stepwise refinement and helper methods are useful in graphics programs, too. For
example, consider the pair of stick figures in Figure 3-14. They are based on the stick
figure program written in Section 2.7. The paintComponent method from that pro
gram is reproduced in Listing 3-9, but lines 17 to 29 need to somehow be executed
twice to draw both figures. Simply executing the same code twice isn’t enough—that
would just draw one figure on top of the other. We also need to offset the second figure
so that they stand side-by-side.

(figure 3-14)

Pair of stick figures (0, 0)

(182, 0)

Listing 3-9: The code to draw a single stick figure at a predetermined location

12 // Paint a stick figure.
13 publicƒvoidƒpaintComponent(Graphicsƒg)
14 {ƒsuper.paintComponent(g);
15
16 ƒƒ// Paint the head.
17 ƒƒg.setColor(Color.YELLOW);
18 ƒƒg.fillOval(60,ƒ0,ƒ60,ƒ60);
19
20 ƒƒ// Paint the shirt.
21 ƒƒg.setColor(Color.RED);
22 ƒƒg.fillRect(0,ƒ60,ƒ180,ƒ30);
23 ƒƒg.fillRect(60,ƒ60,ƒ60,ƒ90);
24
25 ƒƒ// Paint the pants.
26 ƒƒg.setColor(Color.BLUE);
27 ƒƒg.fillRect(60,ƒ150,ƒ60,ƒ120);

ch02/stickFigure/

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 152

152
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

Listing 3-9: The code to draw a single stick figure at a predetermined location (continued)

28 ƒƒg.setColor(Color.BLACK);
29 ƒƒg.drawLine(90,ƒ180,ƒ90,ƒ270);
30 }

One approach is to duplicate lines 17 to 29 inside the paintComponent method and
adjust the arguments to offset the second figure. A much better approach is to place
lines 17 to 29 inside a helper method. The paintComponent method calls the method
twice to draw the two figures—except that we once again have the problem of offset
ting the second figure to stand beside the first one. We could make two helper methods,
one for each figure, but they would be almost identical.

The best solution is one helper method that uses parameters to specify the location of
the figure. We have already made extensive use of parameters. For example, consider
the method calls in lines 17 to 29 of Listing 3-9. They each pass arguments to the
method’s parameters indicating the location and size of the shape to draw. We will use
the same strategy except that instead of drawing a simple oval or rectangle, our
method will draw an entire stick figure. We will use parameters only for the location of
the stick figure. Using such a helper method, the paintComponent method is simpli
fied to the following:

1 /** Paint two stick figures
2 * @param g The graphics context to do the painting. */
3 publicƒvoidƒpaintComponent(Graphicsƒg)
4 {ƒsuper.paintComponent(g);
5 ƒƒthis.paintStickFig(g,ƒ0,ƒ0);
6 ƒƒthis.paintStickFig(g,ƒ182,ƒ0);ƒ
7 }

Line 5 causes a stick figure to be drawn with its upper-left corner placed at (0, 0)—that
is, the upper-left corner of the component. Figure 3-14 is annotated with this location.
Line 6 causes the second figure to be painted at (182, 0), or 182 pixels from the left and
0 pixels down from the top. This location is also noted in Figure 3-14. The value of
182 was picked because each stick figure is 180 pixels wide, plus two pixels for a tiny
gap between them.

Lines 5 and 6 also pass g, the Graphics object used for painting, as an argument
because paintStickFig will need it to draw the required shapes.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 153

153

Parameterized
Method

LOOKING BACK

Type was defined in
Section 1.3.1 as

specifying a valid set
of values for an

attribute. Here it
specifies the set of

values for the
parameter.

3.7.1 Declaring Parameters

To use arguments such as g, 182, and 0 inside our helper method, we need to declare
corresponding parameters. These should look familiar because we have been declaring
parameters in Robot constructors since the beginning of Chapter 2. The first line of the
paintStickFig method should be:

privateƒvoidƒpaintStickFig(Graphicsƒg2,ƒintƒx,ƒintƒy)

The first part of this line, private void paintStickFig, is the same as our
Parameterless Command and Helper Method patterns.

Next come the three parameters. Each specifies a type and a name, and is separated from
the next parameter with a comma. Graphics is the name of a class and specifies that the
first argument to paintStickFig must be a reference to a Graphics object. This is
similar to our Robot constructors. There, the first parameter has a type of City; conse
quently, we always pass a City object as the first argument. The next two parameters
must always be passed integer arguments because they are declared with int.

Inside the method, the values passed as arguments will be given the name of the corre
sponding parameter. If the method is called with this.paintStickFig(g, 182,
0), then inside paintStickFig, every time we use the name x it will be interpreted as
182—the value passed to it.

3.7.2 Using Parameters

With this background, we can rewrite the method to use the parameters to specify the
stick figure’s position. Each time we refer to an x or a y location in drawing the stick
figure, we add the appropriate x or y parameter. This action offsets the figure, as
shown in Figure 3-15. Adding two numbers together uses the plus sign, and if one of
the “numbers” happens to be a parameter, Java will use the number it represents (in
this case, the number passed to it as an argument). The revised code for
paintStickFig appears in Listing 3-10.

3.7
G
U
I: U

SIN
G
 H

ELPER M
ETH

O
D
S

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 154

154
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

x

y

x + 60

y + 150

60

(figure 3-15)

Offsetting the location of

the stick figure with the x
and y parameters

Consider line 36 to paint the rectangle used for the pants. In the original code, we wrote
g.fillRect(60, 150, 60, 120) to draw a rectangle 60 pixels from the left side and
150 pixels down from the top. The last two arguments specify that it should be 60 pixels
wide and 120 pixels high. In line 36, this is changed to g2.fillRect(x+60, y+150,
60, 120). Now the rectangle starts 60 pixels to the right of x. If x is passed 0, the pants
are painted 60 pixels from the left side of the panel. If x is passed 182, the pants are
painted 242 (182 + 60) pixels from the left side.

Listing 3-10: A component that paints two stick figures, one beside the other

ch03/stickFigure/
1 importƒjava.awt.*;ƒƒƒƒƒƒƒƒƒƒƒƒ// Graphics, Dimension, Color

2 importƒjavax.swing.*;ƒƒƒƒƒƒƒƒƒ// JComponent

3

4 publicƒclassƒStickFigurePairƒextendsƒJComponent

5 {

6 ƒƒpublicƒStickFigurePair()

7 ƒƒ{ƒsuperƒ();

8 ƒƒƒƒDimensionƒprefSizeƒ=ƒnewƒDimension(2*180+5,ƒ270);

9 ƒƒƒƒthis.setPreferredSize(prefSize);

10 ƒƒ}
11
12 ƒƒ/** Paint two stick figures
13 ƒƒ* @param g The graphics context to do the painting. */
14 ƒƒpublicƒvoidƒpaintComponent(Graphicsƒg)
15 ƒƒ{ƒsuper.paintComponent(g);
16 ƒƒƒƒthis.paintStickFig(g,ƒ0,ƒ0);
17 ƒƒƒƒthis.paintStickFig(g,ƒ182,ƒ0);ƒ
18 ƒƒ}
19
20 ƒƒ/** Paint one stick figure at the given location.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 155

155
3.8

P
ATTERN

S

Listing 3-10: A component that paints two stick figures, one beside the other (continued)

21 ƒƒ* @param g2 The graphics context to do the painting.
22 ƒƒ* @param x The x coordinate of the upper-left corner of the figure.
23 ƒƒ* @param y The y coordinate of the upper-left corner of the figure. */
24 ƒƒprivateƒvoidƒpaintStickFig(Graphicsƒg2,ƒintƒx,ƒintƒy)
25 ƒƒ{ƒ// Paint the head.
26 ƒƒƒƒg2.setColor(Color.YELLOW);
27 ƒƒƒƒg2.fillOval(x+60,ƒy+0,ƒ60,ƒ60);
28
29 ƒƒƒƒ// Paint the shirt.
30 ƒƒƒƒg2.setColor(Color.RED);
31 ƒƒƒƒg2.fillRect(x+0,ƒy+60,ƒ180,ƒ30);
32 ƒƒƒƒg2.fillRect(x+60,ƒy+60,ƒ60,ƒ90);
33
34 ƒƒƒƒ// Paint the pants.
35 ƒƒƒƒg2.setColor(Color.BLUE);
36 ƒƒƒƒg2.fillRect(x+60,ƒy+150,ƒ60,ƒ120);
37 ƒƒƒƒg2.setColor(Color.BLACK);
38 ƒƒƒƒg2.drawLine(x+90,ƒy+180,ƒx+90,ƒy+270);
39 ƒƒ}
40 }

Using a helper method helps keep the paintComponent method to a reasonable size.
By adding parameters to the helper method, we allow the method to be used more flex
ibly with the result that we only need one helper method instead of two.

3.8 Patterns

This chapter introduced four patterns: Helper Method, Multiple Threads, Template
Method, and Parameterized Method.

3.8.1 The Helper Method Pattern

Name: Helper Method

Context: You have a long or complex method to implement. You want your code to be
easy to develop, test, and modify.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 156

156
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

Solution: Look for logical steps in the solution of the method. Put the code to solve this
step in a well-named helper method. For example, if the problem is for a robot to
travel in a square pattern, the problem could be decomposed like this:

publicƒvoidƒsquareMove()

{ƒthis.sideMove();

ƒƒthis.sideMove();

ƒƒthis.sideMove();

ƒƒthis.sideMove();

}

where sideMove is defined as follows:

privateƒvoidƒsideMove()

{ƒthis.move();

ƒƒthis.move();

ƒƒthis.move();

ƒƒthis.turnLeft();

}

Of course, the problem may involve writing several different helper methods. Because
helper methods are usually not services the class provides, they should generally be
declared private or at least protected, depending on whether subclasses need to
access or override them.

Consequences: Long or complex methods are easier to read, develop, test, and modify
when you break them into smaller steps and use helper methods.

Related Patterns: This pattern is almost identical to the Parameterless Command pattern
and other method-related patterns we will see in future chapters. The difference is in the
intent: helper methods designate methods that exist to perform a piece of a larger opera
tion whereas the Parameterless Command, for example, does not have that connotation.

3.8.2 The Multiple Threads Pattern

Name: Multiple Threads

Context: You have multiple objects such as robots that should appear to carry out their
tasks simultaneously.

Solution: Start each of the tasks in its own thread of control. This requires three tasks:

➤	 Write a method named run. It contains code to execute in a thread.

➤	 Implement the Runnable interface so that Java knows your class is set up to
run as a thread.

➤	 Start the thread.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 157

157

The first two steps are expressed in code according to the following template:

publicƒclassƒ«className»ƒextendsƒ«superclassName»

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒRunnable

{ƒ...

ƒƒpublicƒvoidƒrun()

ƒƒ{ƒ«statementsƒtoƒexecuteƒinsideƒaƒseparateƒthread»

ƒƒ}

}

The third step is often included in an instance of the Java Program pattern but can also
be used in other contexts.

publicƒclassƒ«programClassName»

{ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

ƒƒ{ƒƒ...

ƒƒƒƒƒ«className»ƒ«runnableObject»ƒ=ƒnewƒ«className»(...);

ƒƒƒƒƒThreadƒ«threadName»ƒ=ƒnewƒThread(«runnableObject»);

ƒƒƒƒƒ«threadName».start();

ƒƒƒƒƒ...

ƒƒ}

}

The three lines to create the object, create the thread, and start the thread are repeated
as many times as there are threads.

Consequences: A separate thread of control is started whose execution is interleaved
with the execution of other threads. This is relatively easy as long as the threads cannot
interfere with each other. If interference is a possibility, many problems can arise.

Related Patterns: This pattern makes use of common patterns, such as the following:

➤ Java Program

➤ Extended Class

➤ Object Instantiation

➤ Method Invocation

➤ Sequential Execution

3.8.3 The Template Method Pattern

Name: Template Method

Context: You have a set of similar classes. Each has a method that does almost the
same thing as a corresponding method in the other classes, but not quite. You would
like to avoid duplicating the common code so that you only need to write it, debug it,
and maintain it once.

3.8
P

ATTERN
S

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 158

158
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

Solution: The method that shares the similar code among classes is called the template
method. Write it using helper methods for the parts that are different from one version
to another. However, instead of putting these helper methods in the same class as the
template method, put them in subclasses. The subclasses provide the variations in the
code that are used to solve the different problems.

To compile the template method, you need to include empty methods with the same
names as the helper methods.

For an example, see Section 3.5.3.

Consequences: Writing the common code once helps reduce the effort to write, debug,
and maintain it. By explicitly identifying where the differences occur and writing meth
ods for them, it’s easier to add a new class that solves another variation of the same
problem.

On the other hand, needing to look in a different class for part of the solution to the
problem can be confusing.

Related Pattern: This pattern is a specialization of the Extended Class pattern where
specific methods are provided for the express purpose of being overridden.

3.8.4 The Parameterized Method Pattern

Name: Parameterized Method

Context: A method might do many variations of its task if it only had some informa
tion from its client to say which variation to perform. The different variations are often
quantified—how many pixels over to paint a figure, how many times to turn a robot,
or how much money to deposit in a bank account.

Solution: Use one or more parameters to communicate information from the client to
the method. Use this information to control which of many possible variations of the
task to perform.

In general, the method will declare one or more parameters, each having a type and a
name. Consecutive pairs are separated with commas, as shown in the following template:

publicƒvoidƒ«methodName»(«paramType1»ƒ«paramName1»,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ«paramType2»ƒ«paramName2»,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ...
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ«paramTypeN»ƒ«paramNameN»)
{ƒ«listƒofƒstatements,ƒatƒleastƒsomeƒofƒwhichƒuseƒparamName»
}

LOOKING AHEAD

Methods can be
declared abstract
instead. We’ll learn
more in Section 12.1.5.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 159

159
3.9

S
U
M

M
ARY AN

D
 C

O
N
CEPT M

AP

LOOKING AHEAD

This pattern will be
discussed more fully
in Chapters 4 and 6.

The method is used with a method invocation matching the following template:

«objectReference».«methodName»(«arg1»,ƒ«arg2»,ƒ...,ƒ«argN»);

where the type of each argument is compatible with the type of the corresponding
parameter.

A concrete example of this pattern is illustrated in Listing 3-10.

Consequences: The method is much more flexible than a similar method written with
out parameters. Parameters give opportunities to the client to influence how the
method carries out its task.

Related Patterns: The Parameterized Method pattern is a variation of the other fol
lowing patterns:

➤ Parameterless Command

➤ Helper Method

3.9 Summary and Concept Map

Stepwise refinement is a process of breaking a problem down into smaller and simpler
steps until, ultimately, the problems are constrained enough to be directly solved with the
primitives at hand. The advantages of using stepwise refinement include code that is eas
ier to understand, test, debug, and modify, precisely because the solution is expressed in
terms of logical subproblems discovered by the stepwise refinement process.

Stepwise refinement naturally results in helper methods: methods that exist to help
another method by solving a subproblem. Helper methods are often private, but may
also be protected. When they are protected, subclasses can often be used to easily
solve variations of the same problem using the Template Method pattern.

Pseudocode is another tool for designing methods. It is a mixture of a natural language,
such as English, and a programming language. It allows us to express our algorithms at a
high level and reason about them without investing the time and overhead of coding them
in a language such as Java.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 160

160
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

advantages includehelps construct

implem
ent

must be

should be easy to
are oftendesigned using

are examples of

uses

divides a problem into
may also be solved using

methods

algorithms

understand,
debug, modify

stepwise
refinement

subproblems

understandability,
avoiding errors,

easier testing/debugging,
easier modification

pseudocode natural
language

access
modifiers

parameters

public,
private

correct

have

can be more flexible with

3.10 Problem Set

Written Exercises

3.1	 In Listing 3-3, all of the methods have public access. Is this appropriate?

Should any of them have a different access modifier? If so, which ones?

3.2	 Examine problem 2.13 again, in which karel wrote the message “Hello”

using Things. What helper methods would you suggest?

3.3	 Suppose the TraverseAreaRobot class is extended to create the Harvester
class, as described in Section 3.5.3. What happens if the method in Harvester
is misspelled vistIntersection?

3.4	 Consider the choice of access modifiers for TraverseAreaRobot suggested in
Listing 3-6. Explain their effects on the creation of a subclass to harvest every
other row of the field.

Programming Exercises

3.5	 If necessary, download the source code for the examples and find ch03/

debugging/. It contains two kinds of robots, both of which perform the same

task. However, MonolithicBot contains a single method named doit.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 161

161

StepRefineBot also contains a method named doit, but it was developed using
stepwise refinement. Run the program once to see what it is supposed to do.

Work with a partner for the remainder of this problem. Assign
MonolithicBot to one partner and StepRefineBot to the other. Each of
you makes one small, secret change to the other’s robot. “One small change” is
defined as deleting a statement, adding a statement, or substituting a new state
ment for an existing statement. Run each program and time how long it takes
each person to find the mistake in their assigned robot. Repeat five times.
Summarize your results.

Programming Projects

3.6	 Rewrite the harvestField method using a different stepwise refinement. In
particular, move the robot over the field in a spiral pattern, as shown in
Figure 3-16.

a. Write pseudocode to solve the problem using this idea.

b. Analyze the solution for strengths and weaknesses.

c. Write a program implementing your solution.

(figure 3-16) 0 1 2 3 4 5 6

0

Harvesting in a spiral

7

3.7	 Program a robotic synchronized swimming team. The team has four members
that begin their routine as shown in Figure 3-17 in the middle of the pool. Each
swimmer goes through the same motions: a small counter-clockwise square, a
large counter-clockwise square, turn around, a small clockwise square, and
finally a large counter-clockwise square. Each square leaves the swimmer in the
same position as when it started the square. Small squares involve moving once
on each side; for large squares, the swimmers move twice. Start each swimmer
in its own thread (see Section 3.5.2).

3.10
P

RO
BLEM

 S
ET

1

2

3

4

5

6

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 162

162
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

3.8	 karel sometimes works as a pinsetter in a bowling alley. Examine the initial and
final situations shown in Figure 3-18, and then complete the following tasks:

a. Develop pseudocode for two different refinements of a method named
setPins.

b. Analyze both solutions for strengths and weaknesses.

c. Write a program that implements one of your solutions.

0 1 2
0

1

2

4

3 4 5

3

5

6	

0 1 2 3 4 5
0

1

2

3

4

5

6

Initial situation	 Final situation

3.9	 The CEO of a highly successful local software company has a plus-shaped wall
in her garden, as shown in Figure 3-19. She would like to use robots to plant
one and only one Thing at each location around the wall. Robots will always
start with enough Things to finish their task (look in the documentation for a
constructor to specify how many Things a robot starts with).

a. Use a single robot to do the planting. It begins and ends at (0, 0).

b. Use a team of four robots. You may choose their beginning and ending
positions.

c. Use a team of eight robots. You may choose their beginning and ending
positions.

d. Use threads so that a team of robots plants the garden simultaneously.

(figure 3-17)

Initial situation for a team

of synchronized swimmers

(figure 3-18)

Initial and final situations

for setPins

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 163

163

(figure 3-19)

Planting things in

a garden

(figure 3-20)

Series of skyscrapers for

Spiderbot to climb

1 2 3 4 5 0 1 2 3 4 5
0

0
0

1 1

2 2

3 3

4 4

5 5

Initial situation Final situation

3.10 Spiderman has a new superhero rival: Spiderbot. Just like Spiderman,
Spiderbot can climb tall buildings, as shown in Figure 3-20. However,
Spiderbot must stay as close to a building as possible as it climbs, and it can’t
jump between buildings.

a. Write a SpiderBot class that has a climbBuilding method. Use it to
instruct Spiderbot to climb over the three buildings. Use a file to place the
walls of the buildings. Consult the online documentation for the City con
structors for the file format.

b. Extend the City class to make CityBuilder. The CityBuilder class has
a method named placeBuilding that takes one parameter: the avenue
where the building should be placed. Use it to build the city.

0 1 2 3 4 5
0

1

2

3

4

5

3.11 Section 3.5.3 describes how to use TraverseAreaRobot as a template for classes
that do variations of the same task. Implement the TraverseAreaRobot class.

a. Extend TraverseAreaRobot to create a class named Harvester. Instances of
Harvester will pick one Thing from each intersection of the area traversed.

3.10
P

RO
BLEM

 S
ET

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 164

164
CH

AP
TE

R
3

| D
EV

EL
O
PI

N
G

M
ET

H
O
D
S

b. Extend TraverseAreaRobot to create a class named Planter. Instances
of Planter will put one Thing on each intersection of the area traversed.

c. Extend TraverseAreaRobot to create a class named
BumperCropHarvester. Instances of this class will collect five Things
from each intersection of the area traversed.

d. Extend TraverseAreaRobot to create a class named
SparseRowHarvester. Instances of this class will harvest Things from
every other row of the area traversed. The field should have 12 rows.

3.12 King Java’s castle, shown in Figure 3-21, needs to be guarded. Write a GuardBot
class to patrol the castle walls in the pattern shown. Be sure to use appropriate
stepwise refinements. Choose an appropriate place for the guard to begin its duties.

a. Write a main method that uses a single GuardBot to guard the castle.

b. Write a main method that uses four GuardBots to patrol the castle, one on
each side.

c. Modify your solution so that all the guards patrol their wall simultaneously.

0

1

2

4

3

5

0 1 2 3 4 5 (figure 3-21)

King Java’s castle

3.13 King Java’s neighbor, King Caffeine, is impressed with the GuardBots devel
oped in Problem 3.12. He wants to hire four GuardBots to patrol his castle.
However, his castle is larger, as shown in Figure 3-22.

a. Refer to the class diagram in Figure 3-12, which discusses the Template

Method pattern. Adapt it to this problem, showing the relationships and

methods needed for three classes: GuardBotTemplate, LongWallGuard,

and ShortWallGuard.

b. Using the Template Method pattern, develop three classes named

GuardBotTemplate, LongWallGuard, and ShortWallGuard. Write a

main method that creates castles for both King Caffeine and King Java and

then uses four LongWallGuards to patrol King Caffeine’s castle and four

ShortWallGuards to patrol King Java’s castle.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 165

165

(figure 3-22) 0 1 2 3 4 5 6
0

3.10
P

RO
BLEM

 S
ET

King Caffeine’s castle

1

2

4

3

5

6

3.14 Create a program that draws four copies of the Olympic rings, one in each cor
ner of the component. The colors of the five rings, from left to right, are blue,
yellow, black, green, and red. The rings may simply overlap rather than inter
lock, as in the official symbol.

3 Chapter C5743 40143.ps 11/30/06 1:18 PM Page 166

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 167

Chapter 4 Making Decisions

Chapter Objectives

After studying this chapter, you should be able to:

➤	 Use an if statement to perform an action once or not at all.

➤	 Use a while statement to perform an action zero or more times.

➤	 Use an if-else statement to perform either one action or another action.

➤	 Describe what conditions can be tested and how to write new tests.

➤	 Write a method, called a predicate, that can be used in the test of an if or
while statement.

➤	 Use parameters to communicate values from the client to be used in the execution
of a method.

➤	 Use a while statement to perform an action a specified number of times.

In the preceding chapters, a robot’s exact initial situation was known at the start of a
task. When we wrote our programs, this information allowed robots to find things
and avoid running into walls. However, these programs worked only in their specific
initial situations. If a robot tried to execute one of these programs in a slightly differ
ent initial situation, the robot would almost certainly fail to perform the task.

To address this situation, a robot must make decisions about what to do next. Should it
move or should it pick something up? In this chapter we will learn about programming
language statements that test the program’s current state and choose the next statement
to execute based on what they find. One form of this capability is the if statement: If
something is true, then execute a group of statements. If it is not true, then skip the group
of statements. Another form of this capability is the while statement: while something is
true, execute a group of statements.

167

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 168

168

4.1 Understanding Two Kinds of Decisions

CH
AP

TE
R

4
| M

AK
IN

G
 D

EC
IS

IO
N
S

So far, our programs have been composed of a sequence of statements executed in
order. These statements have included creating new objects (the Object Instantiation
pattern) and invoking their services (the Command Invocation pattern). The only devi
ation we’ve seen from this sequential order is in defining our own commands or meth
ods. In that case, whenever one method includes a statement invoking another method,
all the statements in the called method are executed in order before execution moves
on to the next statement in the calling method.

The if and while statements are different. As the program is running, they can ask a
question. Based on the answer, they choose the next statement or group of statements
to execute. In a robot program, the question asked might be, “Is the robot’s front
blocked by a wall?” or “Is there something on this intersection the robot can pick up?”
In the concert hall program from Chapter 1, questions asked by an if or while state
ment might include “Is the ticket for seat 22H still available?” or “Have all of the sold
tickets been processed yet?”

All of these questions have “yes” or “no” answers. In fact, if and while statements
can only ask yes/no questions. Java uses the keyword true for “yes” and false for
“no.” These keywords represent Boolean values, just like the numbers 0 and 23 repre
sent integer values.

When the simplest form of an if statement asks a question and the answer is true, it
executes a group of statements once and then continues with the rest of the program. If
the answer to the question is false, that group of statements is not executed.

When a while statement asks a question and the answer is true, it executes a group
of statements (just like the if statement). However, instead of continuing with the rest
of the program, the while statement asks the question again. If the answer is still
true, that same group of statements is executed again. This continues until the answer
to the question is false.

The if statement’s question is “Should I execute this group of statements once?” The
while statement’s question is “Should I execute this group of statements again?” This
ability to ask a question and to respond differently based on the answer liberates our
programs from always executing the same sequence of statements in exactly the order
given. For example, these two statements will allow us to generalize the Harvester
class shown in Listing 3-3 in the following ways:

➤	 Harvest any number of things from the intersection.

➤	 Have a single goToNextRow method that works at both ends of the row. The
current solution has one method for the east end of the row and another
method for the west end.

➤	 Harvest fields of varying sizes.

KEY IDEA

if and while
statements choose the
next statement to
execute by asking a
yes/no question.

KEY IDEA

true means “yes”
and false
means “no.”

KEY IDEA

if statements
execute code once or
not at all. while
statements might
execute the
statements
repeatedly.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 169

169

4.1.1 Flowcharts for if and while Statements

One way to illustrate the flow of control through the if and while statements is with
a flowchart, as shown in Figure 4-1. The diamond represents the question that is
asked. The box represents the statements that are optionally executed. The arrows
show what the computer does next.

By tracing the arrows in the flowchart for if, you can easily verify that the statements
in the box are executed once or not at all. Tracing the arrows for the while statement,
however, shows that you can reach the statements in the box over and over again—or
that they might not be executed at all.

(figure 4-1)

Flowcharts for the if and

while statements

4.1
U

N
D
ERSTAN

D
IN

G
 T

W
O
 K

IN
D
S O

F D
ECISIO

N
S

true?
false

true?
false

KEY IDEA

Decide between if
and while by asking

how many times the
code should execute.

Once or Not at All

Flowchart for the if statement Flowchart for the while statement

The key question you should ask when deciding whether to use an if statement or a
while statement is “How many times should this code execute?” If the answer is once
or not at all, choose the if statement. If the answer is zero or more times, then choose
the while statement.

4.1.2 Examining an if Statement

Suppose that a robot, karel, is in a city that has walls. If karel’s path is clear, it
should move and then turn left. Otherwise, karel should just turn left.

You can use an if statement to have karel make this decision. The if statement’s
question is “Is karel’s front clear of obstructions?” If the answer is true (yes), karel
should move forward and then turn left. If the answer is false (no), karel should
skip the move instruction and just turn left. This program fragment1 is written like this:

ifƒ(karel.frontIsClear())
{ƒkarel.move();
}
karel.turnLeft();

1 To conserve space, we will often demonstrate a programming idea without writing a complete pro
gram or even a complete method. Instead, we will write only the necessary statements, which are
called a program fragment.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 170

170
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

Consider two different initial situations. In Figure 4-2, the answer to the if statement’s
question is “Yes, karel’s front is clear of obstructions.” As a result, karel performs
the test, moves, and then turns left. These three actions are shown in the figure, where
the heavy arrows show the statements that are executed to produce the situation
shown on the right.

if (karel.frontIsClear())
{ karel.move();
}
karel.turnLeft();

if (karel.frontIsClear())
{ karel.move();
}
karel.turnLeft();

if (karel.frontIsClear())
{ karel.move();
}
karel.turnLeft();

(figure 4-2)

Execution of an if
statement when the

robot’s front is initially

clear of obstructions

Suppose karel starts in the situation shown in Figure 4-3. Then the answer to the if
statement’s question is “No, karel’s front is not clear of obstructions” and the state
ment instructing karel to move is not executed. karel does not move, although it
does turn left because the turnLeft command is outside the group of statements con
trolled by the if statement.

if (karel.frontIsClear())

{ karel.move();

}

karel.turnLeft();

if (karel.frontIsClear())

{ karel.move();

}

karel.turnLeft();

KEY IDEA

The if statement
causes the robot to
behave differently,
depending on its
situation.

(figure 4-3)

Execution of an if
statement when the

robot’s front is initially

obstructed

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 171

171

Zero or More Times

KEY IDEA

The while statement
repeatedly asks a

question and performs
an action until the

answer is “no.”

Consider the code without the if statement:

karel.move();

karel.turnLeft();

In the first situation (shown in Figure 4-2), the result would be the same. However in
the second situation, karel would crash into the wall and break.

Use an if statement when you want statements to execute once or not at all.

4.1.3 Examining a while Statement

Let’s now consider a similar situation but control the move instruction with a while
statement:

whileƒ(karel.frontIsClear())
{ƒkarel.move();
}
karel.turnLeft();

Recall that a while statement also asks a question. If the answer is true, the statements
inside the braces are executed and then the question is asked again. This continues until
the answer to the question is false. In the preceding code fragment, the question is “Is
karel’s front clear of obstructions?”

Let’s again consider karel in different initial situations. In Figure 4-4, karel’s front
is clear and the answer to the while statement’s question is “it is true, karel’s
front is clear.” karel moves and asks the question again—until the answer to the
question is finally false. The heavy arrows in the code show the statements that are
executed to reach the situation shown to the right of the code.

In this example, karel moves as many times as necessary to reach the wall. Then it
turns. In the situation shown in Figure 4-4, the wall happens to be only two intersec
tions away. It could be 20 or 2 million intersections away—karel would still move to
the wall and then turn left with those same four lines of code.

If karel starts in a situation where its front is blocked, the answer to the question is imme
diately false and the move does not occur. Execution continues with the turnLeft
instruction after the while statement. This situation is illustrated in Figure 4-5. Notice the
similarities to the last two illustrations in Figure 4-4.

The while statement’s test is always false after the statement finishes executing
because the loop continues until the test becomes false. In fact, if nothing inside the
while statement can make the test false, the statement will execute indefinitely.

4.1
U

N
D
ERSTAN

D
IN

G
 T

W
O
 K

IN
D
S O

F D
ECISIO

N
S

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 172

while (karel.frontIsClear())
{ karel.move();
}
karel.turnLeft();

while (karel.frontIsClear())
{ karel.move();
}
karel.turnLeft();

while (karel.frontIsClear())
{ karel.move();
}
karel.turnLeft();

while (karel.frontIsClear())

while (karel.frontIsClear())
{ karel.move();
}
karel.turnLeft();

while (karel.frontIsClear())
{ karel.move();
}
karel.turnLeft();

{ karel.move();
}
karel.turnLeft();

172
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

(figure 4-4)

Illustrating the execution of

a while statement when

the robot’s front is initially

clear of obstructions

(figure 4-5)

Illustrating the execution

of a while statement

when the robot’s front is

initially obstructed

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 173

173

KEY IDEA

Boolean expressions
ask true/false

questions.

The ability to go to a wall might be generally useful. The following method, inserted
into a class extending Robot, provides such a service:

publicƒvoidƒgotoWall()

{ƒwhileƒ(this.frontIsClear())

ƒƒ{ƒthis.move();

ƒƒ}

}

4.1.4 The General Forms of the if and while Statements

The general form of a statement marks the parts that can change, depending on the
needs of the situation, leaving the parts that are always the same clearly identified.

The General Form of an if Statement

The if statement has the following general form:

ifƒ(«test»)

{ƒ«listƒofƒstatements»

}

The reserved word if signals the reader of the program that an if statement is present.
The braces ({ and }) enclose a list of one or more statements, «listƒofƒstatements».
These statements are known as the then-clause. The statements in the then-clause are
indented to emphasize that «listƒofƒstatements»ƒis a component of the if state
ment. Note that we do not follow the right brace of an if statement with a semicolon.

The «test» is a Boolean expression such as a query that controls whether the state
ments in the then-clause are executed. A Boolean expression always asks a question
that has either true or false as an answer.

The General Form of a while Statement

The general form of the while statement is:

whileƒ(«test»)ƒ

{ƒ«listƒofƒstatements»

}

The reserved word while starts this statement. Like the if statement, the «test» is
enclosed by parentheses and the «listƒofƒstatements» is enclosed by braces2. The

4.1
U

N
D
ERSTAN

D
IN

G
 T

W
O
 K

IN
D
S O

F D
ECISIO

N
S

2 If the list of statements has only one statement, the braces can be omitted. More about this in
Section 5.6.3.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 174

174
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

list of statements is called the body of the statement. The Boolean expressions that can
replace «test» are the same ones used in the if statements.

A statement that repeats an action, like a while statement, is often called a loop.

The if and while statements have similar syntax. That is, their structure, or the way
they look, is similar. On the other hand, they have different semantics. That is, the way
they behave is different. The if statement decides whether to execute a list of state
ments or to skip over them. The while statement decides how many times to execute
a list of statements.

4.2 Questions Robots Can Ask

The if and while statements both ask a question to discover something about the
current state of the program. In the previous section the question was whether the
front of the robot was clear of obstructions. In this section we’ll learn about other
questions a robot can ask. The answers, of course, can be used to control the robot’s
behavior.

4.2.1 Built-In Queries

In Chapter 1, we briefly mentioned that one kind of service objects can provide is a
query—a service that answers a question. Robots offer queries that answer questions such
as “Which avenue are you on?”, “Which direction are you facing?”, “Can you pick up a
Thing from the intersection you are currently on?”, and “Is your front clear of obstruc
tions?” The following class diagram, displayed in Figure 4-6, shows many of the queries
robots can answer.

Robot

int street
int avenue
Direction direction
ThingBag backpack

+Robot(City aCity, int aStreet, int anAvenue,
 Direction aDirection)

+boolean canPickThing()
+int countThingsInBackpack()
+boolean frontIsClear()
+int getAvenue()
+Direction getDirection()
+String getLabel()
+double getSpeed()
+int getStreet()

(figure 4-6)

Class diagram showing

many of the queries a

robot can answer

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 175

175

KEY IDEA

Predicates are
methods that return

either true or
false.

KEY IDEA

Give a boolean
expression the
opposite value

with "!"

Once or Not at All

Each of the queries indicates what kind of answer it returns. getAvenue, for example,
returns an integer value (abbreviated int) such as 1 for 1st Avenue or 9 for 9th Avenue.
canPickThing, on the other hand, returns a boolean3 value. If the robot is on the
same intersection as a Thing it can pick up, canPickThing returns true; otherwise,
it returns false. Queries that return a boolean answer are called predicates. The
frontIsClear service described in the previous section is a predicate.

None of these queries change the state of the robot. The robot doesn’t change in any
way; it merely reports a piece of information about itself or its environment. This
information is used in expressions. Expressions may be used in many ways, such as
controlling if and while statements, passed as a parameter to a method, or saved in a
variable. In this chapter, we will focus almost exclusively on expressions used to con
trol if and while statements.

4.2.2 Negating Predicates

Sometimes we want a robot to do something when a test is not true, as in the follow
ing pseudocode:

ifƒ(karel cannot pick up a thing)
{ƒput a thing down
}

The Robot class does not provide a predicate for testing if the robot cannot pick up a
Thing, only if it can.

Fortunately, any Boolean expression may be negated, or given the opposite value, by
using the logical negation operator, “!”. In English, this is usually written and pro
nounced as “not”. The negation operator is placed immediately before the Boolean
expression that is to be negated. Thus, the previous pseudocode could be coded as
follows:

ifƒ(!karel.canPickThing())
{ƒkarel.putThing();
}

Negation is our first exploration of evaluating expressions. You already have experience
evaluating expressions from studying arithmetic. When you figure out that 5 + 3 * 2 is the
same as 5 + 6 or 11, you are evaluating an arithmetic expression. The expression often
includes an unknown, such as 5 + x * 2. When you know the value of x, you can substi
tute it into the expression before evaluating it. For example, if x has the value 4, then the
expression 5 + x * 2 is the same as 5 + 4 * 2 or 13.

4.2
Q

U
ESTIO

N
S R

O
BO

TS C
AN

 A
SK

3 Boolean values are named after George Boole, one of the early developers of logic.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 176

176
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

Evaluating a Boolean expression, an expression that uses values of true and false, is
similar to evaluating arithmetic expressions. The expression !karel.canPickThing()
involves an unknown (karel.canPickThing()), similar to x in the arithmetic expres
sion. Suppose the unknown has the value true (that is, karel is on the same intersection
as a Thing it can pick up). Then the expression evaluates to !true (“not true”) which is
the same as false.

4.2.3 Testing Integer Queries

The if and while statements always ask true-or-false questions. “Should I execute
this code, true or false?” This approach works well for queries that return a
boolean value, but how can we use queries that return integers? The solution is to
compare the query’s answer to another integer. For example, we could use the follow
ing code to ask if the robot is on 1st Street:

ifƒ(karel.getStreet()ƒ==ƒ1)

{ƒ// what to do if karel is on 1st street

}

We could also use the following loop to make sure karel has at least eight things in its
backpack:

whileƒ(karel.countThingsInBackpack()ƒ<ƒ8)
{ƒkarel.pickThing();
}

A total of six comparison operators can be used to compare integers. They are shown in
Table 4-1.

LOOKING AHEAD

In Section 5.4.1, we
will look at combining
expressions with
“and” and “or”, much
like “+” and “*”
combine arithmetic
expressions.

Once or Not at All

Zero or More Times

Operator Name Example Meaning

< less than karel.getAvenue()ƒ<ƒ5 Evaluates to true if karel’s
current avenue is strictly less
than 5; otherwise, evaluates
to false.

<= less than
or equal

karel.getStreet()ƒ<=ƒ3 Evaluates to true if karel’s
current street is less than or
equal to 3; otherwise, evaluates
to false.

== equal karel.getStreet()ƒ==ƒ1 Evaluates to true if karel is
currently on 1st Street;
otherwise, evaluates to false.

!= not equal karel.getStreet()ƒ!=ƒ1 Evaluates to true if karel is
not currently on 1st Street; if the
robot is on 1st Street, evaluates
to false.

(table 4-1)

Java comparison operators

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 177

177

(table 4-1) continued

Java comparison

operators

Operator Name Example Meaning

>= greater than
or equal

5ƒ>=ƒkarel.getAvenue() Evaluates to true if 5 is
greater than or equal to
karel’s current avenue. Most
people find this easier to
understand when written as
karel.getAvenue() <= 5.

> greater than karel.getAvenue()ƒ>ƒ5 Evaluates to true if karel’s
current street is strictly
greater than 5; otherwise,
evaluates to false.

4.3
R

EEXAM
IN

IN
G
 H

ARVESTIN
G
 A F

IELD

KEY IDEA

Assignment (=) is
not the same as

equality (==).

The examples in Table 4-1 always show an integer on only one side of the comparison
operator. Java is much more flexible than this, however. For example, it can have a
query on both sides of the operator, as in the following statements:

ifƒ(karel.getAvenue()ƒ==ƒkarel.getStreet())ƒ
{ƒ...
}

This test determines whether karel is on the diagonal line of intersections (0, 0), (1, 1),
(2, 2), and so on. It also includes intersections with negative numbers such as (-3, -3).

Java also allows a more complex arithmetic expression on either side. The following
code tests whether the robot’s avenue is five more than the street. Locations where this
test returns true include (0, 5) and (1, 6).

ifƒ(karel.getAvenue()ƒ==ƒkarel.getStreet()ƒ+ƒ5)ƒ
{ƒ...
}

One common error is writing = instead of ==. The assignment statement, such as
Robotƒkarelƒ=ƒnewƒRobot(…) uses a single equal sign. Comparing integers, on the
other hand, uses two equal signs. Fortunately, Java usually catches this error and issues
a compile-time error. Some other languages, such as C and C++, do not.

4.3 Reexamining Harvesting a Field

Let’s return to the primary example from Chapter 3, traversing a field of Thing
objects. In the following examples we use if and while statements to solve variations
of that problem. The original program is in Listing 3-3.

We again use the dialogue format introduced in Chapter 3 to reveal the thinking that
leads to the final solution.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 178

178
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

4.3.1 Putting a Missing Thing

Instead of harvesting a field, consider planting a field. Such a robot class, PlanterBot,
is the same as Listing 3-3 except for renaming the methods to use “plant” instead of
“harvest” and, in the plantIntersection method, using putThing instead of
pickThing.

Now, consider a minor variation: someone has already planted some intersections, but
not all. Our PlanterBot, karel, must go through the field and put a Thing on only
those intersections that don’t already have one. The initial and final situations are
shown in Figure 4-7. Of course, karel must either be created with a supply of Thing
objects in its backpack (see the documentation for an alternate constructor) or pick up
a supply before it starts.

0
0 1 2 3 4 5 6

1

2

3

4

5

6

7	

(figure 4-7)

Initial and final situations

for planting intersections

that don’t have a Thing

0
0 1 2 3 4 5 6

1

2

3

4

5

6

7

Initial situation	 Final situation

Expert What does karel have to do?

Novice It must traverse the entire field, as before. Each time it comes to an intersection

it must ensure that the intersection has a Thing before the PlanterBot leaves.

Expert Does it always perform the same action at each intersection?

Novice No. Its actions depend on whether a Thing is already there.

Expert	 Does the PlanterBot perform its actions once or not at all? Or does it per
form them zero or more times?

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 179

179

Novice	 It either puts a Thing down or it doesn’t, depending on whether a Thing is
already present on the intersection. So it does an action, putting a Thing, once or
not at all.

Expert	 Can you write that in pseudocode?

Novice	 I had a feeling that was coming…. Performing an action once or not at all uses
an if statement, as follows:

ifƒ(there isn’t a thing on this intersection)

{ƒput a thing on this intersection

}

Expert	 How can you express the test for the if statement in Java?

Novice	 We haven’t seen a test for the absence of a Thing on an intersection. The clos
est test we’ve studied is canPickThing—can the robot pick up a thing from
this intersection. If it can, there must be a Thing present. If it can’t, there isn’t
a Thing present.

I think the test we want is ifƒ(not a thing that can be picked up). “Not”, in
Java, is written with an exclamation point. Therefore, we want
!this.canPickThing.

The definition of PlantThing follows the pseudocode closely and is shown in Listing 4-1.

4.3
R

EEXAM
IN

IN
G
 H

ARVESTIN
G
 A F

IELD

Listing 4-1: The plantIntersection method

1 /** Ensure that there is one thing on this intersection. */
2 publicƒvoidƒplantIntersection()
3 {ƒifƒ(!this.canPickThing())
4 ƒƒ{ƒthis.putThing();
5 ƒƒ}
6 }

4.3.2	 Picking Up a Pile of Things

Suppose that instead of a single Thing, each of the field’s intersections may have many
Things. The original program in Listing 3-3 has a method, harvestIntersection,
declared as follows:

/** Harvest one intersection. */
publicƒvoidƒharvestIntersection()
{ƒthis.pickThing();
}

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 180

180
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

In the revised version of the program, we want this method to pick up all of the Things
on the intersection.

Expert	 What does karel have to do?

Novice	 Pick up all the Thing objects that are on the same intersection as itself.

Expert	 Can it pick them all up with a single instruction?

Novice	 The pickThing instruction picks up one Thing at a time.

Expert	 Does the robot always perform the same actions to pick up all the Things?

Novice	 No. Its actions depend on how many Things are on the intersection. It must
use a test to decide what to do.

Expert	 Is the decision to do the action once or not at all? Or is the decision to repeat
the action zero or more times?

Novice	 The robot should repeat an action (picking up a Thing) zero or more times—
until there is nothing left to pick up.

Expert	 Can you express this idea in pseudocode?

Novice	 Sure:

whileƒ(this robot can pick up a Thing object)

{ pick up the Thing object

}

Expert	 How can you express the test in Java?

Novice	 With this.canPickThing().

This pseudocode can be expressed in Java and placed in a revised version of the
harvestIntersection method as shown in Listing 4-2.

Listing 4-2: A version of harvestIntersection that harvests all the Things there

1 /** Harvest one intersection. */
2 publicƒvoidƒharvestIntersection()
3 {ƒwhileƒ(this.canPickThing())
4 ƒƒ{ƒthis.pickThing();
5 ƒƒ}
6 }

ch04/harvest/

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 181

181

The while statement will continue to ask the question “Can this robot pick up a
Thing?” until the answer is “no” or false. As long as the answer is “yes” or true, it
will pick up a Thing. This method also works if some of the intersections don’t have
any Things on them. In that case, the first time the question is asked, the answer is
“no, there is nothing here that can be picked up” and the body of the loop is not exe
cuted. In either case, when the loop is finished executing there will be nothing on the
intersection that the robot can pick up.

4.3.3	 Improving goToNextRow

The original Harvester class has two methods moving the robot one street south.
One, goToNextRow, is used on the east side of the field. The other, positionFor-
NextHarvest, is used on the west side of the field. The existing definitions of these
two methods are as follows:

/** Go one row south and face west. */
publicƒvoidƒgoToNextRow()
{ƒthis.turnRight();
ƒƒthis.move();
ƒƒthis.turnRight();
}

/** Go one row south and face east. */
publicƒvoidƒpositionForNextHarvest()
{ƒthis.turnLeft();
ƒƒthis.move();
ƒƒthis.turnLeft();
}

It would be preferable to have a single method that will work correctly at either end of the
row. Now, the distinction between goToNextRow and positionForNextHarvest is not
clear from the names of the methods. It would be easier for people reading and writing the
code to have only one descriptive name like goToNextRow.

Expert	 What does the robot have to do?

Novice	 When it is at the east end of the row, it must turn right to move to the next
row. When it is at the west end it must turn left.

Expert	 So the robot must decide if it is at the east end of the row or the west end and
the action it carries out is to turn. Is the action performed once or not at all, or
is it performed zero or more times?

Novice	 The method is called many times—once at the end of each row. So in that
sense the action is performed many times.

4.3
R

EEXAM
IN

IN
G
 H

ARVESTIN
G
 A F

IELD

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 182

182
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

Expert	 Hmm…. That’s not what I had in mind. Let’s focus on only one invocation of
goToNextRow. The robot is at the end of one particular row and needs to per
form an action. Is that action performed once or not at all or is it performed zero
or more times?

Novice	 It’s once or not at all. It performs a group of actions (turn right, move, turn
right) once if it is at the east end of the row and not at all if it isn’t. Similarly, it
performs a group of actions once if it is at the west end and not at all if it isn’t.

Expert	 What statement can we use to control the robot’s actions?

Novice	 It’s the if statement that performs an action once or not at all. But I’m con
fused, because it isn’t a single test. We need one test for the east end of the row
and another test for the west end of the row.

Expert	 Perhaps it’s not only two tests we need, but two complete if statements.

Novice	 So using pseudocode, it would be as follows:

ifƒ(this robot is at the east end of the row)

{ƒturn right, move, and turn right again

}

ifƒ(this robot is at the west end of the row)

{ƒturn left, move, and turn left again

}

Expert	 Exactly. Now, how can you determine if the robot is at the east end of the row?

Novice	 Looking at Figure 3-2, the east end of the row is on Avenue 5 and the west end
of the row is on Avenue 1. In the first if statement, we can compare
this.getAvenue to 5 and in the second if statement we can compare
this.getAvenue to 1.

This pseudocode and the insight into the tests can be turned into the required Java
method, as shown in Listing 4-3.

Listing 4-3: A revised version of goToNextRow that will work at either end of the row.

1 /** Go one row south. The robot must be on either Avenue 1 or Avenue 5. */
2 publicƒvoidƒgoToNextRow()
3 {ƒifƒ(this.getAvenue()ƒ==ƒ5) // at the east end of the row
4 ƒƒ{ƒthis.turnRight();
5 ƒƒƒƒthis.move();
6 ƒƒƒƒthis.turnRight();
7 ƒƒ}
8 ƒƒifƒ(this.getAvenue()ƒ==ƒ1) // at the west end of the row

ch04/harvest/

LOOKING AHEAD

Written Exercise 4.3
focuses on this
method.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 183

183
4.4

U
SIN

G
 TH

E IF-ELSE S
TATEM

EN
T

Listing 4-3: A revised version of goToNextRow that will work at either end of the row. (continued)

9 ƒƒ{ƒthis.turnLeft();
10 ƒƒƒƒthis.move();
11 ƒƒƒƒthis.turnLeft();
12 ƒƒ}
13 ƒ}

4.4 Using the if-else Statement

Either This or That

The if statement performs an action once or not at all. Another version of the if
statement, the if-else statement, chooses between two groups of actions. It performs
one or it performs the other based on a test. Unlike the if statement, the if-else
statement always performs an action. The question is, which action?

The general form of the if-else is as follows:

ifƒ(«test»)ƒ
{ƒ«statementList1»
}ƒelseƒ
{ƒ«statementList2»
}

The form of the if-else statement is similar to the if statement, except that it
includes the keyword else, «statementList2» and another set of braces. Note the
absence of a semicolon before the word else and at the end.

An if-else is executed in much the same manner as an if. First, the «test» is eval
uated to determine whether it is true or false in the current situation. If the «test»

is true, «statementList1» is executed; if the test is false, «statementList2» is
executed. Thus, depending on the current situation, either «statementList1»ƒor
«statementList2» is executed, but not both. The first statement list is called the
then-clause, just like an if statement. The second statement list is called the else-clause.

When the else-clause is empty, the if-else statement behaves just like the if state
ment. In fact, the if statement is just a special case of the if-else statement.

The flowchart for an if-else statement is shown in Figure 4-8.

(figure 4-8)

Flowchart for an

if-else statement
truefalse ?

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 184

184
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

4.4.1 An Example Using if-else

Let’s look at an example that uses the if-else statement. Suppose that we want to
program a Racer robot to run a hurdle race, where vertical wall sections represent
hurdles. The hurdles are only one block high and are randomly placed between any
two intersections in the race course. The finish line is marked with a Thing. One of the
many possible race courses for this task is illustrated in Figure 4-9. Figure 4-10 shows
the final situation and the path the robot should take for this particular race course.

Here we think of the city as being vertical, with down being south. To run the fastest
race possible, we require the robot to jump if, and only if, it is faced with a hurdle.

(figure 4-9)

Hurdle-jumping robot’s

initial situation

(figure 4-10)

Hurdle-jumping robot’s

final situation and the

path it took

We will assume that a stepwise refinement process is being used and that the Racer class
is partially developed, as shown in Listing 4-4. We need to continue the process by devel
oping the raceStride method. It should move the robot forward by one intersection.

Listing 4-4: A partially developed implementation of Racer

1 importƒbecker.robots.*;
2
3 /** A class of robots that runs a hurdles race (steeplechase).
4 *
5 * @author Byron Weber Becker */
6 publicƒclassƒRacerƒextendsƒRobotSE
7 {
8 ƒƒ/** Construct a new hurdle-racing robot. */
9 ƒƒpublicƒRacer(CityƒaCity,ƒintƒstr,ƒintƒave,ƒDirectionƒaDir)

10 ƒƒ{ƒsuper(aCity,ƒaStreet,ƒanAvenue,ƒaDir);
11 ƒƒ}

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 185

185
4.4

U
SIN

G
 TH

E IF-ELSE S
TATEM

EN
T

Listing 4-4: A partially developed implementation of Racer (continued)

12
13 ƒƒ/** Run the race by repeatedly taking a raceStride until the finish line is crossed. */
14 ƒƒpublicƒvoidƒrunRace()
15 ƒƒ{ƒwhileƒ(!this.canPickThing())
16 ƒƒƒƒ{ƒthis.raceStride();
17 ƒƒƒƒ}
18 ƒƒ}
19 }

We could easily develop a class of robots that run this race by jumping between every
pair of intersections. Although this strategy is simple to program, it doesn’t meet the
requirements of running the fastest race possible. Instead, we must program the robot
to move straight ahead when it can, and jump over hurdles only when it must.

Expert	 So, assume the Racer is on an intersection of the racetrack and ready to take
its next stride. What should it do?

Novice	 It needs to move forward to the next intersection.

Expert	 Does the robot always perform the same actions?

Novice	 No, they depend on the situation. If there is a hurdle, it needs to be jumped. If
there isn’t a hurdle, the Racer can just move.

Expert	 Can you express these thoughts using pseudocode?

Novice	 ifƒ(facing a hurdle)
{ƒjump the hurdle
}
move

Expert	 You seem to be thinking that the robot should always move. The only ques
tion is whether it jumps a hurdle first. Have you considered what would hap
pen if there are two consecutive hurdles? The first pair of hurdles in Figure 4-9
shows that kind of a situation.

Novice	 Well, it would jump the first hurdle, landing right before the second one. Then
it would move… and crash into the hurdle. I guess we need a different plan.

Expert So, what does the robot need to do?

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 186

186
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

Novice	 It should either jump the hurdle or move (but not both), depending on
whether it is facing a hurdle. In pseudocode,

ifƒ(facing a hurdle)

{ƒjump the hurdle

}ƒelse

{ƒmove

}

Putting these ideas into a method results in the following code. It should be added to
Listing 4-4. The jumpHurdle method can be developed using the stepwise refinement
techniques found in Section 3.2.

publicƒvoidƒraceStride()ƒ

{ƒifƒ(!this.frontIsClear())ƒ

ƒƒ{ƒthis.jumpHurdle();

Either This or That ƒƒ}ƒelseƒ

ƒƒ{ƒthis.move();

ƒƒ}

}

4.5 Writing Predicates

In Section 4.2.1, we learned about eight queries that are built in to the Robot class and
examples of how to use them. But what if we frequently need to check if a robot’s front
is not clear? We could write the following code, which includes a negation:

ifƒ(!this.frontIsClear())

{ƒ// what to do if this robot's front is blocked

}

Simple Predicate

However, the following positive statement is easier to understand:

ifƒ(this.frontIsBlocked())

{ƒ// what to do if this robot's front is blocked

}

Fortunately, Java allows us to define our own predicates. Recall that a predicate is a
method that returns one of the Boolean values, either true or false. Returning a
value has two requirements:

➤	 The method’s return type must be indicated in its declaration. The type

boolean is appropriate for predicates. It replaces the keyword void we have

used so far.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 187

187

KEY IDEA ➤ The new predicate must indicate what value to return. To do so, we need a
A return statement new kind of statement: the return statement. The form of the return state-

always causes a ment is the reserved word return, followed by an expression. Because our
method to stop method’s return type is boolean, the expression must evaluate to a Boolean

immediately and
value, either true or false. Executing a return statement immediately terreturn to its caller.
minates the execution of the method.

4.5.1 Writing frontIsBlocked

A Boolean expression that can be used as a test in an if or while statement can be
easily turned into a predicate by inserting it into the following template:

«accessModifier»ƒbooleanƒ«predicateName»(«optParameters»)

{ƒreturnƒ«booleanExpression»;

}
Simple Predicate

where

➤ «accessModifier» is public, protected, or private.

➤	 «predicateName» is the name of the predicate. Valid names are the same as
for any other method.

➤	 «optParameters» provide additional information from the client.
Parameters are optional; many predicates do not have them.

➤	 «booleanExpression» evaluates to either true or false and is the expres
sion that could be placed in the test of an if or while statement.

The Java method for the frontIsBlocked predicate is as follows:

publicƒbooleanƒfrontIsBlocked()
{ƒreturnƒ!this.frontIsClear();
}

Simple Predicate When this method is called, it evaluates the Boolean expression !this.frontIsClear().
In the situation shown on the left side of Figure 4-11, frontIsClear evaluates to false
and, because of the !, the expression as a whole evaluates to true. This value is returned.
It is true that the robot’s front is blocked.

On the other hand, consider the situation shown on the right side of Figure 4-11.
frontIsClear evaluates to true, but is negated by the !, resulting in the entire
expression evaluating to false—the robot’s front is not blocked.

(figure 4-11)

Evaluating

frontIsBlocked in two Robot’s front is blocked Robot’s front is not blocked

different situations

4.5
W

RITIN
G
 P

RED
ICATES

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 188

188
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

4.5.2 Predicates Using Non-Boolean Queries

When developing the goToNextRow method (see Listing 4-3) we included the follow
ing if statement and comment:

3 {ƒifƒ(this.getAvenue()ƒ==ƒ5) // at the east end of the row
4 ƒƒ{ƒthis.turnRight();
5 ƒƒƒƒthis.move();
6 ƒƒƒƒthis.turnRight();
7 ƒƒ}

With an appropriate predicate, line 3 could be rewritten as follows:

3 {ƒifƒ(this.atRowsEastEnd())

Predicates such as atRowsEastEnd can help us produce self-documenting code. The
goal of self-documenting code is to make the code so readable that internal comments
explaining the code are not needed. In this case, atRowsEastEnd tells us the intention
of the test nearly as well as the comment, enabling us to remove the comment. It’s a
good idea to replace comments with self-documenting code because comments are
often overlooked as the code changes. When this happens comments can become
incomplete, misleading, or wrong.

Having a predicate such as atRowsEastEnd is also an advantage if the test must be
done at many places in the program. With a predicate, when the problem changes to
have rows that end at a different place or a bug is discovered, there is only one easily
identified place to change.

Coding this predicate follows the same procedure as before: take the Boolean expres
sion that would be included in the if or while statement and place it inside a method.
The method is as follows:

protectedƒbooleanƒatRowsEastEnd()
{ƒreturnƒthis.getAvenue()ƒ==ƒ5;
}

The query getDirection is similar to getAvenue except that it returns one of the
special values such as Direction.NORTH or Direction.EAST. These values can be
compared using == and !=, but not <, >, and so on.

This fact can be used to create the predicate isFacingSouth as follows:

protectedƒbooleanƒisFacingSouth()
{ƒreturnƒthis.getDirection()ƒ==ƒDirection.SOUTH;
}

This predicate, along with isFacingNorth, isFacingEast, and isFacingWest,
are used often enough that they have been added to the RobotSE class.

KEY IDEA

Appropriately
named predicates
lead to self-
documenting code.

Simple Predicate

KEY IDEA

Enumerated types
such as Direction
can be tested for
equality only.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 189

189

4.6 Using Parameters

4.6
U

SIN
G
 P

ARAM
ETERS

The ability to make decisions with if and while statements gives our methods a
tremendous amount of flexibility. They can have even more flexibility when we use
parameters. We have already used parameters by passing them arguments to specify
where to place robots when they are created, how large to draw a rectangle, and which
icon a Thing should use to display itself.

We have declared parameters every time we extended the Robot class and wrote a con
structor, as well as in Section 3.7.1 where we used parameters to place a stick figure at a
precise location. From these contexts, we know that each parameter declaration has a
type, such as int, and a name. Parameter declarations are placed between the parentheses
following the method’s name. If there is more than one declaration, consecutive pairs are
separated with commas. These points are illustrated in Figure 4-12.

(figure 4-12)

Declaring parameters Parameter’s type Comma separating pairs of declarations

Parameter’s name

public RobotSE(City aCity, int aStreet, int anAvenue, Direction aDirection)

Four parameter declarations

The type of the parameter determines what kind of values can be used as arguments. If
the parameter’s type is int, the arguments must be integers such as 15 or -23.
Similarly, only an object of type City can be passed as an argument to a parameter of
type City.

Inside the constructor or method, the name of the parameter can be used to reference the
value passed to it as an argument. Let’s use an example to understand how this works.

Suppose we want a subclass of Robot that can easily tell us if it has gone past a partic
ular avenue, say Avenue 50. We could use the getAvenue method and compare it to
50, but our code is more self-documenting with a predicate, as follows:

ifƒ(this.isPastAvenue(50))

{ƒ// what to do when the robot has strayed too far

The isPastAvenue method is written as follows:

privateƒbooleanƒisPastAvenue(intƒanAvenue)
{ƒreturnƒthis.getAvenue()ƒ>ƒanAvenue;
}

Simple Predicate

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 190

190
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

Inside the isPastAvenue method, anAvenue refers to the value passed as an argu
ment. In the preceding example, that value is 50 and the Boolean expression is evalu
ated as this.getAvenue()ƒ>ƒ50. However, if the argument is 100, as in
ifƒ(this.isPastAvenue(100)), then inside isPastAvenue the parameter
anAvenue will refer to the value 100. This one method can be used with any avenue—
a tremendous amount of flexibility compared to methods without parameters.

4.6.1 Using a while Statement with a Parameter

A parameter can also be used in the test controlling a while or if statement—and can
make the method more flexible, as well. For example, the following method moves a
robot east to Avenue 50:

/** Move the robot east to Avenue 50. The robot must already be facing east and
* must be on an avenue that is less than 50. */
publicƒvoidƒmoveToAvenue50()
{ƒwhileƒ(this.getAvenue()ƒ<ƒ50)
ƒƒ{ƒthis.move();
ƒƒ}
}

This method is extremely limited—it is only useful to move the robot to Avenue 50.
With a parameter, however, it can be used to move the robot to any avenue east of its
current location. The following method includes a parameter with an appropriate doc
umentation comment:

/** Move the robot east to destAve. The robot must already be facing east and

* must be on an avenue that is less than destAve.

* @param destAveƒƒƒƒThe destination avenue to move to. */

publicƒvoidƒmoveToAvenue(intƒdestAve)

{ƒwhileƒ(this.getAvenue()ƒ<ƒdestAve)

ƒƒ{ƒthis.move();

ƒƒ}

}

The statement karel.moveToAvenue(50) moves karel to Avenue 50 while
karel.moveToAvenue(5000) moves karel much farther. In both cases the argu
ment, 50 or 5000, is referred to inside the method as destAve.

KEY IDEA

The parameter refers
to the value passed
as an argument.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 191

191

KEY IDEA

Something in the
body of the loop must

change how the test
is evaluated.

Count-Down Loop

4.6.2 Using an Assignment Statement with a Loop

Consider the following ill-advised method:

publicƒvoidƒstep(intƒhowFar)

{ƒwhileƒ(howFarƒ>ƒ0)

ƒƒ{ƒthis.move();

ƒƒ}

}

Why is it ill advised? Consider telling karel to step four times with karel.step(4).
The while statement evaluates the expression howFarƒ>ƒ0, concluding that it is
true—four is larger than zero. The statement executes the move method and evalu
ates howFarƒ>ƒ0 again. howFar is still four, four is still greater than zero, and so the
move method is executed again. The value of howFar does not change in the body of
the loop, the test will always be true, and the loop will execute “forever.”

Suppose, however, that we could decrease the value of howFar in the body of the loop,
as indicated by the following pseudocode:

publicƒvoidƒstep(intƒhowFar)

{ƒwhileƒ(howFarƒ>ƒ0)

ƒƒ{ƒthis.move();

make howFar one less than it is now
ƒƒ}

}

That is, howFar starts with the value 4, then has the value 3, then 2, and so on—
assuming that step was called with an argument of 4, as in the preceding code. Now
we have a useful method, as illustrated in Figure 4-13. When howFar reaches the value
0, the loop stops and the robot has traveled four intersections. If we want karel to
take four steps, we write karel.step(4). If we want karel to take 400 steps, it’s as
easy as writing karel.step(400).

4.6
U

SIN
G
 P

ARAM
ETERS

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 192

192
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

while (howFar > 0)

{ this.move();

}
make howFar one less than it is now

howFar
is 4

while (howFar > 0)

{ this.move();

}
make howFar one less than it is now

howFar
is 3

make howFar one less than it is now

while (howFar > 0)

{ this.move();

}

howFar
is 2

howFar
is 1

howFar
is 0

while (howFar > 0)

{ this.move();

}
make howFar one less than it is now

howFar
is 0

(figure 4-13)

Illustrating the execution

of a count-down loop

A while statement that counts from a number down to zero is called a count-down loop.

We still need to explain, of course, how to make howFar be one less than it is now.
This change is accomplished with an assignment statement. An assignment statement
evaluates an expression and assigns the resulting value to a variable. A parameter is
one kind of variable.

The following is an assignment statement that decreases howFar’s value by one:

howFarƒ=ƒhowFarƒ–ƒ1;

When this assignment statement is executed, it evaluates the expression on the right
side of the equal sign by subtracting one from the current value of howFar. When
howFar refers to the value 4, howFarƒ–ƒ1 is the value 3. The value 3 is then assigned
to howFar. The parameter will refer to this new value until we change it with another
assignment statement or the method ends. Parameters are destroyed when the method
declaring them completes its execution.

LOOKING AHEAD

Other kinds of
variables will be
discussed in
Chapters 5 and 6.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 193

193

KEY IDEA

A count-down loop
performs actions a

specified number
of times.

(figure 4-14)

One pair of many possible

initial and final situations

for planting a rectangle

A count-down loop, like the one used in step, can be used to do many different activ
ities a specified number of times: picking up a specified number of things; turning a
specified number of times; and, with a more complicated loop body, harvesting a spec
ified number of rows from a field.

4.6.3 Revisiting Stepwise Refinement

A count-down loop can have a body that is more complex than a single move. The body
could contain more statements, or preferably, a call to a helper method. Furthermore, a
method can have more than one parameter and parameters can be passed as arguments
to helper methods. In this section we will develop a class of robots that illustrate all of
these principles. Our robots will plant Things in the shape of a hollow rectangle. The
width and height of the rectangle is specified with parameters when the plantRect
method is invoked. A sample initial and final situation is shown in Figure 4-14.

0 1 2
0

1

2

3 4 0 1 2
0

1

2

3 4

Initial situation Final situation

Our class is called RectanglePlanter and has a single service, plantRect. We want
the robot to be able to plant many different sizes of rectangles, a kind of flexibility that is
well-suited for using parameters. Two parameters are needed—one for the rectangle’s
width and one for the height. This usage follows the setSize command for a JFrame
and the drawRect command in the Graphics class. The following code fragment
instructs karel to plant a rectangle five Things wide and three Things high, as shown
in Figure 4-14. One notable feature is that the constructor allows specifying the number
of things initially in the robot’s backpack. Here it is set to 50.

RectanglePlanterƒkarelƒ=ƒnewƒRectanglePlanter(
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒgarden,ƒ0,ƒ0,ƒDirection.EAST,ƒ50);
...
karel.plantRect(5,ƒ3);

Implementing plantRect

The plantRect method requires two integer parameters, one for the width and one for
the height, corresponding to the arguments 5 and the 3 in the previous code fragment.
The beginning of the class, including a stub for plantRect and the constructor allowing
the initial number of Things in the backpack to be set, is as shown in Listing 4-5.

4.6
U

SIN
G
 P

ARAM
ETERS

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 194

194
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

Listing 4-5: Beginning the RectanglePlanter class

1 importƒbecker.robots.*;
2
3 /** A class of robots that plants Things in the form of a hollow rectangle.
4 *
5 * @author Byron Weber Becker */
6 publicƒclassƒRectanglePlanterextendsRobotSE
7 {
8 /** Create a new rectangle planter.
9 * @param aCity The robot's city.

10 * @param aStreet The robot's initial street.
11 * @param anAvenue The robot's initial avenue.
12 * @param aDir The robot's initial direction.
13 * @param numThings The number of things initially in the robot's backpack. */
14 ƒƒpublicƒRectanglePlanter(CityƒaCity,ƒintƒaStreet,
15 ƒƒƒƒƒƒƒƒƒƒintƒanAvenue,ƒDirectionƒaDir,ƒintƒnumThings)
16 ƒƒ{ƒsuper(aCity,ƒaStreet,ƒanAvenue,ƒaDir,ƒnumThings);
17 ƒƒ}
18
19 /** Plant a hollow rectangle of Things. The robot must be positioned in the
20 * rectangle's upper-left corner facing east.
21 * @param width The number of avenues wide.
22 * @param height The number of streets high. */
23 ƒƒpublicƒvoidƒplantRect(intƒwidth,ƒintƒheight)
24 ƒƒ{
25 ƒƒ}
26 }

To implement plantRect we need a strategy. Assuming we don’t want two Things on
each corner, one strategy is to plant a side of the rectangle by planting one less than the
length of the side. This strategy is illustrated in Figure 4-15. To make a side of length five,
for example, the robot will plant four things beginning with the next intersection and then
turn right. In general, the number of Things it plants is one less than the length of the side.

Planting a side four times, with the appropriate lengths for each side, results in the
desired rectangle.

ch04/rectanglePlanter/

0
0

1

1 2 3 4

2

(figure 4-15)

Strategy for planting a

rectangle

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 195

195

To carry this out, we can create a helper method, plantSide, that takes a parameter
specifying how long that side of the rectangle should be. Assuming that we can write
this helper method, the plantRect method can be completed as follows:

publicƒvoidƒplantRect(intƒwidth,ƒintƒheight)

{ƒthis.plantSide(width);

ƒƒthis.plantSide(height);

ƒƒthis.plantSide(width);

ƒƒthis.plantSide(height);

}

Note that the parameters, width and height, are passed as arguments to the helper
method. However, the plantSide method only requires one parameter because it is
only concerned with the length of a side and not the overall dimensions of the rectangle.

Implementing plantSide

The strategy for plantSide was already determined when outlining the overall strat
egy. We already know, from the way it was used in plantRect, that it has a single,
integer parameter. The parameter can have any name, but we will call it length
because it determines the length of the side.

plantSide plants a line that is one less than the length of the side and then turns right.
In pseudocode, this is as follows:

length = length - 1

plant a line of Things that is length Things long

turn right

The Java translation of this pseudocode uses of an assignment statement to decrease
the value passed to the parameter by one and a helper method to plant a line of things.
The completed method follows:

/** Plant one side of the rectangle with Things, beginning with the next intersection.
* @param length The length of the line. */
protectedƒvoidƒplantSide(intƒlength)

{ƒlengthƒ=ƒlengthƒ-ƒ1;

ƒƒthis.plantLine(length);

ƒƒthis.turnRight();

}

Implementing plantLine

Planting a line of Things requires repeating actions zero or more times (a while state
ment). It’s not a question of performing actions once or not at all (an if statement) or
performing either this action or that action (an if-else statement).

4.6
U

SIN
G
 P

ARAM
ETERS

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 196

196
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

What are the actions we must repeat? To plant a line of three things beginning with the
next intersection, for example, we must perform the following actions:

move

plant a thing

move

plant a thing

move

plant a thing

The actions that are repeated are moving and planting a thing. They form the body of
the while statement. We want them to be performed a specific number of times, as
specified by the parameter. This is an ideal application for a count-down loop. This
method is, in fact, identical to the step method developed earlier except that we also
need to plant a Thing on the intersection. The code for the method follows:

/** Plant a line of Things beginning with the intersection in front of the robot.
* @param length The length of the line. */
protectedƒvoidƒplantLine(intƒlength)

Count-Down Loop {ƒwhileƒ(lengthƒ>ƒ0)

ƒƒ{ƒthis.move();

ƒƒƒƒthis.plantIntersection();

ƒƒƒƒlengthƒ=ƒlengthƒ-ƒ1;

ƒƒ}

}

Finally, plantIntersection is a method to make future change easy. It contains a
single call to putThing, as shown in the following code:

/** Plant one intersection. */
protectedƒvoidƒplantIntersection()

{ƒthis.putThing();

}

This completes the implementation of the RectanglePlanter class. In the course of
its development we have demonstrated:

➤ A method with more than one parameter

➤ Passing parameters as arguments to helper methods

➤ A count-down loop with a more complex set of actions

4.7 GUI: Scaling Images

The graphical user interface section of Chapter 2 introduced us to drawing pictures
similar to the one shown in Figure 4-16. In this section, we’ll see how to use queries in
the JComponent class to make our image adapt to different sizes.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 197

197
4.7

G
U
I: S

CALIN
G
 IM

AG
ES

(figure 4-16)

Stick figure and a grid

used to design it

The code for the main method is shown in Listing 2-13. StickFigure is the class that
does the actual drawing. It was originally shown in Chapter 2 and is reproduced in
Listing 4-6. Notable points are that it sets the preferred size for the component in the
constructor at lines 8 and 9, and overrides paintComponent to draw the actual image.

Listing 4-6: A class to draw a stick figure

1 importƒjava.awt.*;
2 importƒjavax.swing.*;
3
4 publicƒclassƒStickFigureƒextendsƒJComponent
5 {
6 ƒƒpublicƒStickFigure()
7 ƒƒ{ƒsuper();
8 ƒƒƒƒDimensionƒprefSizeƒ=ƒnewƒDimension(180,ƒ270);
9 ƒƒƒƒthis.setPreferredSize(prefSize);

10 ƒƒ}
11
12 ƒƒ// Draw a stick figure.
13 ƒƒpublicƒvoidƒpaintComponent(Graphicsƒg)
14 ƒƒ{ƒsuper.paintComponent(g);
15
16 // head
17 ƒƒƒƒg.setColor(Color.YELLOW);
18 ƒƒƒƒg.fillOval(60,ƒ0,ƒ60,ƒ60);
19
20 // shirt
21 ƒƒƒƒg.setColor(Color.RED);
22 ƒƒƒƒg.fillRect(0,ƒ60,ƒ180,ƒ30);
23 ƒƒƒƒg.fillRect(60,ƒ60,ƒ60,ƒ90);

ch02/stickFigure/

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 198

198
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

Listing 4-6: A class to draw a stick figure (continued)

24
25 // pants
26 ƒƒƒƒg.setColor(Color.BLUE);
27 ƒƒƒƒg.fillRect(60,ƒ150,ƒ60,ƒ120);
28 ƒƒƒƒg.setColor(Color.BLACK);
29 ƒƒƒƒg.drawLine(90,ƒ180,ƒ90,ƒ270);
30 ƒƒ}
31 }

Now, suppose that we wanted the image to be a different size. The preferred size set in
the StickFigure constructor could be replaced with, for example, newƒ
Dimension(90,ƒ135) to make the image half as big in each dimension.

There is a problem, however. Making only this one change results in an image similar
to the one shown in Figure 4-17. Unfortunately, all of the calculations to draw the stick
figure were based on the old size of 180 pixels wide and 270 pixels high.

(figure 4-17)

Naively changing the size

of the stick figure

4.7.1 Using Size Queries

We can make the image less sensitive to changes in size by drawing it relative to the cur
rent size of the component. We can obtain the current size of the component, in pixels,
with the getWidth and getHeight queries. To paint a shape that covers a fraction of
the component, multiply the results of these queries by a fraction. For example, to spec
ify an oval that is two-sixths of the width of the component and two-ninths of the
height, we can use the following statement:

g.fillOval(0,ƒ0,ƒthis.getWidth()*2/6,ƒthis.getHeight()*2/9);

The first two parameters will place the oval at the upper-left corner of the component.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 199

199

The original stick figure was designed on a grid six units wide and nine units high.
Figure 4-16 shows this grid explicitly and makes it easy to figure out which fractions to
multiply by the width or the height. For example, the head can be painted with

g.fillOval(this.getWidth()*2/6,ƒthis.getHeight()*0/9,ƒ
ƒƒƒƒƒƒƒƒƒƒƒthis.getWidth()*2/6,ƒthis.getHeight()*2/9);ƒ

The first pair of parameters says the head’s bounding box should start 2/6th of the com
ponent’s width from the left edge and 0/9th of the component’s height from the top. The
second parameter could be replaced by 0.

Converting the remaining method calls to use the getWidth and getHeight queries
follows a similar pattern. It is tedious, however. Fortunately, there is a better approach.

4.7.2 Scaling an Image

Using getWidth and getHeight to scale an image follows a very predictable pattern,
as shown in the last section. Fortunately, the designers of Java have provided a way for
us to exploit that pattern with much less work on our part. They have provided a way
for the computer to automatically multiply by the width or the height of the compo
nent and divide by the number of units on our grid. All we need to do is supply the
numerator of the fraction that places the image or says how big it is. For example, in
the previous section we wrote the following statements:

g.fillOval(this.getWidth()*2/6,ƒthis.getHeight()*0/9,ƒ
ƒƒƒƒƒƒƒƒƒƒƒthis.getWidth()*2/6,ƒthis.getHeight()*2/9);ƒ

Java’s drawing methods can be set up so that this method call is replaced with the fol
lowing statement:

g.fillOval(2,ƒ0,ƒ2,ƒ2);

Using this approach requires three things: Using a more capable version of the
Graphics object, setting the scale to be used in drawing, and scaling the width of the
lines to use in drawing. All are easy and follow a pattern consisting of the following
four lines inserted at the beginning of paintComponent:

1 // Standard stuff to scale the image
2 Graphics2Dƒg2ƒ=ƒ(Graphics2D)g;
3 g2.scale(this.getWidth()/6,ƒthis.getHeight()/9);Scale an Image
4 g2.setStroke(newƒBasicStroke(1.0F/this.getWidth()));

4.7
G
U
I: S

CALIN
G
 IM

AG
ES

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 200

200
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

Explaining this code in more detail requires advanced concepts; however, the overview
is as follows:

➤	 Line 2 makes a larger set of capabilities in g available. More about this in
Chapter 12.

➤	 Line 3 tells the Graphics object how to multiply values to scale our paintings
appropriately.

➤	 Line 4 makes the width of a line, also called a stroke, proportional to the scal
ing performed in line 3.

Whether or not we understand exactly what these lines of code do, using them is easy:

➤	 Import the package java.awt.*.

➤	 Copy these four lines to the beginning of your paintComponent method.

➤	 Decide on the size of your grid, and change the “6” and “9” in the call to
scale accordingly. For a 50 x 100 grid, change the 6 to 50 and the 9 to 100.

➤	 Use g2 instead of g to do the painting.

The resulting paintComponent method is shown in Listing 4-7.

Listing 4-7: Painting a stick figure by scaling the image

1 publicƒvoidƒpaintComponent(Graphicsƒg)
2 {ƒsuper.paintComponent(g);
3
4 // Standard stuff to scale the image
5 ƒƒGraphics2Dƒg2ƒ=ƒ(Graphics2D)g;
6 ƒƒg2.scale(this.getWidth()/6,ƒthis.getHeight()/9);
7 ƒƒg2.setStroke(newƒBasicStroke(1.0F/this.getWidth()));
8
9 // head

10 ƒƒg2.setColor(Color.YELLOW);
11 ƒƒg2.fillOval(2,ƒ0,ƒ2,ƒ2);
12 ƒ
13 // shirt
14 ƒƒg2.setColor(Color.RED);
15 ƒƒg2.fillRect(0,ƒ2,ƒ6,ƒ1);
16 ƒƒg2.fillRect(2,ƒ2,ƒ2,ƒ3);
17 ƒ
18 // pants
19 ƒƒg2.setColor(Color.BLUE);
20 ƒƒg2.fillRect(2,ƒ5,ƒ2,ƒ4);
21 ƒƒg2.setColor(Color.BLACK);
22 ƒƒg2.drawLine(3,ƒ6,ƒ3,ƒ9);
23 }

ch04/stickFigure/

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 201

201

4.8 Patterns

4.8
P

ATTERN
S

4.8.1 The Once or Not at All Pattern

Name: Once or Not at All

Context: You are in a situation where executing a group of one or more statements
may or may not be appropriate, depending on the value of a Boolean expression. If the
expression is true, the statements are executed once. If the expression is false, they are
not executed at all.

Solution: Use the if statement, as in the following two examples:

ifƒ(this.canPickThing())

{ƒthis.pickThing();

}

ifƒ(this.numStudentsInCourse()ƒ<ƒ100)

{ƒthis.addStudentToCourse();

}

In general, use the following template:

ifƒ(«test»)

{ƒ«listƒofƒstatements»

}

If possible, state the test positively. Easily understood predicate names contribute to easily
understood code. For example, if the statement ifƒ(this.numStudentsInCourse()ƒ
<ƒthis.maxEnrollment()) is really checking if there is room in the course for one more
student to be added, then using a predicate such as ifƒ(this.roomInCourse())ƒmakes
the code easier to understand.

Consequences: Programs are able to respond differently, depending on the situation.
In particular, an action is executed either once or not at all.

Related Patterns:
➤	 The Either This or That pattern executes one of two actions. This pattern is a

special case of that one.

➤	 The Zero or More Times pattern is useful if an action is to be executed repeat
edly rather than once or not at all.

➤	 The Simple Predicate pattern is often used to create more easily under
stood «test»s.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 202

202
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

4.8.2 The Zero or More Times Pattern

Name: Zero or More Times

Context: You are in a situation where a group of one or more statements must be exe
cuted a (usually) unknown number of times. It might be as few as zero times, or possi
bly many times. Whether to repeat the statements again can be determined with a
Boolean expression.

Solution: Use a while statement to control the execution of the statements. When the
test evaluates to true, the statements are executed and the test is performed again.
This continues until the test evaluates to false. The following example is an example
of the pattern:

whileƒ(this.frontIsClear())
{ƒthis.turnLeft();
}

This loop turns the robot until it is facing a wall. If there is no wall blocking one of the
four directions, it will turn forever.

In general, use the following template:

whileƒ(«test»)
{ƒ«listƒofƒstatements»
}

As with the if statement, a while statement is easiest to read and understand if the
test is stated positively.

Consequences: The list of statements may be executed as few as zero times or they
may execute forever. Such infinite loops are not desirable and should be guarded
against.

Related Patterns:
➤	 The Count-down Loop pattern is a special case of Zero or More Times.

➤	 The Once or Not at All pattern executes an action either zero or one times
rather than zero or more times.

➤	 The Simple Predicate pattern is often used to create more easily under
stood «test»s.

4.8.3 The Either This or That Pattern

Name: Either This or That

Context: You have two groups of statements. Only one group should be executed and
which one depends on the result of a Boolean expression.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 203

203

Solution: Use an if-else statement to perform the test and govern which group of
statements is executed, as in the following example:

ifƒ(this.frontIsClear())

{ƒthis.move();

}ƒelse

{ƒthis.turnLeft();

}

Following is the general form of an if-elseƒstatement:

ifƒ(«test»)

{ƒ«statementGroup1»

}ƒelse

{ƒ«statementGroup2»

}

If «test» evaluates to true, «statementGroup1» is executed and «statement
Group2» is not executed. If «test» evaluates to false, «statementGroup2» is exe
cuted and «statementGroup1» is not.

Consequences: The pattern allows programs to choose between two courses of action
by evaluating a Boolean expression.

Related Patterns:
➤	 The Once or Not at All pattern is a special case of this pattern useful for when

there is only one action that may or may not be executed.

➤	 If there are more than two actions, only one of which is executed, consider the
Cascading-If pattern, described in Section 5.8.6.

➤	 The Simple Predicate pattern is often used to create more easily under
stood «test»s.

4.8.4 The Simple Predicate Pattern

Name: Simple Predicate

Context: You are using a Boolean expression that is not as easy to read or understand
as is desirable. Perhaps it is a complicated expression or perhaps the names of the
queries don’t match the problem.

Solution: Define a new method that performs the processing to find the required result,
returning true or false to its client. Such methods are called predicates. For exam
ple, the following code defines a predicate named frontIsBlocked:

publicƒbooleanƒfrontIsBlocked()

{ƒreturnƒ!this.frontIsClear();

}

4.8
P

ATTERN
S

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 204

204
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

With this predicate, we could write whileƒ(this.frontIsBlocked()) instead of
whileƒ(!this.frontIsClear()).

Following is a template for such a predicate:

«accessModifier»ƒbooleanƒ«predicateName»()

{ƒreturnƒ«aƒbooleanƒexpression»;

}

Consequences: Statements that use a predicate, such as this.frontIsBlocked(),
are easier to understand than those that use the equivalent test, such as
!this.frontIsClear(). A predicate can be easily used many times, reducing the
total time to code, test, and debug the program.

Related Patterns:
➤	 The Predicate pattern is often used to define predicates used in the Once or Not

at All, Zero or More Times, and Either This or That patterns, among others.

➤	 The Simple Predicate pattern is a specialization of the more general Predicate
pattern discussed in Section 5.8.5.

4.8.5 The Count-Down Loop Pattern

Name: Count-Down Loop

Context: You must perform an action a specified number of times. The number is often
given via a parameter.

Solution: Write a while statement that uses a variable, often a parameter variable, to
count down to zero. When the value reaches zero, the loop ends. The general form of
the count-down loop is as follows:

whileƒ(«variable»ƒ>ƒ0)

{ƒ«listƒofƒstatements»

ƒƒ«variable»ƒ=ƒ«variable»ƒ-ƒ1;

}

A concrete example of the count-down loop is the plantLine method which puts a
row of Things, the length of which is determined by the parameter.

publicƒvoidƒplantLine(intƒlength)

{ƒwhileƒ(lengthƒ>ƒ0)

ƒƒ{ƒthis.move();

ƒƒƒƒthis.putThing();

ƒƒƒƒlengthƒ=ƒlengthƒ–ƒ1;

ƒƒ}

}

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 205

205

Consequences: The Count-Down Loop pattern gives programmers the ability to per
form an action a specified number of times, even if the number is large. Putting the
count-down loop inside a method and using a parameter provides even more flexibility.

Related Patterns: The Count-Down Loop pattern is a special case of the Zero or More
Times pattern.

4.8.6 The Scale an Image Pattern

Name: Scale an Image

Context: An image drawn by the paintComponent method in a subclass of
JComponent needs to scale to different component sizes.

Solution: Draw the image based on a predefined grid for the coordinates. Then use the
following code template to use that coordinate grid while drawing.

publicƒvoidƒpaintComponent(Graphicsƒg)

{ƒsuper.paintComponent(g);

// Standard stuff to scale the image
ƒƒGraphics2Dƒg2ƒ=ƒ(Graphics2D)g;
ƒƒg2.scale(this.getWidth()/«gridWidth»,
ƒƒƒƒƒƒƒƒƒƒƒthis.getHeight()/«gridHeight»);
ƒƒg2.setStroke(newƒBasicStroke(1.0F/this.getWidth()));

ƒƒ«statementsƒusingƒg2ƒtoƒdrawƒtheƒimage»

}

Consequences: The parameters provided to methods in Graphics2D such as
drawRect are multiplied by either this.getWidth()/«gridWidth» or
this.getHeight/«gridHeight», as appropriate. The changes made to g2 will per
sist even if it is passed to a helper method.

Related Patterns: This pattern is a specialization of the Draw a Picture pattern.

4.9 Summary and Concept Map

4.8
P

ATTERN
S

Programs that always execute the same set of statements, one after another, are fairly
limited. Introducing Boolean expressions that can be evaluated—such as whether a
robot is facing north or is on Avenue 8—makes programs much more flexible. They
can execute statements once or not at all with an if statement or execute statements
zero or more times with a while statement. An if-else statement uses the test to

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 206

206
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

determine which of two actions to execute and a count-down loop can execute an
action a specified number of times.

Using predicates in the tests used by if and while statements can make them easier to
understand, debug, test, and maintain, all of which increases the quality of programs.

Boolean expressions used in if and while statements allow a program to respond to
varying situations. Using parameters can make a program even more flexible. A para
meter receives a value passed as an argument from the client code. That value can then
be used inside the method to control its execution.

Boolean
expressions

evaluate to true, false

if
statements control

statements

m
ay

 b
e

ex
ec

ut
ed

 o
nc

e
or

 n
ot

 a
t

al
l b

y

while
statements

control

may be executed
zero or more times by

count-down
loops

ar
e

sp
ec

ia
l

fo
rm

s
of

predicates

ca
n

us
e

answerquestions with

side effects

isBesideThing,
frontIsClear

are examples of

queries

are
 sp

ec
ial

for
ms o

f

return
statements

getWidth,
getAvenue,

readInt
are examples of

are

ar
e

ca
n

us
e

give answers with

scaling
images

parameters

may use

argument refer to the value passed
in the corresponding

name and
type

are declared with a

if-else
statements

are a generalization of

method
calls are

uses

should not have

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 207

207

4.10 Problem Set

4.10
P

RO
BLEM

 S
ETWritten Exercises

4.1	 Evaluate the following Boolean expressions for a Robot. Assume the robot is

on intersection (1, 5) facing north. There is a Wall immediately in front of it.

In each case your answer will be either true or false.

a. this.getAvenue()ƒ>ƒ0

b. this.getAvenue()ƒ<=ƒ5

c. this.getStreet()ƒ!=ƒ1

d. !(this.getStreet()ƒ==ƒ1)

e. this.frontIsClear()

f. !this.frontIsClear()

g. !!this.frontIsClear()

h. this.frontIsClear()ƒ==ƒfalse

4.2	 Consider the following if-else statements. Do they behave the same way or
differently? Justify your answer.

ƒifƒ(this.canPickThing())ƒƒƒƒƒƒƒƒƒƒifƒ(!this.canPickThing())
ƒ{ƒthis.turnRight();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{ƒthis.turnLeft();
ƒ}ƒelseƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ}ƒelse
ƒ{ƒthis.turnLeft();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{ƒthis.turnRight();
ƒ}ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ}

4.3	 Consider the goToNextRow method developed in Section 4.3.3 and shown in

Listing 4-3.

a. In a table similar to Table 1-2, trace the method when the robot is on (1, 1)
facing west, again when it is on (1, 3) facing west, and once again when the
robot is on (1, 5) facing east.

b. Describe what happens if the method is modified for rows of length 1. That is,
the west end of the row is on Avenue 1 and the east end is also on Avenue 1.

c. Rewrite the method using an if-else statement.

d. The current method requires the rows to start and end on specified
avenues. Rewrite the method using a different test to remove this restric
tion. The new method will allow the method to be used in any size field
without modification.

4.4	 Figure 4-13 illustrates the execution of a whileƒloop. Trace the loop using a
table similar to Table 1-2. Include columns for the robot’s street, avenue, direc
tion, and the parameter howFar. Assume the robot begins on (2, 5) facing east
and that the step method was called with an argument of 4.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 208

208
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

Programming Exercises

4.5	 Write methods named turnLeft, pickThing, and putThing that allow the
client to specify how many times the robot turns, picks, and puts, respectively.

4.6	 Write a pair of methods, as follows:

a. carryExactlyEight ensures a robot is carrying exactly eight things in its
backpack. Assume the robot is on an intersection with at least eight things
that can be picked up

b. Generalize carryExactlyEight to carryExactly. The new method will
take a parameter specifying how many Things the robot should carry.

4.7	 Write a new robot method, faceNorth. A robot that executes faceNorth will
turn so that getDirection returns Direction.NORTH.

a. Write faceNorth so that the robot turns left until it faces north. Use several
if statements.

b. Write faceNorthƒso that the robot turns left until it faces north. Use a
while statement.

c. Write faceNorth so that the robot turns either left or right, depending on
which direction requires the fewest turns to face north.

4.8	 Write a robot method named face. It takes a single direction as a parameter

and turns the robot to face in that direction. The robot does not need to use

the minimal number of turns.

4.9	 Code and run brief examples of the following errors and report how your com
piler handles them.

a. A method with a return type of void that includes the statement
returnƒ!this.canPickThing();.

b. A method with a return type of boolean that does not include a return
statement.

c. A method named experiment that takes a single integer argument. Call it
without an argument, with two arguments, and with Direction.NORTH.

Programming Projects

4.10 Finish the implementation of the Racer class shown in Listing 4-4.

Demonstrate your class with at least two different race courses.

4.11 Listing 3-3 is the complete implementation of the Harvester class, a class of
robots designed to harvest a field of things. Implement the class again using your
knowledge of if and while statements. Your new class of robots should be able
to harvest a rectangular field of any size provided that things cover the field com
pletely and the field is bordered by intersections that do not have any things on it

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 209

209
4.10

P
RO

BLEM
 S

ET

(figure 4-18)

Neighborhood that

requires snow to be

shoveled

(in particular, there are no walls bordering the field). Note that the original solu
tion required the field to have an even number of rows. Your solution should not
have that restriction. Assume the upper-left corner of the field is at (1, 1).
Demonstrate your robot harvesting at least two fields with different sizes.

4.12	 karel and tina, instances of ShovelBot, are in business together as snow
shovelers. karel shovels the snow (Things) from the driveways, placing them
on the sidewalk. Then, while karel rests, tina moves all the snow left on the
sidewalk to the end of the sidewalk.

An initial situation with its corresponding final situation is shown in Figure 4-18.
It is known that karel and tina always start at one end of the sidewalk. The
sidewalk always extends beyond the first and last driveways, but it is not known
how many driveways there are, the width of the driveways, or the length of the
driveways.

Road Sidewalk Driveway

Initial situation	 Final situation

4.13 Implement a Guard class of robots that can guard either King Java’s castle or
King Caffeine’s castle, plus other castles with similar layouts but different sizes.
See Programming Projects 3.12 and 3.13 for descriptions of these castles. You
may assume that the corner turrets are each one wall square and that the cen
tral courtyard of the castle has at least one wall on each side. Create several
files specifying different sizes of castles to use in testing your program.

4 Chapter C5743 40143.ps 11/30/06 1:19 PM Page 210

210
CH

AP
TE

R
4

| M
AK

IN
G
 D

EC
IS

IO
N
S

4.14 A method named goToOrigin could use the following algorithm to move a
robot to intersection (0, 0):

face avenue 0

move to avenue 0

face street 0

move to street 0

Assume the city has no obstructions such as Walls.

a. Implement goToOrigin using the given algorithm.

b. Write a method named goTo that allows the programmer to specify the
intersection the robot is to go to.

4.15. Suppose that data from a poll is represented by Thing objects. There is one
Thing object on intersection (1, 1) for each person who selected response “a”.
Two people selected response “b” in the poll, resulting in two Thing objects
on intersection (1, 2). Similarly, the number of objects on the remaining inter
sections represents the number of people selecting particular responses.

Write HistogramBot to create a histogram (commonly called a bar chart) for
the data. An instance of HistogramBot will pick up the things on each inter
section and spread them out (one per intersection) to form a bar. Sample initial
and final situations are shown in Figure 4-19. Test your program with different
numbers of things on each pile as well as with different numbers of piles.

0 1 2
0

1

2

4

3 4 5

3

5

3

2

5

4

0 1 2
0

1

2

4

3

5

3 4 5

Sample initial situation Corresponding final situation

16. Sketch a scene on graph paper that uses a combination of ovals, rectangles,
lines, and perhaps strings (text). Write a program that paints your scene, using
the scaling techniques in Section 4.7.

(figure 4-19)

Sample pair of initial and

final situations for a

HistogramBot

 Chapter 5 More Decision Making

Chapter Objectives

After studying this chapter, you should be able to:

➤ Follow a process for constructing while loops with fewer errors

➤ Avoid common errors encountered with while loops

➤ Use temporary variables to remember information within methods

➤ Nest statements inside other statements

➤ Manipulate Boolean expressions

➤ Perform an action a predetermined number of times using a for statement

➤ Write if and while statements with appropriate style

The if and while statements studied in Chapter 4 form the basis for making decisions
in programs. Any program you care to write can be written with using only the if and
while statements to change the flow of control. This chapter continues the discussion
with variations of the if statement and other ways to repeatedly execute statements
that can simplify our code even though they are not strictly required. It explores a
process for constructing while statements and points out errors to avoid. In short, this
chapter summarizes the accumulated wisdom of programming with if and while
statements.

Sometimes decisions are made based on what has happened in the past. Such decisions
are facilitated by temporary variables that can remember information for later use in
the same method.

211

212

5.1 Constructing while Loops

CH
AP

TE
R

5
| M

O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

In Chapter 4, we learned how to affect the sequence in which program statements are
executed with the if and while statements. In this section, we will examine some
common errors and a more rigorous process for constructing while loops that can
help you avoid those errors.

5.1.1 Avoiding Common Errors

The while statement provides a powerful programming tool. By using it wisely, we
can solve complex problems. However, the sharper the ax, the deeper it can cut, as they
say. With the power of the while statement comes the potential for making some sig
nificant mistakes. This section will examine several typical errors beginning program
mers make when using the while statement. If we are aware of these errors, we have a
better chance of avoiding them and an easier time identifying them for correction when
they do occur.

The Fence-Post Problem

If we want to build three fence sections, how many fence posts will we need? The obvi
ous answer is three, but that is wrong. Look at Figure 5-1. The figure should help us to
understand why the correct answer is four.

(figure 5-1) 1 2 3

1 2 3 4 Fence-post problem

We can encounter the fence-post problem when using the while loop. For example,
consider the problem of clearing all the Things between a robot and a wall. The
robot’s starting intersection also contains a Thing, as shown in Figure 5-2.

(figure 5-2)

Initial situation for

an example of the

fence-post problem
It might seem that a natural way to solve this problem is with the following method:

publicƒvoidƒclearThingsToWall()ƒ

{ƒwhileƒ(this.frontIsClear())ƒ

ƒƒ{ƒthis.pickThing();ƒ

ƒƒƒƒthis.move();ƒ

ƒƒ}

}

213

If we trace the method’s execution carefully, we discover that the loop finishes and the
robot does not crash into the wall. However, the easternmost Thing is not picked up,
as shown in Figure 5-3.

(figure 5-3)

After executing

clearThingsToWall

5.1
C

O
N
STRU

CTIN
G
 while L

O
O
PS

Loop-and-a-Half

LOOKING AHEAD

The while-true
loop is an elegant

solution to the loop
and-a-half problem.

See Section 5.5.3.

KEY IDEA

Every loop must have
a statement that can

affect the test.

In this example, the Things are the fence posts and the moves are the fence sections.
The while loop executes the same number of pickThing and move statements.
Consequently, one Thing will be left when the loop finishes. We can handle this situa
tion by adding an extra pickThing command after the while loop finishes executing,
as shown in the following code fragment:

publicƒvoidƒclearThingsToWall()ƒ
{ƒwhileƒ(this.frontIsClear())ƒ
ƒƒ{ƒthis.pickThing();ƒ
ƒƒƒƒthis.move();ƒ
ƒƒ}
ƒƒthis.pickThing();
}

It is surprising how often the fence-post problem occurs in computer science. It is also
known as the loop-and-a-half problem because, in one sense, the loop executes an extra
half iteration when the last thing is picked.

Infinite Loops

You may have experienced a computer program that hangs. It appears to be running
fine and then mysteriously fails to respond to your commands. The entire program
appears “frozen.” Such a program is probably caught in an infinite loop. An infinite
loop is one that has no way of ending because the programmer has forgotten to include
a statement (or sequence of statements) whose execution allows the loop’s test to
become false. Here is an example:

whileƒ(this.isFacingNorth())ƒ
{ƒthis.pickThing();ƒ
ƒƒthis.move();ƒ
}

Nothing within this loop will change the robot’s direction. As a result, the loop will
iterate zero times if the robot is initially facing any direction other than north.
Unfortunately, if it is facing north, we condemn the robot to walk forever (unless, of
course, it breaks because there is no Thing to pick up or it runs into a wall; it will also

214
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

stop if the computer itself crashes or the computer’s power supply is disrupted).1 We
must be very careful when we plan the body of the while loop to avoid the possibility
of an infinite loop.

5.1.2	 A Four-Step Process for Constructing while Loops

The common errors discussed in the previous section, plus difficulties you probably
experienced constructing loops in the previous chapter, should motivate you to study a
formal process to construct while loops. The goal is to structure our thinking so that
our loops are more likely to be written correctly.

There are four steps. We first outline them briefly and then illustrate them with two
examples.

Step 1:	 Identify the actions that must be repeated to solve the problem.

Step 2:	 Identify the Boolean expression that must be true when the while statement
has completed executing. Negate it.

Step 3:	 Assemble the while loop with the actions from Step 1 as the body and the
Boolean expression from Step 2 as the test.

Step 4:	 Add additional actions before or after the loop to complete the solution.

We will now apply this four-step process to two examples. The first is the
clearThingsToWall problem discussed in Section 5.1.1. The second is a more com
plicated problem.

Applying the Four-Step Process to Clearing Things

Consider again the problem of clearing all the Things between (and including) the
robot’s intersection and a Wall, as shown in Figure 5-2. We don’t know how far away
the Wall is.

Step 1 is to identify the actions that must be repeated. One way to do this is to solve a
small example of the problem without a loop. The four Things in Figure 5-2 already
qualifies as a small problem (much smaller than, say, 400!). To solve it, we need to per
form the following actions:

1 Of course, if we have overridden pickThing or move, then anything is possible. One of the new ver
sions could change the direction, and then the robot would exit the while loop.

215

Loop-and-a-Half

pick a thing r
move

pick a thing
 r
move

pick a thing
 rmove

pick a thing

Clearly, two actions are repeated, pick a thing and move. In particular, note that the
two actions appear in groups—as shown by the brackets on the right—and that one of
the actions doesn’t appear in any of the groups. Because of that extra action, there are
actually two ways to group the repeated actions. The other grouping results in an extra
pick a thing at the beginning of the sequence.

Step 2 is to identify the Boolean expression that must be true when the loop finishes.
The robot should stop collecting things when it is blocked by a wall; that is, the loop
should stop when the test this.frontIsBlocked is true. But the test for a while
statement isn’t whether the loop should stop; the test is whether the loop should con
tinue. Therefore, the test to use is the negation of this.frontIsBlocked():
!this.frontIsBlocked() or this.frontIsClear().

Step 3 assembles the while loop using a group of repeated actions from Step 1 and the
Boolean expression from Step 2. This yields the following code:

whileƒ(this.frontIsClear())
{ƒthis.pickThing();
ƒƒthis.move();
}

Finally, Step 4 cleans things up. Recall, for example, that there was one action in Step 1
that wasn’t included in any of the groups. This is the extra fence post from the loop
and-a-half problem. The extra action was at the end of the preceding sequence and so it
is placed after the loop. The final solution is as follows:

whileƒ(this.frontIsClear())
{ƒthis.pickThing();
ƒƒthis.move();
}
this.pickThing();

Applying the Four-Step Process to Shifting Things

A more difficult looping problem is a robot shifting a pile of Things from one inter
section to the next, as shown in Figure 5-4.

5.1
C

O
N
STRU

CTIN
G
 while L

O
O
PS

216
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

10 10	

(figure 5-4)

Shifting a pile of Thing
objects to the nextInitial situation Final situation
intersection

There are four requirements:

➤ The pile will always have at least one Thing.

➤ The robot can only move one Thing at a time.

➤ The robot must finish on the intersection to which it has moved the pile.

➤	 The robot must not move unnecessarily. Specifically, it must not go back to the

original intersection when that intersection is empty.

This problem clearly requires actions to be performed zero or more times rather than
once or not at all. Therefore a while loop is required, and we can apply the four-step
process.

Step 1 is to identify the steps that must be repeated. As before, we assume a typical ini- KEY IDEA

tial situation and solve the problem without a loop. In this case, assume the pile has Identify the repeating

four Things on it. (Remember, our final solution must handle a pile of any size. We are steps with a loopless
solution.assuming four things only while we find the steps that repeat.) To move all four

Things to the next intersection, the robot must perform the following steps:

pick up one thing

shift it to the next intersection s

go back to the original intersection s

pick up one thing
 s
shift it to the next intersection s

go back to the original intersection s
pick up one thing s
shift it to the next intersection s
go back to the original intersection s
pick up one thing s
shift it to the next intersection

This sequence of actions has three actions that must be repeated: pick up one thing,
shift it to the next intersection, and go back to the original intersection. As before, we
group them with brackets, as shown in the preceding pseudocode. With two actions
left over in the sequence, however, determining what comes before and after the loop
will be trickier than in the previous example.

Step 2 identifies the test that must be true when the loop has finished executing. We can
consider several possible tests:

➤	 the robot is on the next intersection—This can’t be the correct test to end the

loop because the robot is on the next intersection many times while moving

the Things.

217

➤	 the original intersection has no things on it—This is the test that must be true
when the loop is finished executing. If it’s not true, the task obviously isn’t fin
ished. If it is true, we might have a little cleanup to do, but the repetitious
work is over.

In Java, this test can be expressed with the Boolean expression !this.canPickThing().
That is, the loop stops when the robot can’t pick up any more Things from the original
intersection. The test that determines when the while loop should continue is the nega
tion of this, or this.canPickThing().

Step 3 assembles the loop. The test was identified in Step 2, giving us the following
structure:

whileƒ(this.canPickThing())
{ƒ...
}

The question is how to arrange the repeated action inside the loop. There are actually
three possibilities, as follows. In each case, Step 4 is anticipated and the leftover actions
are placed either before or after the loop, depending on how they appear in the loop-
less solution from Step 1.

whileƒ(this.canP…) pick up one thing pick up one thing
{ƒpick up one thing whileƒ(this.canP…) shift it
ƒƒshift it {ƒshift it whileƒ(this.canP…)
ƒƒgo back ƒƒgo back {ƒgo back
} ƒƒpick up one thing ƒƒpick up one thing
pick up one thing } ƒƒshift it
shift it shift it }

Barring a flash of insight, the way to choose one of these options is to trace them. An
excellent situation to use for your first trace is the smallest possible problem: one
Thing on the original intersection. Try tracing the left-most loop for yourself. You
should convince yourself that it fails for two reasons. First, it tries to pick a Thing
from an empty intersection. Second, the problem specification says it can’t return to
the intersection after it is empty, which it does.

The right-most loop also has problems. On any sized problem it picks up a Thing and
shifts it to the next intersection. But then it determines if it can pick up the Thing it,
just shifted. It’s performing the test on the wrong intersection.

The middle loop executes correctly. It picks up a Thing from the intersection and then
asks if there is another Thing for the next trip. When the pile has just one Thing in it,
there is nothing left for another trip, and so it skips the loop body and shifts the Thing
it just picked up to the next intersection.

This is not an obvious solution. It takes a deep insight to realize that the test for pick
ing up a Thing should be performed after picking one up and not before. There is no

5.1
C

O
N
STRU

CTIN
G
 while L

O
O
PS

218
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

algorithm for solving such a problem, but the four-step process provides significant
guidance in finding a solution.

Reasoning about the while Statement

We just demonstrated that, at least in pseudocode, our solution works for one particu
lar instance of the problem. But what about all the other sizes of piles? We cannot test
all possible initial situations (there are infinitely many of them), but we can test several
and do a reasonable job of convincing ourselves that the solution is correct.

One method of informally reasoning about the statement has two steps. First, we must
show that the statement works correctly when the initial situation results in the while
statement’s test being false. That is, in fact, the situation we just traced where the pile
contained only one Thing. It picked that Thing up and then performed the test, which
evaluated to false.

Second, we must show that each time the loop body is executed, the new situation is a
smaller but similar version of the old situation. By smaller, we mean there is less work
to do before finishing the loop. By similar, we mean that the situation has not radically
changed while executing the loop body. (In this example, a non-similar change could
be that the robot is facing a different direction.)

By tracing a few iterations of the loop, we see that after each iteration, the size of the pile
decreases by one. This gives us confidence that the situation will eventually reach the case
where the while loop becomes false, which we already checked for correctness.

5.2 Temporary Variables

KEY IDEA

Trace a situation
where the loop body
does not execute.

KEY IDEA

Demonstrate that
executing the loop
body results in a
smaller but similar
version of the problem.

The Robot class has a method to count the number of Things in its backpack, but
there is no corresponding method to count the number of Things on an intersection.
One can imagine, for example, a Robot that is following a trail left behind by another
Robot. Finding zero Things on the intersection means to go forward, finding one
Thing means to go left, and finding two Things means to go right. With the knowl
edge we have now, such a problem would be very difficult to solve.

A temporary variable, also called a local variable, is the core of one solution. A tempo
rary variable stores a value for later use within the same method. We have already used
temporary variables, starting with Chapter 1. sanDiego and karel are both tempo
rary variables in the following code fragment:

CityƒsanDiegoƒ=ƒnewƒCity();
Robotƒkarelƒ=ƒnewƒRobot(sanDiego,ƒ1,ƒ2,ƒDirection.EAST);
...
karel.move();

KEY IDEA

A temporary variable
stores a value for later
use in the method.

219

Temporary Variable

Temporary Variable

Both of them are storing a value, a reference to an object, for later use within the same
method (main).

To count the number of Things on an intersection, we’ll use a temporary variable, but
one storing an integer rather than a reference to a Robot or City.

A temporary variable used to count something would typically be declared like this:

intƒcounterƒ=ƒ0;

Like the City and Robot declarations shown earlier, this declaration has a type and a
name followed by its initial value. The type is int and the name is counter. The type
of int specifies that this variable will only store a particular kind of value, integers.
The initial value is zero, the first value assigned to the variable.

We have already worked with one kind of integer variable when we used parameters
in Section 4.6.1. In that case, we decremented the parameter howFar with the state
ment howFarƒ=ƒhowFarƒ–ƒ1. Similarly, counter can be decremented with the state
ment counterƒ=ƒcounterƒ–ƒ1. It’s not surprising that counterƒ=ƒcounterƒ+ƒ1
increments the value in counter by one.

5.2.1 Counting the Things on an Intersection

With this background, let’s count the Things on an intersection with the idea that a robot
may be used to follow a trail, as described earlier. In pseudocode, we use the following:

count the number of things here

ifƒ(number of things hereƒ==ƒ0)

{ƒmove

}

ifƒ(number of things hereƒ==ƒ1)

{ƒturn left

}

ifƒ(number of things hereƒ==ƒ2)

{ƒturn right

}

We begin by declaring a temporary variable to use in determining the number of
Things on the intersection. We can also update the pseudocode to use it in appropriate
places, as follows:

intƒnumThingsHereƒ=ƒ0;

update numThingsHere with the number of things on this intersection

ifƒ(numThingsHereƒ==ƒ0)
{ƒthis.move();
}

5.2
T

EM
PO

RARY V
ARIABLES

220
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

ifƒ(numThingsHereƒ==ƒ1)

{ƒthis.turnLeft();

}

ifƒ(numThingsHereƒ==ƒ2)

{ƒthis.turnRight();

}

We can now focus on the remaining pseudocode to update numThingsHere. Our strat
egy will be to pick up all of the Things on the intersection, increasing numThingsHere
by one each time a thing is picked up. There may be many things, so a while loop is
appropriate. In terms of the four-step process for writing a loop, the actions to repeat
(Step 1) are picking a Thing and incrementing the variable. The test for stopping (Step 2)
is when there is nothing left on the intersection. Therefore, the loop should continue while
canPickThing returns true. Assembling the loop (Step 3) yields the following code:

whileƒ(this.canPickThing())

{ƒthis.pickThing();

ƒƒnumThingsHereƒ=ƒnumThingsHereƒ+ƒ1;

}

For this problem, there is nothing to do before or after the loop (Step 4).

The completed code fragment for counting the number of Things on an intersection
and turning in the appropriate direction is shown in Listing 5-1.

Listing 5-1: A code fragment to count the number of Things on an intersection and move

appropriately

1 intƒnumThingsHereƒ=ƒ0;
2 whileƒ(this.canPickThing())
3 {ƒthis.pickThing();
4 ƒƒnumThingsHereƒ=ƒnumThingsHereƒ+ƒ1;
5 }
6
7 ifƒ(numThingsHereƒ==ƒ0)
8 {ƒthis.move();
9 }

10 ifƒ(numThingsHereƒ==ƒ1)
11 {ƒthis.turnLeft();
12 }
13 ifƒ(numThingsHereƒ==ƒ2)
14 {ƒthis.turnRight();
15 }

Counting

221
5.2

T
EM

PO
RARY V

ARIABLES

(table 5-1)

Tracing the execution

of the code fragment

in Listing 5-1

Program Statement

5.2.2 Tracing with a Temporary Variable

We can increase our understanding of the code in Listing 5-1 by tracing it. Doing so
will also increase our confidence in its correctness. As usual, we shall employ a table to
record the statements executed and the state of the program. To adequately trace the
state for this fragment, we need to record the Robot’s street, avenue, and direction; the
value of numThingsHere; and the number of Things on the intersection. It is also use
ful to record the results of the tests performed by the if and while statements. A sin
gle column will do for both tests, and we will only record the result in the line where it
is executed. We don’t need to record the number of Things in the robot’s backpack
because that information is not used in the code fragment.

Table 5-1 traces the situation in which the Robot is facing north on (3, 5). That inter
section has two Thing objects. The code should cause the Robot to turn right to face
east—which it does.

test (str, ave) Direction numThingsHere	 Number on
Intersection

(3, 5) north ??? 2

(3, 5) north 0 2

1ƒƒintƒnumThingsHereƒ=ƒ0;

2ƒƒwhileƒ(this.canPickThing())

3ƒƒ{ƒthis.pickThing();

true (3, 5) north 0 2

(3, 5) north 0 1

(3, 5) north 1 1

2ƒƒwhile (this.canPickThing())

true (3, 5) north 1 1

4ƒƒƒƒnumThingsHereƒ=ƒnumThingsHere + 1;

3ƒƒ{ƒthis.pickThing();

(3, 5) north 1 0

4ƒƒƒƒnumThingsHere = numThingsHere + 1;

(3, 5) north 2 0

2ƒƒwhileƒ(this.canPickThing())

false (3, 5) north 2 0

222

Program Statement test (str, ave) Direction numThingsHere Number on
Intersection

7ƒƒifƒ(numThingsHere == 0)

false (3, 5) north 2 0

CH
AP

TE
R

5
| M

O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

10ƒifƒ(numThingsHere == 1)

false (3, 5) north 2 0

13ƒifƒ(numThingsHere == 2)

true (3, 5) north 2 0

14ƒ{ƒthis.turnRight();

(3, 5) east 2 0

(table 5-1) continued

5.2.3	 Storing the Result of a Query Tracing the execution

of the code fragment

In Listing 5-1 we turned a Robot based on how many Things it found on the intersec- in Listing 5-1

tion. We could perform a similar task based on how many Things are in its backpack.
One way to do this is shown in the following code fragment:

ifƒ(this.countThingsInBackpack()ƒ==ƒ0)

{ƒthis.move();

}

ifƒ(this.countThingsInBackpack()ƒ==ƒ1)

{ƒthis.turnLeft();

}

ifƒ(this.countThingsInBackpack()ƒ==ƒ2)

{ƒthis.turnRight();

}

Suppose you had your own backpack and performed this same task. You probably
wouldn’t count the number of things in the backpack three times—you would count
them once and then remember the answer long enough to decide whether to turn or
move. Using a temporary variable, a Robot can do the same thing. Instead of assigning
a value of 0 to the temporary variable when we declare it, we will assign whatever
value countThingsInBackpack returns, as shown in the following fragment:

1 intƒnumThingsƒ=ƒthis.countThingsInBackpack();

2 ifƒ(numThingsƒ==ƒ0)

3 {ƒthis.move();

4 }

5 ifƒ(numThingsƒ==ƒ1)

6 {ƒthis.turnLeft();

7 }

223
5.2

T
EM

PO
RARY V

ARIABLES

KEY IDEA

The value returned
must match the

query’s return type.

8 ifƒ(numThingsƒ==ƒ2)
9 {ƒthis.turnRight();
10 }

Suppose that the robot has one thing in its backpack. Then countThingsInBackpack
will return the value 1. The variable numThings will refer to that value until it is changed
or the method ends. In line 2, the value that numThings refers to (1) is compared to 0.
They are different, and so line 3 is not executed. In line 5, the value that numThings refers
to (1) is again compared, this time to the value 1. They are equal, and so the robot turns
left. In line 8, numThings is again compared, but the values are not equal and so the turn
in line 9 is not completed.

5.2.4 Writing a Query

Assigning the result of countThingsInBackpack to a temporary variable seems valu
able. Can we write similar queries that return a value, such as the number of Things on
an intersection? Yes. In fact, we have already written queries that return a value—predi
cates such as frontIsBlocked.

Like predicates, a query such as countThingsHere (on the robot’s intersection) will
have a return type and a return statement. The return type in this case will be int
because we expect this query to return an integer value. The return statement returns
a value whose type must match the query’s return type. In this particular query, the
return statement will return the value stored in the temporary variable at the end of
the method. See line 11 of Listing 5-2.

Query
Temporary Variable

Listing 5-2: A method to count and return the number of Things on an intersection

1 /** Count and return the number of things on this robotís current intersection. Replace the
2 * things after counting them.
3 * @return the number of things on this robotís current intersection. */
4 publicƒintƒcountThingsHere()
5 {ƒintƒnumThingsHereƒ=ƒ0;
6 ƒƒwhileƒ(this.canPickThing())
7 ƒƒ{ƒthis.pickThing();
8 ƒƒƒƒnumThingsHereƒ=ƒnumThingsHereƒ+ƒ1;
9 ƒƒ}

10 ƒƒthis.putThing(numThingsHere);
11 ƒƒreturnƒnumThingsHere;
12 }

224
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

It’s a good idea for a query to return information without changing the situation in
which it was called. If it needs to make changes to the program’s state—such as picking
Things up—the query should undo those changes before returning the answer. This
query does so in line 10 where it calls a helper method to put down a specific number
of Things. This helper method could be implemented using the Count-Down Loop
pattern. A query that changes the program’s state is said to have side effects.

5.2.5 Using a boolean Temporary Variable

Temporary variables, as well as parameters and other types of variables, can have one
of many different types. int is just one of the possibilities. Besides references to objects
like City and Robot, another possibility is the boolean type.

To illustrate, consider a predicate to determine whether the right side of a Robot is
blocked. To answer this, the robot must turn to the right, determine if its path in that
direction is blocked, and then somehow remember that answer while it turns back to
its original direction and returns the answer. Remembering a value for use later in the
method is a perfect application for a temporary variable. In this case, it just happens to
be a boolean and will store either true (the right side is blocked) or false (no, it
isn’t). See Listing 5-3.

Listing 5-3: The rightIsBlocked predicate

1 /** Determine whether the right side of this robot is blocked. The robotís state doesnít change.
2 * @return true if this robotís right side is blocked; false otherwise. */
3 publicƒbooleanƒrightIsBlocked()
4 {ƒthis.turnRight();
5 ƒƒbooleanƒblockedƒ=ƒthis.frontIsBlocked();
6 ƒƒthis.turnLeft();
7 ƒƒreturnƒblocked;
8 }

Temporary Variable
Predicate

This predicate uses a helper method to determine if its front is blocked. Line 5 could
also be written booleanƒblockedƒ=ƒ!this.frontIsClear(). The value is stored
in the temporary variable blocked until it is returned in line 7.

5.2.6 Scope

Temporary variables are always declared within a pair of braces. It may be the pair of
braces defining the body of a method or the pair of braces used to define the body of a
loop or a clause in an if statement. Each of these pairs of braces defines a block.

225

The region of the program in which a variable may be used is called its scope. The
scope of a variable extends from its declaration to the end of the smallest enclosing
block. Four examples are shown in Figure 5-5, where the scope of tempVar is shaded.
Statements outside of the shaded areas may not use tempVar.

5.3
N

ESTIN
G
 S

TATEM
EN

TS

(figure 5-5)

Examples of the scope of a

temporary variable

5.3

public void method()
{ int tempVar = 0;

«statements»
}

public void method()
{ if («booleanExpression»)
 { «statements»
 int tempVar = 0;
«statements»

 }
«statements»

}

Nesting Statements

public void method()
{ «statements»
 int tempVar = 0;
«statements»

}

public void method()
{ «statements»
 int tempVar = 0;
 while («booleanExpression»)
 { «statements»
 }
«statements»

}

Recall that the general form of the while statement is as follows:

whileƒ(«test»)ƒ
{ƒ«listƒofƒstatements»
}

The general form of the if and if-else statements are similar. So far all of our examples
have used only method calls and assignment statements in «listƒofƒstatements».
That need not be the case. if and while statements are also statements and can be
included in «listƒofƒstatements».

5.3.1 Examples Using if and while

For example, consider the situation shown in Figure 5-6. A robot is an unknown dis
tance from a wall. Between it and the wall are a number of Thing objects placed ran
domly on the intersections. The robot is to pick up one thing from each intersection (if
there is one) and stop at the last intersection before the wall.

(figure 5-6)

Task requiring both if
and while statements

The robot needs to move zero or more times, indicating that a while loop is needed.

In addition, at each intersection, the robot must execute pickThing either once or not

226
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

at all, depending on whether or not a thing is present. An if statement solves this kind
of problem.

These two ideas can be combined in a single method, as shown in Listing 5-4. The if
statement is said to be nested within the while statement, just as toys such as blocks or
dolls are sometimes nested, one inside another.

Listing 5-4: An if statement nested inside a while statement

1 /** Pick up one thing (if there is a thing) from each intersection between this robot and the
2 * nearest wall it is facing. */
3 publicƒvoidƒpickThingsToWall()
4 {ƒwhileƒ(this.frontIsClear())
5 ƒƒ{ƒthis.move();
6 ƒƒƒƒifƒ(this.canPickThing())
7 ƒƒƒƒ{ƒƒthis.pickThing();
8 ƒƒƒƒ}
9 ƒƒ}

10 }

In pickThingsToWall, the while loop executes zero or more times to move the robot
to the wall. The test ensures the robot will stop when it reaches the wall. Inside the loop,
two things happen. First, the robot moves to the next intersection. Once it is there, it
asks if it can pick up a Thing. If the answer is yes, the robot picks that thing up.

It is also possible to nest if or while statements within an if statement. For example,
suppose that when a Robot comes to an intersection with a Thing, it should turn.
However, which way it turns is determined by whether it has Things in its backpack.
If it does, it turns right; if it doesn’t, it turns left. The following nested if statements
implement these actions:

ifƒ(this.canPickThing())
{ƒ// Thereís a thing here, so this robot will turn
ƒƒifƒ(this.countThingsInBackpack()ƒ>ƒ0)
ƒƒ{ƒthis.turnRight();
ƒƒ}ƒelse
ƒƒ{ƒthis.turnLeft();
ƒƒ}
}

Any kind of statement can be nested within an if or while statement—including
other if and while statements.

227
5.3

N
ESTIN

G
 S

TATEM
EN

TS

KEY IDEA

Use helper methods
to simplify nested

statements.

5.3.2 Nesting with Helper Methods

Nesting statements sometimes makes a method hard to understand, particularly if we
use several levels of nesting or many steps within the if or while statement. When a
method becomes too complicated, the appropriate approach is to use helper methods.
For example, the pickThingsToWall method could have been written using helper
methods, as shown in Listing 5-5.

Listing 5-5: Using a helper method to simplify a method

1 /** Pick up one thing (if there is a thing) from each intersection between this robot
2 * and the nearest wall it is facing. */
3 publicƒvoidƒpickThingsToWall()
4 {ƒwhileƒ(this.frontIsClear())
5 ƒƒ{ƒthis.move();
6 ƒƒƒƒthis.pickThingIfPresent();
7 ƒƒ}
8 }
9

10 /** Pick up one thing (if there is a thing) from the robotís intersection. */
11 privateƒvoidƒpickThingIfPresent()
12 {ƒifƒ(this.canPickThing())
13 ƒƒ{ƒthis.pickThing();
14 ƒƒ}
15 }

This solution has more lines in total, but each method can be understood more easily
than the larger version of pickThingsToWall in Listing 5-4.

5.3.3 Cascading-if Statements

Another useful form of nesting involves nesting if-else statements within if-else
statements. If the nesting is always done in the else-clause, the effect is to choose at
most one of a list of alternatives. For example, suppose that a robot should do exactly
one of the actions shown in Table 5-2.

228

Situation Action (table 5-2)

Front is blocked Turn around Actions a robot performs

in certain situations
Can pick a Thing Turn right

Left is blocked Turn left

CH
AP

TE
R

5
| M

O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

Anything else Move

It could be that more than one of these situations is true. For example, it could be that the
robot’s front and left are blocked. We still want the robot to perform only one action. We’ll
assume that the first matching situation listed in the table should be performed.

This could be coded in Java using a nested if-else construct, as follows:

1 ifƒ(this.frontIsBlocked())

2 {ƒthis.turnAround();

3 }ƒelse

4 {ƒifƒ(this.canPickThing())

5 ƒƒ{ƒthis.turnRight();

6 ƒƒ}ƒelse

7 ƒƒ{ƒifƒ(this.leftIsBlocked())

8 ƒƒƒƒ{ƒthis.turnLeft();

9 ƒƒƒƒ}ƒelse

10 ƒƒƒƒ{ƒthis.move();

11 ƒƒƒƒ}

12 ƒƒ}

13 }

You should trace this code to convince yourself that only one of the actions listed in the
table is executed. That is, only one of lines 2, 5, 8, or 10 is executed, no matter what
situation the robot is in. Furthermore, when this code is read from top to bottom, the
first test that returns true determines which statement is executed.

Figure 5-7 illustrates this code graphically using a flowchart.

Each of the else-clauses in this code fragment contain a single statement—another
if-else statement. In this case, Java allows us to omit the braces. We can then
rearrange the line breaks slightly to emphasize that only one of the actions is performed:

ifƒ(this.frontIsBlocked())
{ƒthis.turnAround();
}ƒelseƒifƒ(this.canPickThing())

Cascading-if{ƒthis.turnRight();

}ƒelseƒifƒ(this.leftIsBlocked())

{ƒthis.turnLeft();

}ƒelse

{ƒthis.move();

}

229

KEY IDEA When an if-else statement is structured in this way, it is called a cascading-if. This
Use a cascading-if structure is a clear signal to the reader that only one of the expressions evaluated will
to choose one of cause an action to be taken. To be more specific, the action taken will be associated
several groups of with the first expression that evaluates to true.
statements.

(figure 5-7)

Flowchart illustrating a

nested if statement true false

false true

false true

frontIs
Blocked

canPick
Thing

leftIs
Blocked

turnAround

turnRight

turnLeft move

5.3
N

ESTIN
G
 S

TATEM
EN

TS

Using the switch Statement (optional)

The switch statement is similar to the cascading-if statement in that both are
designed to choose one of several alternatives. The switch statement is more
restrictive in its use, however, because it uses a single value to choose the alternative
to execute. The cascading-if can use any expressions desired. This restriction is
also the switch statement’s strength: the reader knows that the decision is based on
a single value.

In Section 5.2.1, we used a series of if statements to direct a Robot based on the num
ber of things on the intersection. Either a cascading-if or a switch statement would
be a better choice because it makes clear that the Robot should perform only one of
the actions.

The two code fragments shown in Figure 5-8 both implement a variant of the problem
just described and behave exactly the same way when executed.

230
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

int numHere = int numHere = (figure 5-8)
this.countThingsHere();

if (numHere == 0)
{ this.move();

this.countThingsHere();
switch (numHere)
{ case 0:

 this.move();

Comparing a cascading-if
statement and a switch
statement

} else if (numHere == 1) break;
{ this.turnRight();

case 1:
} else if (numHere == 2) this.turnRight();
{ this.turnLeft(); break;

} else case 2:
{ this.turnAround(); this.turnLeft();

 break;
}

default:
 this.turnAround();

}

The break statement causes execution to continue after the end of the switch state
ment. If the break statement is not included, execution “falls through” to the next
case of the switch. For example, in the following code, the break is omitted from the
first case. The result is that a Robot on an intersection with zero Things will move and
turn right because it “falls through” to the second case. However, a Robot on an
avenue with one thing will only turn right.

switchƒ(this.countThingsHere())
{ƒcaseƒ0:
ƒƒƒƒthis.move();ƒ//ƒFall though

ƒƒcaseƒ1:
ƒƒƒƒthis.turnRight();
ƒƒƒƒbreak;
}

This behavior is sometimes useful if the robot should do exactly the same thing for two
or more cases, but this is rare. In reality, the break is often forgotten and is a source of
bugs. If you choose to use the switch statement, it is a good idea to use a compiler set
ting to warn you if you omit a break statement. If you deliberately omit a break state
ment, be sure to document why.

The default keyword may be used instead of case to indicate the group of actions that
occurs if none of the cases match. It is equivalent to the last else in the cascaded-if
statement.

The value used in a switch statement must be countable. Integers, as shown in Figure 5-8,
fit this description. In later chapters, we will learn about characters and enumerations that
also work in a switch statement.

231

5.4 Boolean Expressions

5.4
B

O
O
LEAN

 E
XPRESSIO

N
S

The test in if and while statements are Boolean expressions that give a yes or no,
true or false, answer to a question. So far, our questions have been simple. As our
programming skills grow, however, we will want to ask more complex questions,
which will need more complex Boolean expressions to answer.

5.4.1 Combining Boolean Expressions

Consider a situation in which karel is facing east. It is known that in the distance are
things and walls. We want karel to travel forward, stopping at the first thing or wall
it comes to. Figure 5-9 shows two such situations.

(figure 5-9)

Two situations where

karel should stop at the

first Thing or Wall found

Initial situations Final situations

The robot might need to move zero or more times to reach the first thing or wall, so a
while statement is appropriate. To construct it, we follow the four-step process dis
cussed earlier. The first step is already apparent: the body of the loop should contain a
move statement.

The second step in the process requires some thought. We want the robot to stop when
it reaches a thing or a wall. We have a predicate, canPickThing, to determine if it is
beside a thing. Another predicate, frontIsClear, will determine when a wall is
reached. But we do not have a predicate that combines these two tests.

Fortunately, programming languages have operators that can combine Boolean expres
sions into more complex expressions. You are already familiar with operators from the
mathematics you have studied: plus, minus, multiply, and divide are all operators that
combine two arithmetic expressions to create a more complex expression. The equiva
lents for Boolean expressions are the and and or operators.

KEY IDEA We often use Boolean operators in our everyday language. You might say, “I will go swim-
Both sides of an ming if the weather is hot and sunny.” From this statement, I know that if the weather is

“and” must be true to cloudy, you will not go swimming. Similarly, if the weather is cool, you will not go swim-
do the action. ming. In order to go swimming, both expressions joined by “and” must be true.

232
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

On the other hand, if you say “I will go swimming if it is hot or sunny,” we might ques
tion your sanity. With this statement, you might go swimming in a thunderstorm (if it
happens to be hot that day) or you might go swimming in a frozen pond (if it happens to
be a sunny winter day). The “or” operator requires a minimum of one of the two tests to
be true. Of course, if it happens to be both hot and sunny, you would still go swimming.

Java’s logical operators work in the same way except that instead of writing “and,” we
write &&, and instead of writing “or,” we write ||. Like English, an expression includ
ing && is true only if both expressions it joins are true. For an expression including ||
to be true, one or both of the expressions it joins must be true.

In the earlier problem, we want karel to stop when it’s beside a thing or its front is
blocked. This can be written in Java as follows:

karel.canPickThing()ƒ||ƒkarel.frontIsBlocked()

Step 2 of the four-step process says that we should negate this expression to find out
when the loop should continue. We can negate the entire expression by wrapping it in
parentheses and using the ! operator, as follows:

1 whileƒ(!(karel.canPickThing()ƒ||ƒkarel.frontIsBlocked()))
2 {ƒkarel.move();
3 }

The Form of Legal Expressions

The informal descriptions of && and || given previously mention the “expressions it
joins.” Let’s be more precise about what constitutes a legal expression. There are four rules:

1. Literal values such as true, false, and 50 are legal expressions. The type of
the expression is the type of the literal. For example, boolean and int in these
examples.

2. A variable is a legal expression. The type of the expression is the type of the
variable.

3. A method call whose arguments are legal expressions with the appropriate
types is a legal expression. The type of the expression is the return type of the
method.

4. An operator whose operands are legal expressions with the appropriate types is
a legal expression. The type of the expression is given by the return type of the
operator. Operators include &&, ||, !, the comparison operators, and the arith
metic operators. Their operands are the expressions they operate on.

The first two rules just set the groundwork. The power is all in the last two rules,
which let us combine expressions to any level of complexity. For example, within the
Robot class, this.canPickThing() and this.frontIsClear() are both expres
sions (by rule 3). These two expressions can be joined with an operator such as && to

KEY IDEA

Only one side of an
“or” is required to be
true to do the action.

KEY IDEA

In Java, write “and”
as && and write “or”
as ||.

233

make a more complex expression (rule 4):

this.canPickThing()ƒ&&ƒthis.frontIsClear()

Two other expressions are this.getAvenue() and 0 (rules 3 and 1). They can be
joined by the operator > to form a new expression (by rule 4). This expression has type
boolean and can be combined with the previous expression by rule 4. For example,
using || gives the following expression:

this.canPickThing()ƒ&&ƒthis.frontIsClear()ƒ||ƒ
this.getAvenue()ƒ>ƒ0

This expression can also be combined with other expressions in ever-increasing complexity.

Evaluating Boolean Expressions

Suppose we have a complex expression. How can we evaluate it to find its value? We
can use a technique we’ll call evaluation diagrams to annotate the expression.

To construct an evaluation diagram, begin by drawing an oval around each literal,
variable, and parameterless method call. Write the expression’s type above the oval and
value below the oval.

The second step is to repeatedly draw an oval around an operator with its operands or
a method with its arguments until the entire expression is enclosed in a single oval. For
each oval drawn:

➤	 Verify that all operands and arguments enclosed in the new oval already have
ovals around them, from either the first step or a previous iteration of the sec
ond step.

➤	 Verify that the type of each operand or argument is appropriate for the opera
tor or method call being enclosed in the new oval. For example, you may not
draw an oval around the && operator if one of its operands has type int. If
such a situation occurs, it means that the expression as a whole is not well-
formed and will be rejected by the Java compiler. Some operators, such as
negation (!), use only one operand. In that case, the oval will include only the
operator and one operand.

➤	 Write the type returned by the operator or method above the oval and the
value returned below the oval.

Figure 5-10 shows the process of constructing an evaluation diagram. The top cell of
the diagram shows the robot’s situation. The bottom four cells of the diagram illustrate
the series of steps required to construct the diagram. From the last step we conclude
that in the given situation, the expression returns true.

5.4
B

O
O
LEAN

 E
XPRESSIO

N
S

234
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

0 1 2 (figure 5-10)

Evaluating a Boolean

expression using an
Robot’s situation

evaluation diagram

boolean boolean int int
&& || >this.canPickThing() this.frontIsBlocked() this.getAvenue() 0

false true 1 0

Step one in constructing the evaluation diagram

boolean

true

&& || >

boolean

false

this.canPickThing()

boolean

true

this.frontIsBlocked()

int

1

this.getAvenue()

int

0

0

First iteration of step two in constructing the evaluation diagram

boolean boolean

true

&& || >

boolean

false

this.canPickThing()

boolean

true

this.frontIsBlocked()

int

1

this.getAvenue()

int

0

0

false
Second iteration of step two in constructing the evaluation diagram

boolean

true

boolean

true

&& || >

boolean

false

this.canPickThing()

boolean

true

this.frontIsBlocked()

int

1

this.getAvenue()

int

0

0

boolean

false

Last iteration of step two in constructing the evaluation diagram

Operator Precedence

You may have noticed that some discretion was involved in choosing which operator
to include in an oval. For example, in the second iteration of step two in Figure 5-10,
we could have drawn the oval around the || operator instead of the && operator. The
resulting evaluation diagram is shown in Figure 5-11. Notice that the value of the
expression as a whole is false rather than true.

235
5.4

B
O
O
LEAN

 E
XPRESSIO

N
S

(figure 5-11) boolean

Alternative (and incorrect)

evaluation diagram

The operators are chosen in order of their precedence. Precedence denotes the priority
they are given when evaluating the expression. The operators we have encountered,
from the highest precedence to the lowest, are listed in Table 5-3. We see that && is
listed before ||. Therefore, the expression diagram in Figure 5-11 is incorrect because
it drew an oval around || when && should have been chosen.

(table 5-3) Operator Precedence

Operator precedence, methodName(parameters) 15
from highest to lowest, of

the operators encountered !ƒ 14

so far
*ƒƒ/ƒƒ% 12

+ƒƒ-ƒ 11

<ƒƒ>ƒƒ<=ƒƒ>=ƒ 9

==ƒƒ!=ƒ 8

&&ƒ 4

||ƒ 3

true

boolean

boolean

true

&& || >

boolean

false

this.canPickThing()

boolean

true

this.frontIsBlocked()

int

1

this.getAvenue()

int

0

0

false

LOOKING AHEAD

These rules are not
yet complete. We will

expand them in
Chapter 7.

It may be that the normal precedence rules are not what you want. For example, you
really do want the answer shown in Figure 5-11. In that case, override the precedence
rules with parentheses—just like you would in an arithmetic expression. The following
example has an expression diagram as shown in Figure 5-11:

this.canPickThing()ƒ&&ƒ
ƒƒƒƒƒƒƒ(this.frontIsBlocked()ƒ||ƒthis.getAvenue()ƒ>ƒ0)

If an expression has two or more operators with equal precedence, circle them in order
from left to right.

236
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

A Common Error in Combining Expressions

Perhaps we want karel to turn around if the number of things in its backpack is either
1 or 2. A direct translation of this English statement into Java might be as follows:

ifƒ(karel.countThingsInBackpack()ƒ==ƒ1ƒ||ƒ2)
{ƒkarel.turnAround();
}

If we attempt to diagram this expression, however, we will encounter the problem
shown in Figure 5-12. The next iteration of the algorithm calls for drawing an oval
around the || operator, which requires two Boolean operands. However, the evalua
tion diagram has one Boolean operand and one integer operand. This situation tells us
that the expression is incorrectly formed and will be rejected by the Java compiler.
Notice that we were able to determine this without knowing how many things are in
karel’s backpack. The analysis of the expression types, as recorded on top of the
ovals, was sufficient.

boolean (figure 5-12)

==

int
karel.countThingsInBackpack

int

1

1

int Evaluation diagram for an

2 incorrectly formed

expression
||

2

A correct expression for determining if karel has one or two things in its backpack is
as follows:

ifƒ(karel.countThingsInBackpack()ƒ==ƒ1ƒ||
ƒƒƒƒkarel.countThingsInBackpack()ƒ==ƒ2)
{ƒkarel.turnAround();
}

5.4.2 Simplifying Boolean Expressions

Sometimes Boolean expressions can become quite complicated as they are combined
and negated. Simplifying them can be a real service, both to yourself as the program
mer and to others who need to understand your code.

Simplifying Negations

Many simplifications are common sense—for example, double negatives.
!!karel.frontIsClear() is the same as karel.frontIsClear(). Other such equiv
alencies are shown by example in Table 5-4.

237

(table 5-4) Expression Simplification

Examples of equivalent,

simplified expressions
!!karel.frontIsClear()

!karel.frontIsBlocked()

karel.frontIsClear()

karel.frontIsClear()

!(this.getAvenue()ƒ==ƒ0) this.getAvenue()ƒ!=ƒ0

!(this.getAvenue()ƒ!=ƒ0) this.getAvenue()ƒ==ƒ0

5.4
B

O
O
LEAN

 E
XPRESSIO

N
S

De Morgan’s Laws

When negations involve more complex expressions, it’s easy to get mixed up. Faced
with this problem, Augustus De Morgan (1806–1871) introduced what have become
known as De Morgan’s Laws, which formalize the process of finding the opposite form
of a complex test. De Morgan’s Laws state the following equivalencies (means that
the expression on the left is equivalent to the expression on the right):

!(b1ƒ&&ƒb2)ƒ ƒ!b1ƒ||ƒ!b2ƒƒ(1st law)

!(b1ƒ||ƒb2)ƒ ƒ!b1ƒ&&ƒ!b2ƒƒ(2nd law)

where b1 and b2 are arbitrary Boolean expressions.

These laws can be used to simplify the following expression:

!(karel.canPickThing()ƒ||ƒ
ƒƒƒƒƒƒ(karel.leftIsBlocked()ƒ&&ƒkarel.rightIsBlocked()))

This code is equivalent to the following by De Morgan’s second law:

!karel.canPickThing()ƒ&&ƒ
ƒƒƒƒƒƒ!(karel.leftIsBlocked()ƒ&&ƒkarel.rightIsBlocked())

This can be further simplified by applying the first law:

!karel.canPickThing()ƒ&&ƒ
ƒƒƒƒƒƒ(!karel.leftIsBlocked()ƒ||ƒ!karel.rightIsBlocked())

This can be simplified again by restating each negated predicate, using new predicates
if necessary:

!karel.canPickThing()ƒ&&ƒ
ƒƒƒƒƒƒ(karel.leftIsClear()ƒ||ƒkarel.rightIsClear())

238
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

5.4.3 Short-Circuit Evaluation

Suppose you have a robot in the situation shown in Figure 5-13 that is about to exe
cute the following code fragment:

ifƒ(this.frontIsClear()ƒ&&ƒthis.thingOnSixthAvenue())

{ƒthis.putAllThings();

}

2 3 4 5 6 (figure 5-13) 0
0

Time-consuming test

We can observe two things. First, the robot can find out quickly if its front is clear. On
the other hand, it will take a relatively long time to move all the way to Sixth Avenue
to find out if a Thing is there. Second, when the robot is in a situation like this, it
doesn’t need to waste its time checking Sixth Avenue. The definition of “and” says that
if the first part of the test is false (the robot’s front is not clear), then the entire test will
be false. It doesn’t matter whether the second part of the test is true or false.

With these two observations, we can conclude that the following is a more efficient
way to write the previous code fragment:

ifƒ(this.frontIsClear())
{ƒifƒ(this.thingOnSixthAvenue())
ƒƒ{ƒthis.putAllThings();
ƒƒ}
}

This fragment will only cause the robot to check Sixth Avenue if that test will really
make a difference to the robot’s behavior.

However, running these two code fragments in the situation shown in Figure 5-13 results
in exactly the same behavior. In neither case does the robot check Sixth Avenue. This is
because Java uses short-circuit evaluation. When evaluating a Boolean expression
test1ƒ&&ƒtest2, Java will only execute test2 if test1 is true. If test1 is false, Java
knows that executing test2 is a waste of time and doesn’t do it.

Similarly, in the expression test1ƒ||ƒtest2, test2 will only be executed if test1 is
false. If test1 is true, the entire expression will be true regardless of whether test2 is
true or false.

KEY IDEA

Java only performs a
test if it needs to.

239

5.5 Exploring Loop Variations

The while loop is only one of several ways that Java can execute a code fragment
repeatedly. In this section, we will explore the for statement and two variations of the
while statement.

5.5.1 Using a for Statement

Sometimes we know before a loop begins exactly how many times we want it to exe
cute. For example, consider a problem in which a robot named suzie must move
clockwise around a square defined by walls, as shown in Figure 5-14.

(figure 5-14) 0 1 2 3 4 5

0

Moving around a square

5.5
E

XPLO
RIN

G
 L

O
O
P V

ARIATIO
N
S

KEY IDEA

Use while when the
number of iterations

is unknown. Use for
when the number

is known.

1

2

3

4

5

To solve the problem, suzie must traverse exactly four sides of the square—no more,
no less. For each side, suzie must move exactly five times. At each corner, suzie
must turn left exactly three times.

A while loop works well when statements must be repeated an unknown number of
times—while some condition is true. However, suzie’s situation is different. Here, we
know exactly how many times the statements must be executed even before the loop
begins. Java includes the for statement just for such situations.

The Form of the for Statement

The form of the for statement used to repeat statements a fixed number of times is as
follows:

forƒ(intƒ«counter»ƒ=ƒ0;ƒ«counter»ƒ<ƒ«limit»;ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ«counter»ƒ=ƒ«counter»ƒ+ƒ1)
{ƒ«statementsƒtoƒrepeat»
}

240
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

where

➤	 «statementsƒtoƒrepeat» are the instructions to be executed each time
through the loop. They are called the body of the loop, the same term used for
the statements in the while loop.

➤	 «counter» is an identifier or name, such as numTurns or sideCount.

➤	 «limit» is the number of times «statementsƒtoƒrepeat» should be
executed.

Here is an example of turnRight implemented with a for loop:

publicƒvoidƒturnRight()

{ƒforƒ(intƒturnsƒ=ƒ0;ƒturnsƒ<ƒ3;ƒturnsƒ=ƒturnsƒ+ƒ1)

ƒƒ{ƒthis.turnLeft();

ƒƒ}

}

In the for loop, turns is the «counter» that keeps track of how many times the
turnLeft method has been executed. The «limit», or total number of times we
want turnLeft to execute, is 3.

The for statement is nothing more than an abbreviation of a particular form of the
while loop. The component parts of the for statement can be rearranged to create a
while loop that behaves in exactly the same way.

{

ƒƒintƒ«counter»ƒ=ƒ0;

ƒƒwhileƒ(«counter»ƒ<ƒ«limit»)

ƒƒ{ƒ«statementsƒtoƒrepeat»

ƒƒƒƒ«counter»ƒ=ƒ«counter»ƒ+ƒ1;

ƒƒ}

}ƒ//ƒNote: «counter» is not available beyond this closing brace
#

Examples of the for Statement

To gain further comfort with the for statement, let’s solve the problem illustrated in
Figure 5-14. We will extend Robot to create the class SquareMover. We can use step
wise refinement and pseudocode to solve the problem. To move around the square, the
robot needs to move along four sides:

To move around a square:
ƒfor (4 times)
ƒ{ move along one side
ƒ}

To move along one side, the robot needs to move five times:

To move along one side:
ƒfor (5 times)

Counted Loop

KEY IDEA

A for statement is a
shortcut for a
common form of the
while loop.

ƒ{ move
ƒ}
ƒturn right

Finally, to turn right, it needs to turn left three times:

To turn right:
ƒfor (3 times)
ƒ{ turn left
ƒ}

In each of these refinements, the robot must perform an action a number of times—and
that number is known before the loop begins executing. Such circumstances are ideal
for using a for statement. The class definition corresponding to this pseudocode is
shown in Listing 5-6.

241
5.5

E
XPLO

RIN
G
 L

O
O
P V

ARIATIO
N
S

Listing 5-6: A class of robot that moves around squares

1 importƒbecker.robots.*;
2
3 /** A class of robot that goes around squares.
4 *
5 * @author Byron Weber Becker */
6 publicƒclassƒSquareMoverƒextendsƒRobot
7 {
8 ƒƒpublicƒSquareMover(Cityƒc,ƒintƒstr,ƒintƒave,ƒDirectionƒdir)
9 ƒƒ{ƒsuper(c,ƒstr,ƒave,ƒdir);

10 ƒƒ}
11
12 /** Move around a square by traversing each of its four sides. */
13 ƒƒpublicƒvoidƒmoveAroundSquare()
14 ƒƒ{ƒforƒ(intƒsideƒ=ƒ0;ƒsideƒ<ƒ4;ƒsideƒ=ƒsideƒ+ƒ1)
15 ƒƒƒƒ{ƒthis.moveAlongSide();
16 ƒƒƒƒ}
17 ƒƒ}
18
19 /** Move along one side of the square by moving 5 times. */
20 ƒƒprivateƒvoidƒmoveAlongSide()
21 ƒƒ{ƒforƒ(intƒmovesƒ=ƒ0;ƒmovesƒ<ƒ5;ƒmovesƒ=ƒmovesƒ+ƒ1)
22 ƒƒƒƒ{ƒthis.move();
23 ƒƒƒƒ}
24 ƒƒƒƒthis.turnRight();
25 ƒƒ}
26
27 /** Turn right by turning left three times. */
28 ƒƒprivateƒvoidƒturnRight()

ch05/squareMover/

Counted Loop

242
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

Listing 5-6: A class of robot that moves around squares (continued)

29 ƒƒ{ƒforƒ(intƒturnsƒ=ƒ0;ƒturnsƒ<ƒ3;ƒturnsƒ=ƒturnsƒ+ƒ1)
30 ƒƒƒƒ{ƒthis.turnLeft();
31 ƒƒƒƒ}
32 ƒƒ}
33 }

Java provides a shortcut for «counter»ƒ=ƒ«counter»ƒ+ƒ1. This statement occurs so
frequently that Java allows the abbreviation «counter»++, which means “add 1 to the
value stored in «counter».” Another abbreviation is «counter»ƒ+=ƒ«expression». It
means to add the value on the right side to the variable on the left.

Finally, it should be noted that the for statement is more flexible than implied by these
examples. The «counter» need not start at 0; any Boolean expression can be used for
the test; and «counter»ƒ=ƒ«counter»ƒ+ƒ1 can be replaced by a more general state
ment. In particular, the for statement’s template can be generalized as follows:

forƒ(«initialization»;ƒ«test»;ƒ«update»)

{ƒ«statementsƒtoƒrepeat»

}

For example, the turnRight method could also be written as

privateƒvoidƒturnRight()

{ƒforƒ(intƒturnsƒ=ƒ3;ƒturnsƒ>ƒ0;ƒturnsƒ=ƒturnsƒ-ƒ1)

ƒƒ{ƒthis.turnLeft();

ƒƒ}

}

5.5.2 Using a do-while Loop (optional)

The while loop always performs its test before the body of the loop is executed. If the
test happens to be false right away, the loop’s body may not be executed at all. Another
loop, the do-while loop, performs its test after the loop body executes. This means
that it will always execute at least once.

The general form of the do-while loop can be expressed as follows:

do

{ƒ«statementsƒtoƒrepeat»

}ƒwhileƒ(«test»);

LOOKING AHEAD

This, and other
shortcuts, are
discussed in
Section 7.2.5.

KEY IDEA

A do-while loop
always executes at
least once.

243

The loop begins by executing «statementsƒtoƒrepeat». After each execution, the
«test» is evaluated. If it is true, execution resumes at the do keyword and the body
of the loop is executed again. If the test is false, execution resumes with the statement
after the while keyword.

It is unusual to have a loop that always executes at least once, and so the do-while
loop itself is unusual. A search of three projects2 totaling more than 20,000 lines of
code revealed not even one do-while loop.

5.5.3 Using a while-true Loop (optional)

The while-true loop is the most flexible loop available in Java. The other looping
forms, including the for loop, test either at the beginning of the loop’s body or at the
end. The while-true can test any place you want—and can even test several times
during the body’s execution.

A Brief History Lesson on Structured Programming

All modern programmers advocate some form of structured programming whereby
a control structure such as a loop, if, or a method restricts the program to enter
ing at only a single point and often also restricts how it exits. This is in stark con
trast to early programming languages that did not have such restrictions and
permitted programmers to write spaghetti code, which was as hard to untangle as a
bowl of spaghetti.

Why is this history lesson relevant? The while-true loop is less structured than the
other loops because it allows multiple exits from the loop. Your instructor may feel
uncomfortable with that and not want you to use such loops. On the other hand,
many programmers believe that it strikes an excellent balance between the rigor of
one-entry/one-exit structured programming and the flexibility to solve problems eas
ily. One such person is Eric Roberts, a noted computer science educator who wrote a
paper3 on the topic. Another is the designer of the Turing programming language, in
which while-true is used for all forms of looping except the for loop.

5.5
E

XPLO
RIN

G
 L

O
O
P V

ARIATIO
N
S

2 The becker library (10,500 lines), a testing tool named junit3.8.1 (5,000 lines), and an implemen
tation of a marine biology simulation (5,000 lines).

3 “Loop exits and structured programming: reopening the debate,” pages 268–272 in Proceedings

of the Twenty-sixth SIGCSE Technical Symposium on Computer Science Education, ACM Press,

March 1995.

The Form of a while-true Loop

At first glance, a while-true loop looks like it will execute forever. That’s because the
test is the value true—which can never be false and cause the loop to end. That
observation tells us there must be another way out of the loop.

The loop uses an if statement combined with a break statement to end the loop. It’s
common for the break to be the only statement in the if, so it can all be put on a sin
gle line. It uses the following form:

1 whileƒ(true)ƒƒƒƒ// use a break statement to exit!
2 {ƒ«optionalƒstatements1»
3 ƒƒifƒ(«test»)ƒƒƒƒ{ƒƒƒƒƒbreak;ƒƒ}
4 ƒƒ«optionalƒstatements2»
5 }

The test in line 1 is always true and so the program always enters the loop. When exe
cution reaches the if statement in line 3, it performs its test. If the test is false, exe
cution resumes with the optional statements in line 4. If the test is true, the break
instruction causes execution to resume after the end of the loop.

This flow of control is summarized in Figure 5-15. All the statements in the loop are exe
cuted until the «test» is true. At that point, the break statement causes the loop to end.

true

false
?

statements1

statements2

244
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

(figure 5-15)

Flowchart for the

while-true loop

The statements before the test (line 2 in the preceding code) might be omitted, in which
case the loop is like a standard while loop but with the test negated. On the other
hand, if the statements after the test (line 4 in the preceding code) are omitted, the loop
is like a do-while loop.

The loop can also have several tests. This may make the loop easier to understand than LOOKING AHEAD

an equivalent while loop with a compound Boolean expression for the test. See Programming
Exercise 5.7.

245
5.5

E
XPLO

RIN
G
 L

O
O
P V

ARIATIO
N
S

An Example

Consider again the fence-post problem shown in Figure 5-2. We wanted a robot to pick
up all of the things between its current location and a wall. We solved it with the fol
lowing method, noting that we needed an extra call to pickThing after the loop.

publicƒvoidƒclearThingsToWall()ƒ
{ƒwhileƒ(this.frontIsClear())ƒ
ƒƒ{ƒthis.pickThing();ƒ

Loop-and-a-Half ƒƒƒƒthis.move();ƒ

ƒƒ}

ƒƒthis.pickThing();

}

The extra call to pickThing is needed because we need the robot to pick up four
things but move only three times.

Here is the same problem solved with a while-true loop:

publicƒvoidƒclearThingsToWall()
{ƒwhileƒ(true)
ƒƒ{ƒthis.pickThing();

Loop-and-a-Half ƒƒƒƒifƒ(this.frontIsBlocked()) { break; }

ƒƒƒƒthis.move();

ƒƒ}

}ƒ

When only two things remain to be picked up, this code executes as illustrated in
Figure 5-16.

(figure 5-16)
while (true)
{ this.pickThing();

 if (this.frontIsBlocked()) { break; }

of a while-true loop this.move();

}

Illustrating the execution

while (true)
{	 this.pickThing();
 if (this.frontIsBlocked()) { break; }

this.move();
}

while (true)
{	 this.pickThing();
 if (this.frontIsBlocked()) { break; }

this.move();
}

{	 this.pickThing();
 if (this.frontIsBlocked()) { break; }

this.move();

while (true)

}

246
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

The while-true loop provides a general solution to the fence-post problem, also
known as the loop-and-a-half problem. Solving these kinds of problems with a tradi
tional while statement requires repeating some of the code, because the loop must
execute an extra “half” iteration to perform the last action. In this case, the repeated
code is the call to pickThing. By putting the test inside the body of the loop, the
repeated code is no longer needed.

5.5.4 Choosing an Appropriate Looping Statement

We have studied a number of different kinds of looping statements. Table 5-5 provides
guidelines on when to use each kind.

If… Then…

a parameter refers to the number of times
the loop will execute and the value is not
needed for other purposes…

use a count-down loop or a for statement.

the number of times the loop will execute
is known before the loop is entered...

use a for statement.

the loop might execute zero times… use a while statement.

the loop has a relatively simple test
that appears at the top of the loop…

use a while statement.

the loop always executes at least once… use a do-while statement.

the loop executes an extra “half” time for
a fence-post problem…

use a while-true loop.

the loop has multiple exit tests or a
complex test that can be more easily
understood as separate tests…

use a while-true loop.

(table 5-5)

Guidelines for choosing a

looping statement

5.6 Coding with Style

As we have seen in previous sections, the style of our code makes a difference in how
easily it can be understood. Selection and repetition statements such as if, while, and
for are no different in this sense—we must consider the style of these statements to
make sure they are easy to interpret.

The most important elements of style, stated briefly, are:

➤	 Use stepwise refinement to avoid having deeply nested statements or long
sequences of statements.

➤	 Use positively stated, simple Boolean expressions.

➤	 Indent your code so the visual structure reflects the logical structure.

247

The following subsections explore these ideas more carefully.

5.6.1 Use Stepwise Refinement

A long list of statements inside the body of a loop or if statement can cause the reader
to lose track of the loop or if statement as a whole. It should be easy for the reader to
remember when a loop terminates or what case is being handled by an if statement.
Long bodies in either structure make doing so difficult.

Using stepwise refinement naturally breaks long bodies into smaller steps. Some pro
grammers put the entire body into a helper method so that the loop or if statement
contains only one line—the invocation of the helper method.

5.6.2 Use Positively Stated Simple Expressions

One of the most crucial aspects of good style is to keep tests easy to understand. First,
avoid negations if you can because people usually find them harder to understand than
positive statements. It is easier to understand whileƒ(this.frontIsBlocked())
than whileƒ(!this.frontIsClear()), for example. This style may mean that you
need to define your own predicate to put the test in a positive form.

A second way to keep tests easy to understand is to use predicates with descriptive
names. For example, ifƒ(this.isFacingSouth()) is easier to understand than
ifƒ(this.getDirection()ƒ==ƒDirection.SOUTH).

If you will be using the same test several times in the program, writing the predicate is
particularly worthwhile.

A third possibility, applicable to if-else statements, is to rewrite them with the goal
of making them simpler and easier to understand. Rewriting an if statement should
not change the execution of the program, only the way in which it is written. These
techniques are explored in the following subsections.

Test Reversal

Consider the following code:

ifƒ(!this.frontIsClear())
{ƒthis.turnLeft();
}ƒelse
{ƒthis.move();
}

5.6
C

O
D
IN

G
 W

ITH
 S

TYLE

248
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

When the robot’s front is not clear, it turns left. Otherwise it moves forward. This can be KEY IDEA

rewritten to use the opposite test if we interchange the then-clause and the else-clause: An if statement
executes the same

ifƒ(this.frontIsClear()) way if you negate the
{ƒthis.move(); test and swap the
}ƒelse then-clause with the
{ƒthis.turnLeft(); else-clause.
}

This code is easier to read and understand, primarily because we eliminated the nega
tion in the test. Another way to make this code easier to read is to replace
!this.frontIsClear() with a new predicate, this.frontIsBlocked().

Occasionally, we may write an if-else statement with an empty then-clause:

ifƒ(this.canPickThing())

{ // do nothing
#
}ƒelse

{ƒthis.turnLeft();

}

Test reversal allows us to rewrite this code fragment as follows:

ifƒ(!this.canPickThing())

{ƒthis.turnLeft();

}ƒelse

{ // do nothing
#
}

When written this way, it’s easy to see that we can drop the else-clause and use only the
Once or Not At All pattern.

ifƒ(!this.canPickThing())

{ƒthis.turnLeft();

}

Bottom Factoring

Compare the following two fragments of code.

ifƒ(this.canPickThing()) ifƒ(this.canPickThing())

{ƒthis.pickThing(); {ƒthis.pickThing();

ƒƒthis.turnAround(); }ƒelse

}ƒelse {ƒthis.putThing();

{ƒthis.putThing(); }

ƒƒthis.turnAround(); this.turnAround();ƒƒ

}

249

Both code fragments result in the same final situation. In both fragments, the robot fin
ishes by turning around. The code on the right, however, makes this more obvious by
moving this.turnAround() outside of the if-else statement. Only the actions
that actually depend on the test are left inside the if-else statement.

Moving identical lines of code that appear at the end of both the then-clause and the
else-clause to just after the if-else statement is called bottom factoring.

Top Factoring

When identical code appears at the beginning of the then-clause and the else-clause, we
may be able to top factor. Top factoring means moving identical code from the begin
ning of the then- and else-clauses to just before the if-else statement. For example:

ifƒ(this.canPickThing()) this.turnAround();
{ƒthis.turnAround(); ifƒ(this.canPickThing())
ƒƒthis.pickThing(); {ƒ
}ƒelse ƒƒthis.pickThing();
{ƒthis.turnAround(); }ƒelse
ƒƒthis.putThing(); {ƒ
} ƒƒthis.putThing();

}

Both versions of this code will always result in the same final situation. In both ver
sions, the robot always turns around, regardless of the test’s result.

Top factoring is not as simple as bottom factoring, however. If the identical lines of
code affect the outcome of the test, they cannot simply be moved. Consider the follow
ing example:

ifƒ(this.isFacingNorth()) this.turnAround();
{ƒthis.turnAround(); ifƒ(this.isFacingNorth())
ƒƒthis.pickThing(); {ƒ
}ƒelse ƒƒthis.pickThing();
{ƒthis.turnAround(); }ƒelse
ƒƒthis.putThing(); {ƒ
} ƒthis.putThing();

}

KEY IDEA Suppose the robot’s initial situation is facing north on an intersection with a thing.
Top factor only if the Executing the code on the left leaves the robot facing south and having picked up one
code moved outside thing. Executing the code on the right also leaves the robot facing south, but this time

the if statement has the robot has put a thing down rather than picking a thing up.
no effect on the test.

5.6
C

O
D
IN

G
 W

ITH
 S

TYLE

250
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

5.6.3 Visually Structure Code

Another important stylistic rule is to line up braces vertically and indent the bodies of
loops. This rule is the same as appropriately indenting methods.

If you read code written by someone else, you may notice that sometimes braces are omit
ted in an if or while statement. When the body consists of a single statement, the braces
surrounding it are optional. For example, both of the following statements are legal:

ifƒ(this.frontIsClear()) whileƒ(this.frontIsClear())

ƒƒthis.move(); ƒƒthis.move();

else

ƒƒthis.turnRight();

There are, however, dangers in leaving out the braces. The first comes from adding
code. Suppose that after executing the if statement we realize that if the front is not
clear, the robot should turn right and move. We might add an extra statement, as in the
following example:

ifƒ(this.frontIsClear())

ƒƒthis.turnLeft();

else

ƒƒthis.turnRight();

ƒƒthis.move();

In spite of the indentation, the move will occur whether the front is clear or not, which
is not what was desired. Why? Braces should group the new line with the instruction to
turn right. Without the braces, a compiler interprets the preceding code as follows:

ifƒ(this.frontIsClear())

{ƒthis.turnLeft();

}ƒelse

{ƒthis.turnRight();

}

this.move();

The compiler is interpreting the code correctly. The mistake is the programmer’s in
using white space to imply an incorrect program structure.

The second danger is called a dangling else. If braces are not included, where the else
goes can be confusing. For example, consider the following fragment:

ifƒ(this.frontIsClear())

ƒƒifƒ(this.canPickThing())

ƒƒƒƒthis.pickThing();

else

ƒƒthis.turnLeft();

}

251

The question is, which if goes with the else? The indentation seems to say the else
should go with the first if statement. In fact, an else goes with the closest unmatched
if. That is, the code is equivalent to the following:

ifƒ(this.frontIsClear())

{ƒifƒ(this.canPickThing())

ƒƒƒƒthis.pickThing();

ƒƒelse

ƒƒƒƒthis.turnLeft();

}

If we want to write code that does what the indentation implies, we are forced to add
braces so that the if without an else is clearly identified, as follows:

ifƒ(this.frontIsClear())

{ƒifƒ(this.canPickThing())

ƒƒƒƒthis.pickThing();

}ƒelse

ƒƒƒƒthis.turnLeft();

5.7 GUI: Using Loops to Draw

5.7
G
U
I: U

SIN
G
 L

O
O
PS TO

 D
RAW

LOOKING BACK

See Sections 2.7.1 (a
main method), 2.7.2

(overriding
paintComponent),

and 4.7.2 (scaling
images).

ch05/lineArt/

In previous chapters, we learned how to draw a figure, such as a line, by writing a class
extending JComponent and overriding the paintComponent method. An instance of
this class is set as the content pane of a JFrame. The following simple class overrides
paintComponent to scale the image and the stroke, and then draws a single line from
the upper-left to the lower-right (see Listing 5-7).

Listing 5-7: Drawing a single diagonal line

1 importƒjavax.swing.*;
2 importƒjava.awt.*;
3
4 /** Create a component that paints our ìart.î
5 * @author Byron Weber Becker */
6 publicƒclassƒArtComponentƒextendsƒJComponent
7 {
8 ƒƒpublicƒArtComponent()
9 ƒƒ{ƒsuper();

10 ƒƒƒƒthis.setPreferredSize(newƒDimension(300,300));
11 ƒƒ}
12
13 /** Paint the component with our ìart.î */
14 ƒƒpublicƒvoidƒpaintComponent(Graphicsƒg)
15 ƒƒ{ƒsuper.paintComponent(g);

252
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

Listing 5-7: Drawing a single diagonal line (continued)

16
17 // Standard stuff to scale the image.
18 ƒƒƒƒGraphics2Dƒg2ƒ=ƒ(Graphics2D)ƒg;
19 ƒƒƒƒg2.scale(this.getWidth()/11,ƒthis.getHeight()/11);
20 ƒƒƒƒg2.setStroke(newƒBasicStroke(1.0F/this.getWidth()));
21
22 // draw our ìartî
23 ƒƒƒƒg2.drawLine(1,ƒ1,ƒ10,ƒ10);
24 ƒƒ}
25 }

With a for loop, we can draw a shape over and over again. But if we replace line 23
with the following loop, we draw the same line repeatedly in the same place, having no
visible effect.

forƒ(intƒlineƒ=ƒ1;ƒlineƒ<=ƒ10;ƒlineƒ=ƒlineƒ+ƒ1)
{ƒg2.drawLine(1,ƒ1,ƒ10,ƒ10);
}

What we need is a way to change the position of the line in each iteration of the loop.

5.7.1 Using the Loop Counter

One way to change the position of the line with each iteration of the loop is to use
line, the loop counter, as a parameter to drawLine. The parameters to drawLine are
integers, and line holds integers. The value of this integer changes from 1 to 10 as the
loop executes. With each iteration of the loop, a different value is passed to drawLine,
changing the position of each of the 10 lines.

For example, we can replace line 23 in Listing 5-7 with the following loop:

forƒ(intƒlineƒ=ƒ1;ƒlineƒ<=ƒ10;ƒlineƒ=ƒlineƒ+ƒ1)
{ƒg2.drawLine(1,ƒ1,ƒ10,ƒline);
}

This loop yields the image shown in Figure 5-17. Each of the 10 iterations of the loop
draws a line. The location of the left end-point is fixed, but the right end-point’s loca
tion varies according to the current value stored in line, the loop’s counter variable.

LOOKING AHEAD

The number 10 has a
special significance in
this code. In Chapter 6
we will see a better
way to handle it using
named constants.

Counted Loop

253

The loop counter can be used for more than one of drawLine’s parameters. What
would be the effect of the following code fragment?

forƒ(intƒlineƒ=ƒ1;ƒlineƒ<=ƒ10;ƒlineƒ=ƒlineƒ+ƒ1)

{ƒg2.drawLine(1,ƒline,ƒ10,ƒline);

}

5.7
G
U
I: U

SIN
G
 L

O
O
PS TO

 D
RAW

(figure 5-17)

Image resulting from

using a loop to control

drawing lines

5.7.2 Nesting Selection and Repetition

In Section 5.3 we saw that if statements and while statements can be nested—that is,
one can be placed inside the other. for statements control any number of if, while,
and for statements. As such, for statements may be nested, just like if and while. We
could, for example, replace the single drawLine command at line 23 in Listing 5-7 with
the following nested loop.

forƒ(intƒleftƒ=ƒ1;ƒleftƒ<=ƒ5;ƒleftƒ=ƒleftƒ+ƒ1)
{ƒƒforƒ(intƒrightƒ=ƒ1;ƒrightƒ<=ƒ10;ƒrightƒ=ƒrightƒ+ƒ1)
ƒƒƒ{ƒg.drawLine(1,ƒleft,ƒ10,ƒright);

Counted Loop ƒƒƒ}
}

These five lines cause a total of 50 lines to be drawn. The outer loop executes five
times. In each of the five iterations of the outer loop, the inner loop executes com
pletely, performing 10 iterations each time.

The image drawn after one iteration of the outer loop looks like Figure 5-18a. After
two iterations of the outer loop, it looks like Figure 5-18b, and so on. Each iteration of
the outer loop draws one more spray of lines (see Figures 5-18c and d). Each spray is
drawn by the inner loop. In each iteration through the outer loop, the variable left
has a value one larger than the previous iteration. When passed as an argument to
drawLine, the coordinates of the left end of the line change.

254
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

(figure 5-18)

Images produced by a

nested loop after 1, 2, 3,

and 4 iterations of the

outer loop

a. Image after one loop b. Image after two loops

c. Image after three loops d. Image after four loops

The initial value in a for loop need not be 0. For example, the following nested loop
starts the outer loop at 3 instead of 0. The result is shown in Figure 5-19.

forƒ(intƒleftƒ=ƒ3;ƒleftƒ<=ƒ7;ƒleftƒ=ƒleftƒ+ƒ1)

{ƒforƒ(intƒrightƒ=ƒ1;ƒrightƒ<=ƒ10;ƒrightƒ=ƒrightƒ+ƒ1)

ƒƒ{ƒg.drawLine(1,ƒleft,ƒ10,ƒright);

ƒƒ}

}

(figure 5-19)

Starting the outer loop at 3

255

The control variable from the outer loop can also be used as a starting value or a lim
iting value in the inner loop. Here, the test for the inner loop is rightƒ<=ƒleft:

forƒ(intƒleftƒ=ƒ1;ƒleftƒ<=ƒ10;ƒleftƒ=ƒleftƒ+ƒ1)
{ƒforƒ(intƒrightƒ=ƒ1;ƒrightƒ<=ƒleft;ƒrightƒ=ƒrightƒ+ƒ1)
ƒƒ{ƒg.drawLine(1,ƒleft,ƒ10,ƒright);
ƒƒ}
}

The first time the outer loop executes, the variable left has a value of 1. This value
limits the inner loop to executing 1 time. The second time through the outer loop,
left has a value of 2. The inner loop draws a spray consisting of two lines. The
third time through the outer loop, left has a value of 3 and so the inner loop draws
a spray of 3 lines. See Figure 5-20.

5.7
G
U
I: U

SIN
G
 L

O
O
PS TO

 D
RAW

(figure 5-20)

Limiting the inner loop

with the outer loop’s

control variable

We can also add if statements inside a loop. Consider this program fragment:

forƒ(intƒleftƒ=ƒ1;ƒleftƒ<=ƒ10;ƒleftƒ=ƒleftƒ+ƒ1)
{ƒifƒ(leftƒ<=ƒ5)
ƒƒ{ƒg2.setColor(Color.WHITE);
ƒƒ}ƒelse
ƒƒ{ƒg2.setColor(Color.BLACK);
ƒƒ}

ƒƒforƒ(intƒrightƒ=ƒ1;ƒrightƒ<=ƒ10;ƒrightƒ=ƒrightƒ+ƒ1)
ƒƒ{ƒg.drawLine(1,ƒleft,ƒ10,ƒright);
ƒƒ}
}

The if statements test the loop control variable against an integer, just as we tested the
result of an integer query such as getAvenue() against an integer. The drawing color
is set based on the test’s outcome. The result is shown in Figure 5-21a, in which the
first five sprays are white and the last five are black. The background is set to a darker
shade of gray to show the white lines more effectively.

256
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

(figure 5-21)

Sprays of lines with

varying colors, colored

according to the sum of

inner and outer

a) Color according to the value of left b) Color according to the value of left + right

One more possibility is to perform a slightly more complex test for the color. It is pos
sible to compare two integer expressions in the if statement’s test. In the following
example, the if statement is moved into the inner loop. It makes the line white if the
sum of the values contained in left and right is greater than 10, and black other
wise. The result is shown in Figure 5-21b.

forƒ(intƒleftƒ=ƒ1;ƒleftƒ<=ƒ10;ƒleftƒ=ƒleftƒ+ƒ1)
{ƒforƒ(intƒrightƒ=ƒ1;ƒrightƒ<=ƒ10;ƒrightƒ=ƒrightƒ+ƒ1)
ƒƒ{ƒifƒ(leftƒ+ƒrightƒ>ƒ10)
ƒƒƒƒ{ƒg2.setColor(Color.WHITE);
ƒƒƒƒ}ƒelse
ƒƒƒƒ{ƒg2.setColor(Color.BLACK);
ƒƒƒƒ}

ƒƒƒƒg.drawLine(1,ƒleft,ƒ10,ƒright);
ƒƒ}
}

We can also use Java’s remainder operator (%) in the test. The remainder operator gives
the remainder when one number is divided into another. For example, 4ƒ%ƒ2 is 0
because 2 goes into 4 an even number of times. On the other hand, 5ƒ%ƒ2 is 1 because
when 5 is divided by 2, 1 is left over. This mathematical relationship gives us an easy
test for whether a number is even or odd. For example, if leftƒ%ƒ2 is 0, then the
value contained in left is even. If leftƒ%ƒ2 is 1, then the value contained in left is
odd. In the following program fragment, this fact is used to color alternating sprays
differently. The result is shown in Figure 5-22.

257

(figure 5-22)

Alternating the color of

each spray

5.7
G
U
I: U

SIN
G
 L

O
O
PS TO

 D
RAW

forƒ(intƒleftƒ=ƒ1;ƒleftƒ<=ƒ10;ƒleftƒ=ƒleftƒ+ƒ1)

{ƒifƒ(leftƒ%ƒ2ƒ==ƒ0)

ƒƒ{ƒg2.setColor(Color.WHITE);

ƒƒ}ƒelse

ƒƒ{ƒg2.setColor(Color.BLACK);

ƒƒ}

ƒƒforƒ(intƒrightƒ=ƒ1;ƒrightƒ<=ƒ10;ƒrightƒ=ƒrightƒ+ƒ1)

ƒƒ{ƒg.drawLine(1,ƒleft,ƒ10,ƒright);

ƒƒ}

}

As you can see, selection and repetition statements such as if, while, and for can be
combined in many ways.

5.8 Patterns

5.8.1 The Loop-and-a-Half Pattern

Name: Loop-and-a-Half

Context: A loop is used for a variation of the fence-post problem; that is, some of the
repeated actions (the “fence-post actions”) must be performed one more time than the
other repeated actions (the “fence-section actions”).

Solution: There are two standard solutions. The first repeats part of the code either
before or after the loop, as appropriate. Templates for two variants follow:

«fencePostƒactions» whileƒ(«booleanExpression»)
whileƒ(«booleanExpression») {ƒ«fencePostƒactions»
{ƒ«fenceSectionƒactions» ƒƒ«fenceSectionƒactions»
ƒƒ«fencePostƒactions» }
} «fencePostƒactions»

258
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

The second solution avoids the repeated code with a while-true loop, as shown in
the following template:

whileƒ(true)
{ƒ«fencePostƒactions»
ƒƒifƒ(«booleanExpression»)ƒƒ{ƒƒbreak;ƒƒ}
ƒƒ«fenceSectionƒactions»
}

Consequences: The «fencePostƒactions» are executed one more time than the
«fenceSectionƒactions». The «fencePostƒactions» are always executed at
least once.

Related Pattern: This pattern is a variation of the Zero or More Times pattern. That
pattern is used when all of the repeated steps are executed an equal number of times.

5.8.2 The Temporary Variable Pattern

Name: Temporary Variable

Context: You need to store a value that is used in the task being performed rather than
as an attribute of the object. The value is only used in one method and perhaps in the
methods it invokes—for example, a variable to control a loop, to store a temporary
result for use in later calculations, or to accumulate a value to return to a client.

Solution: Use a temporary variable. For example, a Robot might be extended with the
following method, which uses a temporary variable, numWalls:

publicƒintƒnumBlockedDirections()
{ƒintƒnumWallsƒ=ƒ0;
ƒƒfor(intƒturnsƒ=ƒ0;ƒturnsƒ<ƒ4;ƒturnsƒ=ƒturnsƒ+ƒ1)
ƒƒ{ƒifƒ(!this.frontIsClear())
ƒƒƒƒ{ƒnumWallsƒ=ƒnumWallsƒ+ƒ1;
ƒƒƒƒ}
ƒƒƒƒthis.turnLeft();
ƒƒ}
ƒƒreturnƒnumWalls;
}

The general form for declaring a temporary variable is:

«type»ƒ«name»ƒ=ƒ«initialValue»;

where «type» is the type of value stored, such as int, double, or even the name of a
class; «name» is the name used for the variable; and «initialValue» is the first
value used for the variable. The initial value is optional; however, it must be assigned
before the variable is first used, and it is good practice to initialize the variable when it
is declared.

259

Consequences: A variable is declared that may only be used within the smallest enclos
ing block of code. Because it is only used locally, the reader’s burden of remembering
the name and purpose of the variable is significantly reduced, speeding the comprehen
sion of the program and reducing errors.

Related Patterns: This pattern always occurs within an instance of a method pattern,
such as the Helper Method, Query, or Parameterized Method patterns.

5.8.3 The Counting Pattern

Name: Counting

Context: You need to count a number of events, such as the number of times a Thing is
picked up, the number of moves a robot makes, or the number of times a test returns true.

Solution: Increment a temporary variable each time the event occurs. Initialize the vari
able to zero before counting begins.

intƒ«counter»ƒ=ƒ0;

whileƒ(«booleanExpression»)

{ƒ«statements»

ƒƒ«counter»ƒ=ƒ«counter»ƒ+ƒ1;

}

Variations of this template may increment «counter» only if a certain test is met or
may use a different looping strategy.

Consequences: «counter» will record the number of events that have occurred since
it was initialized.

Related Patterns:
➤	 This pattern uses a loop, typically the Zero or More Times pattern and the

Temporary Variable pattern.

➤	 This pattern is often placed in an instance of the Query pattern.

5.8.4 The Query Pattern

Name: Query

Context: A calculation that yields a single value is required. This pattern is particularly
applicable if:

➤	 the calculation involves a number of steps

➤	 the calculation is complicated

➤	 program readability is improved by giving the calculation a name

➤	 the calcualtion is used more than once in the program

5.8
P

ATTERN
S

260
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

Solution: Write a method with a return value of the required type that uses a return
statement to identify the calculation’s answer. In general:

«accessModifier»ƒ«returnType»ƒ«queryName»(«optParameters»)

{ƒ«optionalStatements»

ƒƒ«returnType»ƒanswerƒ=ƒ«expression»;

ƒƒ«optionalStatements»

ƒƒreturnƒanswer;

}

An example is countThingsHere, shown in Listing 5-2. Another example is to calcu
late the distance from a given street, as follows:

privateƒintƒdistanceFromStreet(intƒtargetStr)

{ƒintƒanswer;

ƒƒifƒ(this.getStreet()ƒ>ƒtargetStr)

ƒƒ{ƒanswerƒ=ƒthis.getStreet()ƒ–ƒtargetStr;

ƒƒ}ƒelse

ƒƒ{ƒanswerƒ=ƒtargetStrƒ–ƒthis.getStreet();

ƒƒ}

ƒƒreturnƒanswer;

}

Queries should avoid side effects.

Consequences: Queries make code easier to understand because they name a calcula
tion. They also make the calculation easier to reuse.

Related Patterns:
➤	 The Query pattern is a specialization of the method creation patterns, such as the

Parameterless Command, Helper Method, and Parameterized Method patterns.

➤	 The Simple Predicate and Predicate patterns are specializations of this pattern.

5.8.5 The Predicate Pattern

Name: Predicate

Context: You are using a Boolean expression that is not as easy to read or understand
as is desired, or a test is needed that can’t be written as a Boolean expression because it
requires extra processing.

Solution: Use the Query pattern where the «returnType» is boolean. Such a query
is called a predicate. The predicate may have parameters to make it more flexible.

Consequences: The processing required for the test is encapsulated in a reusable
method. With appropriate naming, the code using the predicate is more readable.

261

Related Patterns:
➤	 The Predicate pattern is a specialization of the Query pattern.

➤	 The Predicate pattern is often used to define predicates used in the Once or
Not At All, Zero or More Times, and Either This or That patterns, among
others.

➤	 The Simple Predicate pattern is a simplified version of this pattern that does
not use a temporary variable or the optional statements.

5.8.6 The Cascading-if Pattern

Name: Cascading-if

Context: You have a situation in which exactly one of several groups of statements
should be executed based on a sequence of tests.

Solution: Order the tests from the most specific test to the most general test, pairing
each test with the appropriate group of actions. Format the tests and actions to empha
size the pairings:

ifƒ(«test1»)

{ƒ«statementGroup1»

}ƒelseƒifƒ(«test2»)

{ƒ«statementGroup2»

...

}ƒelseƒifƒ(«testN»)

{ƒ«statementGroupN»

}ƒelse

{ƒ«defaultStatements»

}

Consequences: The tests are executed in order from 1 to N. The first one that returns
true will cause the associated statement group to be executed once. The final else
and «defaultStatements» are optional. They will be executed if none of the tests
return true.

Related Patterns:
➤	 If there is only one test and one group of statements, this pattern becomes the

Once or Not At All pattern. Similarly, if there is only one test but two groups
of statements, this pattern becomes the Either This or That pattern.

➤	 The switch statement, while not included as a pattern, solves similar kinds of
problems when the decision of which group of statements to execute is based
on a single value.

5.8
P

ATTERN
S

262
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

5.8.7 The Counted Loop Pattern

Name: Counted Loop

Context: You have a group of statements that must be executed a specific number of
times, a number that is known when the loop begins execution.

Solution: Use a for statement, as in the following example:

//ƒmove to avenue 0; assumes the robot is on an avenue west of 0 and is facing West
intƒhowFarƒ=ƒthis.getAvenue();
forƒ(intƒi=0;ƒi<howFar;ƒiƒ=ƒiƒ+ƒ1)
{ƒthis.move();
}

The general form for this pattern is shown in Section 5.5.1. There is an equivalent form
of the while statement, also shown in that section.

Consequences: The body of the for statement is executed zero or more times, depend
ing on the specifics of the loop.

Related Pattern: The Counted Loop pattern is a specialization of the Zero or More
Times pattern.

5.9 Summary and Concept Map

A while statement is used to execute a group of statements zero or more times.
Writing such a loop correctly can be made easier by following a formal four-step
process. There are also specialized forms of the while loop. For example, when it
should execute a known number of times, a for statement is the preferred alternative.
Loops that always execute at least once may use the do-while statement while the
while-true variation is particularly useful for solving fence-post problems using the
Loop-and-a-Half pattern.

Statements may be nested, for example, by putting an if statement within a while or
for statement. When only one of several groups of statements should be executed, a par
ticular pattern of nesting if statements called a cascading-if is useful. Complicated nest
ing structures should be avoided by using helper methods.

Temporary or local variables are used to remember a value for later use in the same
method. They can simplify many methods and enable techniques such as the Counting
pattern. Temporary variables are also useful to remember a value to be returned from
a query. The value a temporary variable refers to can be changed with an assignment
statement in which the expression on the right side is evaluated and the resulting value
is assigned to the variable on the left side.

263

Boolean expressions may be combined using “and” (&&) and “or” (||). As such
expressions become complicated, encapsulating them in a predicate and simplifying
them, perhaps with De Morgan’s Laws, can make the program easier to understand.

The statements discussed in this chapter and the previous chapter can significantly
increase the complexity of our programs, making appropriate style important. Writing
helper methods identified with stepwise refinement, using positively stated tests, and
visually structuring the code are all important techniques.

5.9
S

U
M

M
ARY AN

D
 C

O
N
CEPT M

AP

include

is similar to

may be a

may have an

may be

simplified with

may be

combined with

use

use
m

ay

use a

is also called a

may be used elsewhere
within the smallest enclosing

us
e

refers to a can be changed
with an

are constructed

using theca
n

co
un

t u
si

ng
 a

with the test at the end are

stop with acan be
have several

include the

can often be expressed

more succinctly with a

four-step
process

common
problems

infinite
execution

fence-post
problem

if
statements

else clause

cascading-if

Boolean
expressions

&& and ||

De Morgan’s
Laws

switch
statement

short-circuit
evaluation

for loop

do-while
loops

while-true
loops

break
statement

temporary
variable

local
variable

value
assignment
statement

block

while
loops

264

5.10 Problem Set

CH
AP

TE
R

5
| M

O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

Written Exercises

5.1	 Show the four steps used to derive a while loop for the following situations:

a. A robot must pick up all the things on the intersection it occupies.

b. A robot must pick up the same number of things as it has in its backpack.

c. A robot facing east must move until it is on the nearest street that is divisible
by eight. (Hint: Use the remainder operator (%) discussed in the code used
for Figure 5-22.)

d. A robot moves until it arrives at an intersection with a thing and a wall on
the right edge.

e. A robot moves between consecutive intersections picking up one thing from
each intersection, beginning with the one it is on. If there is still a thing on
the intersection after it has picked one up, the robot stops.

f. A variable, maxToPick, holds the maximum number of things a robot should
pick up. It picks up that many things from its current intersection unless there
aren’t enough things present. In that case, it picks up as many as it can.

5.2	 The pickThingsToWall method, shown in Listing 5-4 and illustrated in
Figure 5-6, instructs a robot to move to a wall, picking one Thing from each
intersection that has one. Describe the changes required to make the robot pick
up an entire pile of things from those intersections that have them.

5.3	 For each subproblem, write a predicate that returns the same value as the given
Boolean expression. That is, you could use your predicate instead of the
Boolean expression in a program with no difference in the overall behavior of
the program. Do not use &&, ||, or ! inside the predicate. (Hint: Use if and
if-else statements with a temporary variable and possibly helper methods.)

a. this.getAvenue()ƒ>ƒ5ƒ&&ƒthis.getAvenue()ƒ<ƒ10

b. this.countThingsInBackpack()ƒ>ƒ10ƒ&&ƒ!this.frontIsClear()

c.	 (this.getDirection()ƒ==ƒDirection.NORTHƒ||

ƒthis.getDirection()ƒ==ƒDirection.SOUTH)ƒ&&ƒ

ƒthis.frontIsClear()

5.4	 For each subproblem, draw an oval diagram for the given expression, assuming
the robot is in the described situation.

a. this.getAvenue()ƒ>ƒ5ƒ&&ƒthis.getAvenue()ƒ<ƒ10

(the robot is on avenue 5)

b. this.countThingsInBackpack()ƒ>ƒ10ƒ&&ƒ!this.frontIsClear()
(the robot has 12 things in its backpack and is facing a wall)

265

c.	 ƒ(this.getDirection()ƒ==ƒDirection.NORTHƒ||

ƒƒthis.getDirection()ƒ==ƒDirection.SOUTH)ƒ&&ƒ

ƒƒthis.frontIsClear()

ƒƒ(the robot is facing north and its front is clear)

Programming Exercises

5.5	 Use the cascading-if statement to write a method named faceNorth that

always turns a robot to face north.

5.6	 A HomingRobot’s “home” is at 4th Street and 3rd Avenue in a city that has no
obstructions, such as walls. HomingRobot contains a method named goHome,
which returns the robot to (4, 3) no matter where the robot is in the city.
goHome is written as follows:

publicƒvoidƒgoHome()

{ƒwhileƒ(!this.atHome())

ƒƒ{ƒthis.faceHome();

ƒƒƒƒthis.move();

ƒƒ}

}

a. Write the predicate atHome.

b. Use a cascading-if to write faceHome.

5.7	 Consider again the situation shown in Figure 5-9 in which a robot should stop
at a thing or a wall, whichever comes first.

a. Solve the problem using a while-true loop with one break statement.

b. Solve the problem using a while-true loop with two break statements.

5.8	 Consider again the problem of shifting things from one intersection to another,
as illustrated in Figure 5-4. Solve the problem using a while-true loop.

5.9	 Use techniques presented in Section 5.6.2 to improve the following code frag
ments. If they can’t be improved, explain why.

a.	 b.

ifƒ(this.isFacingNorth()) ifƒ(this.getStreet()ƒ!=ƒ5)

{ƒthis.turnAround(); {ƒthis.turnleft();

ƒƒthis.pickThing(); }ƒelse

}ƒelse {ƒthis.turnRight();

{ƒthis.turnAround();

ƒƒthis.putThing(); }

}ƒ

5.10
P

RO
BLEM

 S
ET

266
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

c.

ifƒ(this.canPickThing())

{ƒthis.move();

ƒƒthis.turnLeft();

}ƒelse

{ƒthis.move();

ƒƒthis.turnRight();

}ƒ

e.

intƒnƒ=ƒthis.thingsHere();

ifƒ(nƒ==ƒ0)

{ƒthis.turnLeft();

ƒƒthis.move();

}ƒelseƒifƒ(nƒ==ƒ1)

{ƒthis.turnRight();

ƒƒthis.move();

}ƒelseƒifƒ(nƒ==ƒ2)

{ƒthis.turnAround();

ƒƒthis.move();

}ƒelse

{ƒthis.move();

}ƒ

d.

ifƒ(countƒ!=ƒ5ƒ&&ƒ
ƒƒƒƒ!this.frontIsClear())
{ƒthis.turnRight();
ƒƒcountƒ=ƒcountƒ+ƒ1;
}ƒelse
{ƒthis.turnLeft();
ƒƒcountƒ=ƒcountƒ+ƒ1;
}ƒƒ

f.

ifƒ(this.frontIsClear())

{ƒifƒ(this.canPickThing())

ƒƒ{ƒthis.pickThing();

ƒƒƒƒthis.move();

ƒƒ}ƒelse

ƒƒ{ƒthis.move();

ƒƒ}

}ƒelse

{ƒthis.turnLeft();

ƒƒthis.move();

}ƒƒ

5.10 Assume that a Prospector robot is on an intersection with either one or two
things. Write a new method named followTrail that commands the robot to
face north if it is on an intersection with one thing and to face south if it is on
an intersection with two things. The robot must leave the same number of
things on the intersection as it found originally.

5.11 Write a predicate that returns true if and only if a robot is completely sur
rounded by walls and unable to move in any direction. Of course, the predicate
should not have side effects.

5.12 Implement the pile-shifting robot described in Section 5.1.2.

Programming Projects

5.13 karel is in a completely enclosed rectangular room that has, unfortunately,
litter strewn all over it (see Figure 5-23). Create a new class of robot that can
pick up the litter. The size of the room is unknown and the amount of litter
on each intersection is also unknown. However, its top-left corner is always
on intersection (1, 1), and karel always starts there, facing east. karel
should return to its starting position when its task is complete. Make use of
stepwise refinement and helper methods. Create files representing different
rooms to test your program.

267

(figure 5-23)

Littered room

5.10
P

RO
BLEM

 S
ET

(figure 5-24)

Two possible rooms to

escape

5.14 Write a new Robot class, Houdini, that includes a method named escapeRoom.
It will cause the robot to search for an exit to a rectangular room—a break in the
wall. Such an exit always exists and is never in a corner. The robot may start any
where in the room, but it will not be facing the exit. When the exit is found, the
robot will move through the exit and then stop. See Figure 5-24 for two of many
possible initial situations.

(figure 5-25)

One possible

steeplechase situation

5.15 Program a robot to run a mile-long steeplechase. The steeplechase course is
similar to the hurdle race (see Section 4.4.1), but here, the barriers can be one,
two, or three walls high. One sample situation is shown in Figure 5-25. The
robot begins the race on the lower-left corner facing east and follows the path
shown. Call the class of this new robot SteepleChaser. It should have Racer
as a parent class (see Section 4.4.1). Override appropriate statements of Racer
to implement the new behavior.

5.16 Extend the RobotSE class to create a MazeWalker. MazeWalker has a single
public method, followWallRight. Assume that when it executes, the robot
has a wall directly to its right. By calling this method repeatedly, the robot will
eventually find its way out of a maze.

268
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

Study the online documentation for the MazeCity class to learn how to con
struct a city with a maze in it. Place your MazeWalker at (0, 0) facing south
and a Thing someplace within the city for it to find. Call followWallRight
repeatedly until the thing is found.

a. One strategy for followWallRight involves four different position
changes, as shown in Figure 5-26. The dark robot signifies the initial posi
tion and the light robot signifies its position after followWallRight is
invoked.

b. Another strategy for followWallRight is for the robot to make exactly
one move each time the method is called.

c. Develop a solution that minimizes the number of “useless” turns the robot
makes to determine if its right or left side is blocked.

Comments: Option (a) is easy because there are hints in Figure 5-26, but it’s
hard to get the robot to stop at the right place. Option (b) is hard because it
has no hints, but it’s easy to get the robot to stop at the right place.

5.17 Implement a class named TrailBot that extends RobotSE and contains a sin
gle public method, followTrail. A TrailBot follows a trail to a destination.
Trails begin at (0, 0) with the robot facing south. Trails consist of various signs
that indicate how to continue following the trail. The robot must leave the trail
signs as they were found. One way to test this is to have two robots follow the
same trail. The robots may or may not start with Things in their backpacks.

a. The trail signs consist of piles of one or more things. The number of Things
in the pile instruct the robot how far to move forward. After moving that
distance, the robot may find another trail sign (a pile of Things). If so, the
number present instructs the robot how far to go to find the next trail sign.
Finding a pile and moving a distance equal to its size continues until the
robot arrives at an empty intersection (the end of the trail). There may be
things between the piles that instruct the robot how far to go. If so, they
should be ignored.

b. The trail signs are as follows:

➤ A Wall and one Thing: end of the trail

➤ One Thing: move one intersection to the right

➤ A Wall: move one intersection to the left

➤ Empty intersection: move one intersection forward.

c. Design your own set of trail signs and create a robot to follow it.

(figure 5-26)

Movements of a

MazeWalker robot

269

(figure 5-27)

Pairs of initial and final

situations for a

DeliveryBot

(figure 5-28)

Tunnel-clearing situation

and its corresponding

final situation

5.18	 karel is an instance of DeliveryBot and has a unique delivery task. It starts
with some number of Things in its backpack. When its deliverThings
method is called, it begins to place Things on consecutive intersections. On the
first intersection it places one thing. On the next intersection it places two
things, and on the next intersection, three things. Each intersection receives one
more thing than the previous intersection. Each intersection receives its full
allotment of things or none at all. Figure 5-27 shows several pairs of sample
initial and final situations.

Robot begins with zero things After delivering zero things

1 2 3
Robot begins with six things Robot has zero things left

1 2 3
Robot begins with seven things Robot has one thing left

5.19 An instance of ClearTunnelBot is facing a tunnel that has at least one Thing
on each intersection. When given the clearTunnel command, the robot
should remove all of the Things, placing them as shown in the final situation.
The robot may carry at most one Thing at a time and may not make any trips
back to the tunnel once all the Things have been removed. Figure 5-28 shows
two typical situations and their corresponding final situations. The robot will
always start with a wall behind it, marking where the things should be placed.
The distance to the tunnel and the length of the tunnel may vary.

Two initial situations	 Corresponding final situations

5.20 Modify the program in Listing 5-7 as follows:

a. Draw sprays of lines, starting at the top of the image and extending down,
as shown in Figure 5-29a.

b. Draw lines from the upper-left corner to evenly spaced points on the bottom
and right edges, as shown in Figure 5-29b. Hint: You only need one loop,
but each iteration draws two lines.

5.10
P

RO
BLEM

 S
ET

270
CH

AP
TE

R
5

| M
O
RE

 D
EC

IS
IO

N
 M

AK
IN

G

c. Draw a line of circles that alternate in color, as shown in Figure 5-29c.

d. Draw a bull’s eye, as shown in Figure 5-29d. You will need a single loop.
Use the loop counter to specify the top left corner of the circles and a second
variable for the size of the circles.

e. Fill the entire component with circles, as shown in Figure 5-29e.

f. Fill the entire component with circles, as shown in Figure 5-29f. Define a
predicate returning true if the given row and column are part of the cross,
and false otherwise.

g. Fill the entire component with circles, as shown in Figure 5-29g. Define a
predicate returning true if the given row and column are part of the cross,
and false otherwise.

h. Create a checkerboard, as shown in Figure 5-29h.

a) b) (figure 5-29)

c) d)

Various fine pieces of art

271

(figure 5-29) continued e) f)

Various fine pieces of art

5.10
P

RO
BLEM

 S
ET

g) h)

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 273

Chapter 6 Using Variables

Chapter Objectives

After studying this chapter, you should be able to:

➤	 Add new instance variables to a simple version of the Robot class

➤	 Store the results of calculations in temporary variables and use those results later
in the method

➤	 Write methods using parameter variables

➤	 Use constants to write more understandable code

➤	 Explain the differences between instance variables, temporary variables, parameter
variables, and constants

➤	 Extend an existing class with new instance variables

Every computer program stores and updates information. When we tell a robot to
move, it updates its current street and avenue information. When a robot picks up a
thing from an intersection, the intersection updates its list of things, removing the thing
the robot picked up. The robot also updates its list of things to include the new thing it
picked up.

A variable is a place in the computer’s memory where information can be stored. When
stored in a variable, the information can be changed, copied, or used in an expression.
Programming languages offer several kinds of variables. The best one to use depends
on factors such as how long the information must be stored and the source of the first
value to store.

273

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 274

274

6.1 Instance Variables in the Robot Class

CH
AP

TE
R

6
| U

SI
N
G
 V

AR
IA

BL
ES

If we could look inside the Robot class, what would we find? We would certainly find
methods implementing the move and turnLeft services. We would find that it extends
another class that provides basic functionality on which robots depend. We would also
find several varieties of variables. Some of these variables specify the street and avenue
currently occupied by the robot. A variable is like a box that can hold one piece of
information. We can ask for a copy of the information in the box anytime we like. We
can also replace the information in the box with new information.

In this chapter, we will write a simplified version of the Robot class, named
SimpleBot, to see its variables in action. It will also use a simplified version of City,
named SimpleCity. By the end of this chapter, you will be able to understand all of the
classes used except for three that are intimately involved with displaying the robots on
the screen. By the end of Chapter 13, you will be able to understand those three as well.

You are strongly encouraged to download these classes from the software downloads sec
tion of the Robots Web site (www.learningwithrobots.com/software/downloads.html).
You will increase your understanding if you write and run the programs as we develop the
SimpleBot class.

We will spend most of our time developing the SimpleBot class, but you need a brief
introduction to the SimpleCity class for everything to make sense. The SimpleCity
class is a container for all the things that are “in” the city and need to be displayed by
the city. In our simple version, the city only contains intersections and robots.

The intersections and robots in the city are displayed by calling their paint method. In
the SimpleBot class, the paint method paints a robot; in the SimpleIntersection
class, the paint method paints a street and an avenue. We will guarantee to the
SimpleCity object that the objects we ask it to display have a paint method by requir
ing these paintable objects to extend a class named Paintable. This class is very simple:
It extends Object and has a single method that does nothing—the paint method.
Classes that should display themselves override this method. The Paintable class is
shown, in its entirety, in Listing 6-1.

KEY IDEA

Variables store
information for
later use.

ch06/simpleBots/

LOOKING AHEAD

In Section 7.6, we will
see how the presence
of particular methods
can be assured with
Java interfaces.

Listing 6-1: The complete source code for the Paintable class

ch06/simpleBots/
1 importƒjava.awt.Graphics2D; Paintable.java
2

3 /** Subclasses of Paintable can be displayed in the city. Each subclass should

4 * override the paint method to paint an image of itself.

5 * @author Byron Weber Becker */

6 publicƒclassƒPaintableƒextendsƒObject

7 {

www.learningwithrobots.com/software/downloads.html

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 275

275
6.1

IN
STAN

CE V
ARIABLES IN

 TH
E R

OBOT C
LASS

Listing 6-1: The complete source code for the Paintable class (continued)

8 ƒƒpublicƒPaintable()
9 ƒƒ{ƒsuper();

10 ƒƒ}
11 ƒƒ
12 ƒƒ/** Each subclass should override paint to paint an image of itself. */
13 ƒƒpublicƒvoidƒpaint(Graphics2Dƒg)
14 ƒƒ{
15 ƒƒ}
16 }

KEY IDEA

Start simply. Add
functionality in small

increments.

The city displays the intersections and the robots by calling paint about twenty times
each second, first for the intersections and then for the robots. If a robot has moved
since the last time the city was displayed, painting the intersections will erase the old
robot image, and painting the robot will position it in its new location.

The following sections concentrate on the SimpleBot class and, in particular, how it
uses variables to store and manipulate the information a robot needs. The robots in
this section are simple—they only move and turn left. Eventually you will be able to
increase their capabilities substantially.

Our approach is to start simply, adding functionality in small increments. First, we’ll
display a round “robot” on intersection (4, 2). Then we’ll make it move and turn left—
except that we won’t be able to tell which way it faces (because it is displayed as a cir
cle) until it moves again. We will then improve its appearance so that it shows which
direction it’s facing, and enhance its functionality in other ways.

6.1.1 Implementing Attributes with Instance Variables

We know from our previous experience with robots that they have attributes that specify
the street and avenue they currently occupy. In Figure 1-8, reproduced in Figure 6-1, we
were introduced to a Robot class diagram showing these attributes. The instances of the
class, as shown on the right side of Figure 6-1, have specific values for these attributes.
Recall that each instance has its own copies of the attributes defined by the class. Each
individual robot has its own street and avenue, for example.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 276

str

aven

sue:

Robot

276
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

Robot
int street
int avenue
Direction direction
ThingBag backpack
Robot(City aCity, int aStreet, int anAvenue,

Direction aDirection)
void move()
void turnLeft()
void pickThing()
void putThing()

5

8

WEST

eet:

ue:

direction:

backpack:

Robot

karel:

4

2

EAST

street:

avenue:

direction:

backpack:

(figure 6-1)

A Robot class diagram,

reproduced from Chapter 1,

and two object diagrams

corresponding to two

possible instances

When a Robot object paints itself on the city, it evidently looks at the street and
avenue attributes to determine where to paint the image. If the attributes hold the val
ues 4 and 2, respectively, then the robot image is painted on the intersection of 4th

Street and 2nd Avenue.

The idea of an attribute is implemented in Java with an instance variable. You can
imagine an instance variable as a box that has a name. Inside the box can be one, and
only one, value. When the name of the box is used in the code, a copy of the value cur
rently inside the box is retrieved and used. An instance variable also allows us to
change the value inside the box.

Instance variables have the following important properties:

➤	 Each object has its own set of instance variables. Each robot, for example, has
its own street and avenue variables to remember its location.

➤	 The scope of an instance variable extends throughout the entire class. An
instance variable can be used within any method.

➤	 The lifetime of an instance variable—the length of time its values are
retained—is the same as the lifetime of the object to which it belongs.

6.1.2 Declaring Instance Variables

We create and name an instance variable—a named “box” that holds a value—with a
variable declaration. The declaration is often combined with an assignment statement
to specify the variable’s initial value. Instance variables are declared inside the classes’
first and last braces but outside of any methods. The beginnings of the SimpleBot
class, including two instance variables to hold the street and avenue, are shown in
Listing 6-2.

KEY IDEA

An instance variable
stores a value, such
as 10 or –15, for
later use.

KEY IDEA

Each object has its
own set of instance
variables.

KEY IDEA

A variable declaration
sets aside space in
memory to store a
value and associates a
name with that space.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 277

277
6.1

IN
STAN

CE V
ARIABLES IN

 TH
E R

OBOT C
LASS

Instance Variable

Listing 6-2: The beginnings of the SimpleBot class with two instance variables declared

1 publicƒclassƒSimpleBotƒextendsƒPaintable
2 {
3 ƒƒprivateƒintƒstreetƒ=ƒ4; // Create space to store the robot's current street.
4 ƒƒprivateƒintƒavenueƒ=ƒ2; // Create space to store the robot's current avenue.
5 ƒƒ
6 ƒƒpublicƒSimpleBot()
7 ƒƒ{ƒsuper();
8 ƒƒ}
9

10 ƒƒ// An incomplete class!
11 }

These instance variable declarations have four key parts that occur in the following order:

➤	 Declarations start with an access modifier. For reasons we will explore in
Chapter 11, the keyword private should be used almost exclusively. Like
using private before a helper method, this keyword identifies this part of the
class as “for internal use only.”

➤	 Declarations specify the type of values stored. The int says that these
“boxes” hold integers—values such as 1, 33, or -15. Later, we’ll study other
possibilities, such as double (values such as 3.14159) and String (values
such as “IƒloveƒJava”).

➤	 Declarations name the variable. In these examples, the names are street and
avenue. Instance variables are generally named like methods, using one or
more descriptive words, with the first letter of the entire name being lowercase
and the first letter of subsequent words being uppercase. Examples include
avenue, direction, and nextLocation.

➤	 Declarations may include an initial value, placed after an equal sign. In these
examples, street and avenue are given initial values of 4 and 2, respectively.
If the initial value is not explicitly assigned, Java will provide a default initial
value appropriate to the type. The default for integers is 0 and for boolean
variables is false. However, your code is more understandable if you explic
itly initialize your variables.

These declarations are very similar to declaring temporary variables, as studied in
Section 5.2, with two exceptions. First, instance variable declarations always occur
outside of methods, whereas temporary variable declarations always occur inside of
methods. Second, instance variable declarations should have an access modifier,
whereas temporary variables never do.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 278

278
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

6.1.3 Accessing Instance Variables

Two major tasks remain in writing the SimpleBot class. First, we need to display the
robot within the city. To do this, we will access the values stored in the instance vari
ables. Second, we need to make the robot move. We will do this by updating the values
stored in the instance variables. Then, when the robot is painted again, it will appear at
a different place in the city.

As we learned in the introduction to Section 6.1, objects to be displayed by a city must
extend Paintable and override the paint method. Our first version of paint displays
the robot as a black circle on the intersection of 4th Street and 2nd Avenue. Figure 6-2
shows the robot on a background of streets and avenues with annotations for drawing it.
We will assume that each intersection is 50 pixels square. Therefore, 4th Street starts at
pixel 200 (4 × 50) and 2nd Avenue starts at pixel 100 (2 × 50). The following code paints
the robot and should be inserted between lines 10 and 11 of Listing 6-2.

0 1 2 3

0

1

2

3

4

5

1 publicƒvoidƒpaint(Graphics2Dƒg)
2 {ƒg.setColor(Color.BLACK);
3 ƒƒg.fillOval(100,ƒ200,ƒ50,ƒ50);
4 }

50

50

This method takes a parameter, g, which is an object used to paint on the screen. Line 2
says to use the color black in subsequent painting operations. Line 3 says to paint a
solid oval. Recall that the first argument to fillOval is the x (horizontal) coordinate,
the second argument is the y (vertical) coordinate, and the last two arguments are the
height and width, respectively.

There is no need for us to perform the multiplications to calculate the coordinates of
the upper-left corner. Computers are very good at multiplication, and we should let
them do that for us. Line 3 may be replaced by the following:

3 g.fillOval(2ƒ*ƒ50,ƒ4ƒ*ƒ50,ƒ50,ƒ50);

Java uses * to indicate multiplication.

(figure 6-2)

Simple robot and its

location

LOOKING AHEAD

We will discuss
parameters in depth
in Section 6.2.2.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 279

279

Instance Variable

However, we don’t always want to draw the robot at intersection (4, 2). We want to
access the street and avenue attributes—implemented as instance variables—to deter
mine where the robot is drawn. To do so, we use the names of the instance variables in
place of the 4 and 2 in the new lines of code. That is, the following paint method will
display the robot at the street and avenue specified in the instance variables.

1 publicƒvoidƒpaint(Graphics2Dƒg)
2 {ƒg.setColor(Color.BLACK);
3 ƒƒg.fillOval(this.avenueƒ*ƒ50,ƒthis.streetƒ*ƒ50,ƒ50,ƒ50);
4 }

We will use the keyword this to access the instance variables in our code. Using
this to access an instance variable is like using this to access a helper method: It
reinforces that the variable belongs to this object, the one that contains the currently
executing code.1

Line 3 of the preceding code can be better understood with the help of an evaluation
diagram, like the one we used in Section 5.4. Recall that we begin by drawing ovals
around literals (like 50) and variables (like this.avenue), and writing their type
above and their value below the ovals. We then repeatedly circle method calls and
operators, together with their arguments and operands, in order of their precedence.
This process is shown in Figure 6-3, where we assume that the robot is on (4, 2).

Notice that the arguments to fillOval are circled before fillOval is circled. This
means that the arguments are evaluated before the method is called. Also note that the
type of the oval around fillOval is void because fillOval has a return type of
void. It doesn’t return a value to place below the oval. Instead, the side effect of the
method is written.

6.1
IN

STAN
CE V

ARIABLES IN
 TH

E R
OBOT C

LASS

1 The keyword this is actually optional much of the time. Students are strongly encouraged to use it,
however, to reinforce that they are accessing an instance variable that belongs to a particular object.
There is also the practical reason that many modern programming environments display a list of
instance variables and methods when “this.” is typed, reducing the burden on the programmer’s mem
ory and eliminating many spelling mistakes.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 280

280
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

int int int int int int (figure 6-3)

g.fillOval(this.avenue * 50 , this.street * 50 , 50 , 50) ; Evaluation diagram for

2 50 4 50 50 50 line 3 in SimpleBot’s
After the first step in drawing an evaluation diagram paint method, assuming

int int the robot is on

int int int int int int
intersection (4, 2)

g.fillOval(this.avenue * 50 , this.street * 50 , 50 , 50) ;

2 50 4 50 50 50

100 200
After two iterations of step two in drawing an evaluation diagram

void

) ;

int

2

g.fillOval(this.avenue

int

50

50

100

int

* ,

int

4

this.street

int

50

50

200

int

* , 50 50,

int

50

int

50

(the oval is drawn)
After the last iteration of step two in drawing an evaluation diagram

The code for the paint method needs one last detail: The classes Graphics2D and
Color must be imported before we can use them in lines 1 and 2, respectively. To do
so, add the following two lines at the beginning of the file:

importƒjava.awt.Graphics2D;ƒ

importƒjava.awt.Color;ƒ

6.1.4 Modifying Instance Variables

Our robot needs a move method. When it is invoked, the robot should move to another
intersection. From previous experience, we know that invoking move changed a robot’s
attributes. Because attributes are implemented with instance variables, we now know
that move must change either street or avenue by 1, depending on the direction.

We already discussed incrementing and decrementing parameters and temporary vari
ables in Chapters 4 and 5. Changing an instance variable by 1 is similar and is shown
in the following partially implemented move method:

// Move the robot one intersection east, assuming it is facing east and nothing blocks it.
publicƒvoidƒmove()

{ƒthis.avenueƒ=ƒthis.avenueƒ+ƒ1;ƒƒƒƒ// incomplete

}

LOOKING BACK

Take a look at the
state change diagram
in Figure 1-12 to
better understand the
effect of move on the
avenue and street
attributes.

Instance Variable

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 281

281

Because we are accessing an instance variable, a variable that belongs to an object, we
use this. before the variable name.

Recall that an assignment statement works in two steps. First, it calculates the value of
the expression to the right of the equal sign. Second, it forces the variable on the left of
the equal sign to store whatever value was calculated. The variable continues to store
that value until it is changed with another assignment statement. The assignment state
ments used with parameter and temporary variables in Chapters 4 and 5 behaved the
same way.

How does this process move the robot? The entire city is repainted about 20 times per
second with a loop such as the following:

whileƒ(true)
{ƒpaint everything in layer 0 (the intersections)
ƒƒpaint everything in layer 1 (the things)
ƒƒpaint everything in layer 2 (the robots)
}

When move is called, the entire city is repainted within about 50 milliseconds.
Repainting the intersections has the effect of erasing the robot’s old image at its old
location. Shortly thereafter, the robot’s paint method is called. It paints the robot’s
image in its new location, as determined by the current values of street and avenue.
The effect is that the robot appears to move on the screen.

But there is a problem. Executing the move method takes far less than 50 milliseconds.
If several consecutive move instructions are executed, we won’t see most of them
because they occur in the time between repainting the screen. To solve this problem, we
need to ensure that move takes at least 50 milliseconds to execute. This is done by
instructing the move method to sleep, or do nothing, for a while. The becker library
contains a method to sleep for a specified number of milliseconds. To use it, import
becker.util.Utilities and add Utilities.sleep(400) to the move method.
The robot will then stop for 0.400 seconds each time it moves.

The code for the SimpleBot class, as developed so far, is shown in Listing 6-3. Robots
instantiated from this class will always start out on intersection (4, 2) and can only
travel east. We will remove these restrictions soon.

6.1
IN

STAN
CE V

ARIABLES IN
 TH

E R
OBOT C

LASS

ch06/simpleBots/
SimpleBot.java

Listing 6-3: The SimpleBot class, as developed so far

1 importƒjava.awt.Graphics2D;
2 importƒjava.awt.Color;
3 importƒbecker.util.Utilities;
4

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 282

282
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

Listing 6-3: The SimpleBot class, as developed so far (continued)

5 /** A first try at the SimpleBot class. These robots are always constructed on street 4,
6 * avenue 2. There is no way to tell which way they are facing and they can only move east.
7 *
8 * @author Byron Weber Becker */
9 publicƒclassƒSimpleBotƒextendsƒPaintable

10 {
11 ƒƒprivateƒintƒstreetƒ=ƒ4;
12 ƒƒprivateƒintƒavenueƒ=ƒ2;
13
14 ƒƒ/** Construct a new Robot at (4, 2). */
15 ƒƒpublicƒSimpleBot()
16 ƒƒ{ƒsuper();
17 ƒƒ}
18
19 ƒƒ/** Paint the robot at its current location. */
20 ƒƒpublicƒvoidƒpaint(Graphics2Dƒg)
21 ƒƒ{ƒg.setColor(Color.BLACK);
22 ƒƒƒƒg.fillOval(this.avenueƒ*ƒ50,ƒthis.streetƒ*ƒ50,ƒ50,ƒ50);
23 ƒƒ}
24
25 ƒƒ/** Move the robot one intersection east. */
26 ƒƒpublicƒvoidƒmove()
27 ƒƒ{ƒthis.avenueƒ=ƒthis.avenueƒ+ƒ1;
28 ƒƒƒƒUtilities.sleep(400);
29 ƒƒ}
30
31 ƒƒ/** Turn the robot 90 degrees to the left. */
32 ƒƒpublicƒvoidƒturnLeft()
33 ƒƒ{
34 ƒƒ}
35 }

6.1.5 Testing the SimpleBot Class

The main method to test this class is slightly different from the ones we’ve written in
previous chapters, in which we passed the city to the robot’s constructor. The con
structor then added the robot to the city. The constructor in Listing 6-3 isn’t that
sophisticated (yet). Therefore, we must add the robot to the city in the main method,
specifying that it appears in layer 2 so that it is painted after the intersections (layer 0)
and things (layer 1). A second change is to explicitly wait for the user to press the Start
button before moving the robots. These two details are at lines 11-14 of Listing 6-4.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 283

283

The SimpleBot classes we are discussing are not part of the becker library. Therefore, to
compile the program, you will not be importing classes from the library. Instead, you need
to have the source code for SimpleBot, SimpleCity, and several others in the same
directory as the TestSimpleBot class shown in Listing 6-4. Recall that all of this source
code is available from the Robots Web site (www.learningwithrobots.com/software/
downloads.html). However, you will need to implement much of the code for the
SimpleBot class yourself.

6.1
IN

STAN
CE V

ARIABLES IN
 TH

E R
OBOT C

LASS ch06/simpleBots/
Main.java

Listing 6-4: A main method to test the SimpleBot class

1 /** A main method to test the SimpleBot and related classes.
2 *
3 * @author Byron Weber Becker */
4 publicƒclassƒMain
5 {
6 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
7 ƒƒ{ƒSimpleCityƒnewYorkƒ=ƒnewƒSimpleCity();
8 ƒƒƒƒSimpleBotƒkarelƒ=ƒnewƒSimpleBot();
9 ƒƒƒƒSimpleBotƒsueƒ=ƒnewƒSimpleBot();

10 ƒ
11 ƒƒƒƒnewYork.add(karel,ƒ2);
12 ƒƒƒƒnewYork.add(sue,ƒ2);
13 ƒƒ
14 ƒƒƒƒnewYork.waitForStart();ƒƒƒ// Wait for the user to press the Start button.
15
16 ƒƒƒƒfor(intƒi=0;ƒi<4;ƒiƒ=ƒi+1)
17 ƒƒƒƒ{ƒkarel.move();
18 ƒƒƒƒƒƒkarel.move();
19 ƒƒƒƒƒƒkarel.turnLeft();
20 ƒƒƒƒ}
21
22 ƒƒƒƒsue.move();
23 ƒƒ}
24 }

LOOKING AHEAD

In Section 7.4, we will
look at a detailed
example that has

nothing to do
with robots.

6.1.6 Adding Another Instance Variable: direction

So far we’ve seen how to declare, initialize, access, and modify instance variables to
implement the street and avenue attributes for a robot. Keep in mind that instance vari
ables are also used to implement classes that have nothing to do with robots: bank
accounts, employees, properties for a Monopoly game, and so on.

www.learningwithrobots.com/software

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 284

284
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

Right now, however, let’s implement another attribute of robots: direction. When we’re
done, the robots will be able to turn left and move in the direction they are facing.

Representing Directions

Our basic plan is to use a new instance variable, direction, to store the direction the
robot is facing. direction will be an integer. When it has a value of 0, the robot is
facing east; 1 means the robot is facing south, 2 is west, and 3 is north. Turning left is
as easy as subtracting 1 from direction—unless the robot is facing east (0). Then we
need to wrap around and set direction to north (3). As with the move method, forc
ing the robot to sleep after turning allows us to see what has happened.

Listing 6-5 shows the addition of the direction instance variable and the turnLeft
method in a skeleton of the SimpleBot class.

Listing 6-5: Changes to the SimpleBot class to add the turnLeft service

1 publicƒclassƒSimpleBotƒextendsƒPaintable
2 {ƒ...
3 ƒƒprivateƒintƒdirectionƒ=ƒ0; // Begin facing east.
4 ƒƒ...
5
6 ƒƒ/** Turn the robot left 1/4 turn. */
7 ƒƒpublicƒvoidƒturnLeft()
8 ƒƒ{ƒifƒ(this.directionƒ==ƒ0) // If facing east...
9 ƒƒƒƒ{ƒthis.directionƒ=ƒ3; // face north.

10 ƒƒƒƒ}ƒelse
11 ƒƒƒƒ{ƒthis.directionƒ=ƒthis.directionƒ-ƒ1;
12 ƒƒƒƒ}
13 ƒƒƒƒUtilities.sleep(400);
14 ƒƒ}
15 }

Using the final Keyword with Instance Variables

Remembering that 0 means east and 3 means north makes turnLeft difficult to
understand. Listing 6-5 compensates with comments, but we can do better. One
approach is to declare four new instance variables, as follows:

privateƒintƒeastƒ=ƒ0;

privateƒintƒsouthƒ=ƒ1;

privateƒintƒwestƒ=ƒ2;

privateƒintƒnorthƒ=ƒ3;

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 285

285

KEY IDEA

Use the final
keyword when

a variable should
never be assigned a

new value.

Named Constant

LOOKING AHEAD

Using static with
non-final instance

variables is discussed
in Section 7.5.1.

Named Constant

Now we can rewrite lines 8 and 9 as follows:

8 {ƒifƒ(directionƒ==ƒthis.east)
9 ƒƒ{ƒthis.directionƒ=ƒthis.north;

However, these “variables” seem different from instance variables such as avenue and
direction because they should not change while the program executes. We should
always use 0 to mean east, and it would be a programming error if east ever had a dif
ferent value.

Java uses the keyword final to indicate that the first value a variable receives should
also be the final value it ever receives. If we try to change the variable’s value, Java will
issue a compile-time error. Such variables are often called constants. It is traditional to
use all uppercase characters to name constants to emphasize that they are unchanging,
as follows:

private final int EAST = 0;

Another useful constant would be INTERSECTION_SIZE, to be used in the paint
method in place of 50. Notice the underscore character separating the individual
words that make up the name.

In addition to making the code easier to read, constants are useful because they provide
one place to change when assumptions change. For example, we assumed that inter
sections are 50 pixels square. If we ever need to display larger cities, we may want to
change it to 40 pixels. Finding and changing one constant is much easier than finding
and changing every place the value 50 is used in the program.

Using the static Keyword with final Instance Variables

A second keyword, static, is often used with final instance variables. It allows pro
grammers to access the variable using the class name rather than an object reference.
For example, suppose EAST were declared as follows:

publicƒstaticƒfinalƒintƒEASTƒ=ƒ0;

Programmers could then use it like this:

ifƒ(this.directionƒ==ƒSimpleBot.EAST)

This may not seem like much of an improvement, but if the variable is public, then it
can be used from any class without using an object. We have, in fact, done this already
in the main method of graphics programs when we use JFrame.EXIT_ON_CLOSE to
set the frame’s default close operation.

Sometimes constants are used in many different classes. In such cases, it can make
sense to have a class named something like Constants that contains nothing but pub
lic constants.

6.1
IN

STAN
CE V

ARIABLES IN
 TH

E R
OBOT C

LASS

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 286

286
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

Finishing the move Method

Now that we can easily represent directions using final instance variables and can
change a robot’s direction with the turnLeft method, we must reimplement the move
method so that it actually moves in the correct direction.

Each time the robot moves, we will adjust both the street and the avenue by the values
shown in Table 6-1.

Direction Change street by Change avenue by

EAST 0 1

WEST 0 -1

NORTH -1 0

SOUTH 1 0

(table 6-1)

Adjustments to street
and avenue when moving

in each direction

This is a perfect job for two helper methods, strOffset and aveOffset. They use a
cascading-if statement to set a temporary variable to the appropriate offset, based on
testing the value stored in the direction instance variable. They then return that
value using a return statement, just like the queries written in Section 5.2.4.

The new direction instance variable, the new turnLeft method, the modified move
method, and the two helper methods are all shown in Listing 6-6. The class assumes
that appropriate constants have been declared in a class named Constants. The
turnLeft method uses two additional constants to clarify why they constitute a spe
cial case. They are declared in Constants as follows:

publicƒstaticƒfinalƒintƒFIRST_DIRƒ=ƒEAST;
publicƒstaticƒfinalƒintƒLAST_DIRƒ=ƒNORTH;

6.1.7 Providing Accessor Methods

Methods that provide access to private instance variables are called accessor methods.
An accessor method is a query that answers the question “What value does attribute X
currently hold?” That is, it makes the value stored in an instance variable accessible to
code outside of the class.

You can use the following pattern to write an accessor method:

publicƒ«typeReturned»ƒget«Name»()
{ƒreturnƒthis.«instanceVariable»;
}

Accessor Method

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 287

287

«typeReturned» specifies what kind of value the method returns. It should be the
same type as the instance variable itself. The variables avenue, street, and direc
tion are all integers, so their accessor methods will have int as a return type.

«Name» is usually the name of the instance variable. It should be a name that is mean
ingful to users of the class.

Finally, «instanceVariable» is the name of the appropriate instance variable to
access.

Three examples of accessor methods, one each for street, avenue, and direction,
are shown in Listing 6-6.

6.1
IN

STAN
CE V

ARIABLES IN
 TH

E R
OBOT C

LASS

Listing 6-6: A SimpleBot class that includes the ability to turn left

1 importƒjava.awt.Graphics2D;
2 importƒjava.awt.Color;
3 importƒbecker.util.Utilities;
4
5
6 /** A second try at the SimpleBot class. These robots are always constructed at (4, 2) facing
7 * east. Robots can move forward and turn left, although the user cannot determine which
8 * way the robot is facing until it moves.
9 *

10 * @author Byron Weber Becker */
11 publicƒclassƒSimpleBotƒextendsƒPaintable
12 {
13 ƒƒprivateƒintƒstreetƒ=ƒ4;
14 ƒƒprivateƒintƒavenueƒ=ƒ2;
15 ƒƒprivateƒintƒdirectionƒ=ƒConstants.EAST;
16
17 ƒƒ/** Construct a new robot at (4, 2) facing east. */
18 ƒƒpublicƒSimpleBot()
19 ƒƒ{ƒsuper();
20 ƒƒ}
21
22 ƒƒ/** Paint the robot at its current location. */
23 ƒƒpublicƒvoidƒpaint(Graphics2Dƒg)
24 ƒƒ{ƒg.setColor(Color.BLACK);
25 ƒƒƒƒg.fillOval(this.avenueƒ*ƒConstants.INTERSECTION_SIZE,
26 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis.streetƒ*ƒConstants.INTERSECTION_SIZE,
27 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒConstants.INTERSECTION_SIZE,ƒ
28 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒConstants.INTERSECTION_SIZE);
29 ƒƒ}
30

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 288

288
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

Listing 6-6: A SimpleBot class that includes the ability to turn left (continued)

31 ƒƒ/** Move the robot forward 1 intersection. */
32 ƒƒpublicƒvoidƒmove()
33 ƒƒ{ƒthis.streetƒ=ƒthis.streetƒ+ƒthis.strOffset();
34 ƒƒƒƒthis.avenueƒ=ƒthis.avenueƒ+ƒthis.aveOffset();
35 ƒƒƒƒUtilities.sleep(400);
36 ƒƒ}
37
38 ƒƒ/** Turn the robot left 1/4 turn. */
39 ƒƒpublicƒvoidƒturnLeft()
40 ƒƒ{ƒifƒ(directionƒ==ƒConstants.FIRST_DIR)
41 ƒƒƒƒ{ƒthis.directionƒ=ƒConstants.LAST_DIR;
42 ƒƒƒƒ}ƒelse
43 ƒƒƒƒ{ƒthis.directionƒ=ƒthis.directionƒ-ƒ1;
44 ƒƒƒƒ}
45 ƒƒƒƒUtilities.sleep(400);
46 ƒƒ}
47
48 ƒƒ/** Get this robot's street.
49 ƒƒ* @return The street this robot is currently on. */
50 ƒƒpublicƒintƒgetStreet()
51 ƒƒ{ƒreturnƒthis.street;
52 ƒƒ}
53
54 ƒƒ/** Get this robot's avenue.
55 ƒƒ* @return The avenue this robot is currently on. */
56 ƒƒpublicƒintƒgetAvenue()
57 ƒƒ{ƒreturnƒthis.avenue;
58 ƒƒ}
59
60 ƒƒ/** Get this robot's direction.
61 ƒƒ* @return The direction this robot is facing. */
62 ƒƒpublicƒintƒgetDirection()
63 ƒƒ{ƒreturnƒthis.direction;
64 ƒƒ}
65
66 ƒƒ/** Calculate how far the robot should move along the avenue.
67 ƒƒ * @return {-1, 0, or 1} */
68 ƒƒprivateƒintƒaveOffset()
69 ƒƒ{ƒintƒoffsetƒ=ƒ0;
70 ƒƒƒƒifƒ(this.directionƒ==ƒConstants.EAST)
71 ƒƒƒƒ{ƒoffsetƒ=ƒ1;
72 ƒƒƒƒ}ƒelseƒifƒ(this.directionƒ==ƒConstants.WEST)
73 ƒƒƒƒ{ƒoffsetƒ=ƒ-1;

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 289

289
6.2

T
EM

PO
RARY AN

D
 P

ARAM
ETER V

ARIABLES

Listing 6-6: A SimpleBot class that includes the ability to turn left (continued)

74 ƒƒƒƒ}
75 ƒƒƒƒreturnƒoffset;
76 ƒƒ}
77
78 ƒƒ/** Calculate how far the robot should move along the street.
79 ƒƒ * @return {-1, 0, or 1} */
80 ƒƒprivateƒintƒstrOffset()
81 ƒƒ{ƒintƒoffsetƒ=ƒ0;
82 ƒƒƒƒifƒ(this.directionƒ==ƒConstants.NORTH)
83 ƒƒƒƒ{ƒoffsetƒ=ƒ-1;
84 ƒƒƒƒ}ƒelseƒifƒ(this.directionƒ==ƒConstants.SOUTH)
85 ƒƒƒƒ{ƒoffsetƒ=ƒ1;
86 ƒƒƒƒ}
87 ƒƒƒƒreturnƒoffset;
88 ƒƒ}
89 }

6.1.8 Instance Variables versus Parameter and Temporary Variables

Like parameter and temporary variables, instance variables store a value. They are also
different in important ways. We will have more to say about these similarities and dif
ferences in Section 6.5, but for now, remember the following:

➤	 Instance variables are declared inside a class but outside of all methods.
Parameter and temporary variables are declared inside a method.

➤	 Instance variables have a larger scope. They may be used within any of the
methods in the class. Parameter and temporary variables can be used only
within the method in which they are declared.

➤	 Instance variables have a longer lifetime. They retain their value until changed
by an assignment statement or until the object is no longer in use. Parameter
and temporary variables disappear when their method finishes executing and
are reinitialized each time the method executes again.

6.2 Temporary and Parameter Variables

Temporary and parameter variables were introduced in Chapters 4 and 5, respectively.
In this section, they are used extensively to improve the SimpleBot. We will also use
them with more complex expressions and apply the final keyword to them.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 290

290
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

6.2.1 Reviewing Temporary Variables

Right now our robots are displayed with a black oval that covers the entire intersec
tion. We can’t tell which direction the robot is facing unless it moves. In this section,
we will upgrade our robot to correct these problems. Our new, improved robot will
appear as shown in Figure 6-4.

Large circle represents (figure 6-4)
the body of the robot

Robot showing its

Small circle represents direction
the robot’s sensor

The large circle, representing the body of the robot, is centered on the middle of the
intersection and has a radius of 15 pixels. The smaller circle, representing the robot’s
sensor, is centered on the perimeter of the larger circle with a radius of 6 pixels.

Because the size of the circle no longer matches the size of the intersection, more
work will be required to paint the robot. Figure 6-5 shows relevant values that we
will need to calculate. They depend heavily on the center of the robot’s body and the
center of the sensor. We will find it useful to calculate and store these values in tem
porary variables.

(figure 6-5)

2 * 15

15

(this.avenue * 50, this.street * 50)

2
*

15

(bodyX – 15, bodyY – 15)

(sensorX, sensorY)
(sensorX – 6, sensorY – 6)

(bodyX, bodyY)

6

Drawing a circle, given its

center and radius

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 291

291

LOOKING BACK

Temporary variables
were introduced in

Section 5.2.

LOOKING BACK

Scope and block
were defined in

Section 5.2.6.

Before we proceed, let’s recall what we know about temporary variables:

➤	 They are declared inside a method.

➤	 Declarations have a type, a name, and usually an initial value. For example,
intƒnumThingsHereƒ=ƒ0. Declarations do not include an access modifier.

➤	 The value stored by the variable is accessed with just the variable’s name; it is
not prefixed with this.

➤	 The scope of a temporary variable—the region in which it can be used—
extends from its point of declaration to the end of the smallest enclosing block.

➤	 Each time the variable’s block is executed, the variable is created and reinitial
ized; each time execution exits the block, the variable disappears.

Listing 6-7 provides a skeleton for the paint method. It declares four temporary vari
ables to store the center coordinates of the body and the sensor in lines 5-8. Their ini
tialization is shown in pseudocode.

6.2
T

EM
PO

RARY AN
D
 P

ARAM
ETER V

ARIABLES

Listing 6-7: A skeleton of the paint method

1 /** Paint the robot at its current location. */
2 publicƒvoidƒpaint(Graphics2Dƒg)
3 {ƒg.setColor(Color.BLACK);
4
5 ƒƒintƒbodyXƒ=ƒx coordinate of robot body’s center
6 ƒƒintƒbodyYƒ=ƒy coordinate of robot body’s center
7 ƒƒintƒsensorXƒ=ƒx coordinate of robot sensor’s center
8 ƒƒintƒsensorYƒ=ƒy coordinate of robot sensor’s center
9 ƒƒ

10 ƒƒ// Draw the robot's body.
11 ƒƒg.fillOval(bodyXƒ-ƒ15,ƒbodyYƒ-ƒ15,ƒ2ƒ*ƒ15,ƒ2ƒ*ƒ15);
12 ƒƒ
13 ƒƒ// Draw the robot's sensor.
14 ƒƒg.fillOval(sensorXƒ-ƒ6,ƒsensorYƒ-ƒ6,ƒ2ƒ*ƒ6,ƒ2ƒ*ƒ6);
15 }

The values in these four variables are used in lines 11 and 14 to paint the two circles
representing the robot’s body and sensor. Recall that fillOval’s first two arguments
represent the upper-left corner of the smallest rectangle that will include the oval, shown
with dotted lines in Figure 6-5. The expression bodyXƒ-ƒ15 in line 11 uses the center of
the circle to calculate the left edge of the body’s enclosing rectangle. bodyYƒ-ƒ15
calculates the top edge of the body’s enclosing rectangle.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 292

292
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

Calculating the Body’s Center

The center of the robot’s body is the same as the center of the intersection. To calculate
it, we can calculate the intersection’s upper-left corner and then add one half of the
intersection’s width and height. Recall that the intersection’s size is stored in
Constants.INTERSECTION_SIZE. This name is unwieldy to use repeatedly in a
method, so we first assign it to a temporary variable with a shorter name.

intƒiSizeƒ=ƒConstants.INTERSECTION_SIZE;
intƒbodyXƒ=ƒthis.avenueƒ*ƒiSizeƒ+ƒiSizeƒ/ƒ2;
intƒbodyYƒ=ƒthis.streetƒ*ƒiSizeƒ+ƒiSizeƒ/ƒ2;

We can increase our confidence that these calculations are correct by producing an
evaluation diagram with some sample values for the robot’s location and intersection
size. For example, see Figure 6-6.

int (figure 6-6)

Evaluation diagram for

bodyX when the robot is

at (4, 2) on intersections

of size 50

One question that arises is what happens when two numbers do not divide evenly. For
example, what would the preceding expression produce if the intersection size was 51
instead of 50? One might expect an answer of 125.5 because 51/2 is 25.5—but that
answer is wrong.

Java performs integer division when both operands are integers. Integer division is like KEY IDEA

the long division you learned in grade school, but with the remainder thrown away. Dividing two integers

That is, 51 divided by 2 is 25 with a remainder of 1. The remainder is thrown away, results in an integer.
The decimal portion, and the answer is 25. Java has a second kind of division that preserves the decimal por
if any, is lost.

tion. We will study it in Section 7.2.2.

If the divisor (the second number) happens to be 0, an exception will be thrown to
indicate that the division can’t be performed.

A related operator is %, the remainder operator. It returns the remainder of the long divi- KEY IDEA

sion. For example, 51ƒ%ƒ2 returns 1 because 51 divided by 2 is 25 with a remainder n % d gives the

of 1. If the first operand happens to be negative, the answer will be negative as well. remainder of
dividing n by d.

100

int

int

2

this.avenue

int

50

isize* +

25

int

int

50

int

2

/isize 2

125

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 293

293

The remainder operator has four common uses in programming:

➤ The remainder operator can be used to determine if a number is even or odd,
as in the following example:

ifƒ(nƒ%ƒ2ƒ==ƒ0)

{ƒ// n is even...

➤	 The remainder operator can be used to process every nth item. For example,
consider a robot traveling east until it finds a wall. The following code will
place a Thing on every 5th intersection.

whileƒ(karel.frontIsClear())

{ƒifƒ(this.getAvenue()ƒ%ƒ5ƒ==ƒ0)

ƒƒ{ƒthis.putThing();

ƒƒ}

}

➤	 The remainder operator can be used together with the / operator to find the
individual digits of a number. For example, 123ƒ%ƒ10 gives the right-most
digit, 3. Dividing by 10 gives the number without the right-most digit. For
example, 123ƒ/ƒ10 gives 12. Taking the remainder of this number gives the
next digit, 2, and so on.

➤	 The remainder operator can be used to perform “wrap around” or “clock”
arithmetic. We’ve already seen an example of this kind of arithmetic when we
implemented turnLeft. We subtracted one from direction, unless the direc
tion was EAST (0); then we wrapped around back to NORTH (3). The more
common case is incrementing by one until an upper limit is reached, then start
ing over at 0. This calculation can be implemented as follows:

varƒ=ƒ(varƒ+ƒ1)ƒ%ƒupperLimit;

Calculating the Sensor’s Center

We now turn to calculating the sensor’s center, as required by lines 7 and 8 in Listing 6-7.
Once again, we turn to Figure 6-5 for guidance. It appears that sensorY is the same as
bodyY and that sensorX is the same as bodyXƒ+ƒ15, the body’s radius.

Unfortunately, it isn’t that simple. These calculations only work if the robot is facing
east. Figure 6-7 shows the robot in all four positions with the associated calculations.

6.2
T

EM
PO

RARY AN
D
 P

ARAM
ETER V

ARIABLES

(figure 6-7)

Drawing the robot in each

of the four directions sensorX = bodyX+15 sensorX = bodyX-15 sensorX = bodyX sensorX = bodyX
sensorY = bodyY sensorY = bodyY sensorY = bodyY-15 sensorY = bodyY+15

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 294

294
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

We could solve this problem with a cascading-if statement, but there is an easier way.
This situation is similar to moving the robot. There, we wanted to add -1, 0, or 1 to
the street or avenue, depending on the direction the robot is facing. Here we want to
add -15, 0, or 15. For the move method, we used two helper methods—strOffset
and aveOffset. For this problem, we just need to multiply their results by 15.

Lines 7 and 8 in Listing 6-7 can be replaced by the following two lines:

intƒsensorXƒ=ƒbodyXƒ+ƒthis.aveOffset()ƒ*ƒ15;
intƒsensorYƒ=ƒbodyYƒ+ƒthis.strOffset()ƒ*ƒ15;

Using the final Keyword with Temporary Variables

The final keyword can be used with any kind of variable, not just instance variables.
It always means that the first value assigned to the variable should also be the final
value assigned.

In the paint method, we assigned the constant INTERSECTION_SIZE to a temporary
variable, iSize, for convenience. However, it would be a bug if iSize were mistak
enly changed. For this reason, using final would be an excellent idea, as follows:

finalƒintƒiSizeƒ=ƒConstants.INTERSECTION_SIZE;

It’s also worth noting that none of the temporary variables change after they are ini
tialized. (They may, however, have a different value the next time the paint method is
called and the variables are initialized again.) It wouldn’t hurt to make the fact that
they don’t change while paint is executing explicit by using final for all of the tem
porary variables.

Delaying Initialization

It is possible to separate a temporary variable’s declaration and initialization. This is use
ful, for example, if we use a cascading-if statement to calculate sensorX, as follows:

intƒsensorX;
ifƒ(this.directionƒ==ƒConstants.EAST)
{ƒsensorXƒ=ƒbodyXƒ+ƒ15;
}ƒelseƒifƒ(this.directionƒ==ƒConstants.NORTH)
{ƒsensorXƒ=ƒbodyX;
...

When initialization is delayed, the temporary variable holds an unknown value
between the time it is declared and when it is initialized. It would be an error to try to
use it. Fortunately, the Java compiler actively tries to prevent this error. For example,

KEY IDEA

An uninitialized
temporary
variable holds an
unknown value.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 295

295

the following program fragment produces an error message saying “variable bodyX
may not have been initialized.”

intƒbodyX;
intƒsensorXƒ=ƒbodyXƒ+ƒ15;

Occasionally, the compiler will issue this error even though the variable is initialized in
an if statement. In that case, simply initialize the variable when it is declared even
though you know it will have a new value assigned before it is used.

Temporary Variable Summary

This paint method could have been written without temporary variables (see Listing 6-8).
However, temporary variables allow us to break the calculation into smaller pieces. The
pieces can be individually named and documented, making them easier to understand than
one large calculation.

Another use of temporary variables is to reuse a calculation in several places in the
same method. By performing the calculation once and storing the result, we save time
and effort in programming and debugging.

6.2
T

EM
PO

RARY AN
D
 P

ARAM
ETER V

ARIABLES

Listing 6-8: The paint method without temporary variables

1 /** Paint the robot at its current location. */
2 publicƒvoidƒpaint(Graphics2Dƒg)
3 {ƒg.setColor(Color.BLACK);
4
5 ƒƒ// Draw the robot's body.
6 ƒƒg.fillOval(this.avenueƒ*ƒ50ƒ+ƒ50/2ƒ-ƒ15,ƒ
7 ƒƒƒƒƒƒƒƒƒƒƒƒƒthis.streetƒ*ƒ50ƒ+ƒ50/2ƒ-ƒ15,ƒ
8 ƒƒƒƒƒƒƒƒƒƒƒƒƒ2*15,ƒ2*15);
9

10 ƒƒ// Draw the robot's sensor.
11 ƒƒg.fillOval(ƒ
12 ƒƒƒƒƒƒƒƒthis.avenueƒ*ƒ50ƒ+ƒ50/2ƒ+ƒthis.aveOffset()ƒ*ƒ15ƒ-ƒ5,
13 ƒƒƒƒƒƒƒƒthis.streetƒ*ƒ50ƒ+ƒ50/2ƒ+ƒthis.strOffset()ƒ*ƒ15ƒ-ƒ5,
15 ƒƒƒƒƒƒƒƒ2*5,ƒ2*5);
16 }

KEY IDEA

Use temporary
variables when you
can; instance
variables only if
you must.

Temporary variables and instance variables are similar in that they both store a value
that can be used later. Their major differences are in how long the value is stored and
in where the value can be used. Because instance variables have a longer lifetime and a
larger scope, they can often be used in place of temporary variables. This can lead to
mistakes. The shorter lifetimes of temporary variables and their much smaller scope (a

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 296

296
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

method rather than the entire class) result in a much smaller opportunity for misuse.
Instance variables are vitally important in object-oriented programming, but should
only be used when other kinds of variables cannot be used.

6.2.2 Reviewing Parameter Variables

We were introduced to parameter variables in Section 4.6, where we wrote a method
that took an argument specifying how far the robot should move. In this section, we
will show how parameter variables are closely related to temporary variables, explore
using parameters with constructors, and discuss overloading.

Parameter Variables versus Temporary Variables

Consider the following modification of the move method in the SimpleBot class. It
causes the robot to move two intersections in the direction it is currently facing.

1	 publicƒvoidƒmoveFar()
2	 {ƒintƒhowFarƒ=ƒ2;
3	 ƒƒthis.streetƒ=ƒthis.streetƒ+ƒthis.strOffset()ƒ*ƒhowFar;
4	 ƒƒthis.avenueƒ=ƒthis.avenueƒ+ƒthis.aveOffset()ƒ*ƒhowFar;
5	 ƒƒUtilities.sleep(400);
6	 }

A method to move the robot three intersections can be developed by copying moveFar to
a new method, moveReallyFar, and changing the 2 in line 2 to 3. Another method,
moveReallyReallyFar, could be identical to moveFar except for setting howFar to 4.

The methods are all identical except for that one number. This seems silly, for a num
ber of reasons:

➤	 What if we discover a bug in the first one—for example, if line 3 used
aveOffset() instead of strOffset()? Chances are good that the same bug
has been cut and pasted into the other methods.

➤	 What if we want to move 7 intersections? We must define a new method, with
a new name—and that still wouldn’t help us move 25 intersections in another
part of the program.

➤	 What if we want to calculate the distance to move, storing it in a variable? We
need to resort to a messy cascading-if or switch statement to choose the
specific method to execute.

Instead of initializing howFar when we write the method, we want to initialize it when
we call the method. Using parameter variables, we can accomplish this goal.
Parameters allow us to replace karel.moveFar() with karel.move(2) and to
replace karel.moveReallyReallyFar() with karel.move(4). The argument—
the number in the parentheses—specifies how far we want the robot to move. If we
want the robot to move five intersections, we can write karel.move(5).

KEY IDEA

The argument,
provided when the
method is called, is
used to initialize the
parameter variable.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 297

297

The argument is used to initialize a parameter variable defined inside the move
method. The parameter variable is similar to a temporary variable except that it is
declared differently and is initialized by the argument.

Consider the temporary variable howFar from the moveFar method:

intƒhowFarƒ=ƒ2;

To transform it into a parameter, think of its two distinct parts: the declaration and the
initialization. The declaration, intƒhowFar, stays inside the method, where it becomes
the parameter variable. The value it is initialized with, 2, becomes the argument. It is
provided when the method is called. (The equal sign is discarded in the process.)

The left side of Figure 6-8 shows relevant portions of a program that uses moveFar.
On the top is a main method that calls moveFar, and on the bottom is the definition
of moveFar. The right side of the figure shows the program after transforming it to use

6.2
T

EM
PO

RARY AN
D
 P

ARAM
ETER V

ARIABLES

a parameter variable.

(figure 6-8)

Transforming a temporary

variable into a parameter

variable

public class TestRobot...
{ public static void

main(String[] args)
 {
 ...
 karel.moveFar();
 ...
 }
}

public class SimpleBot...
{ ...
 public void moveFar()
 { int howFar = 2;
 this.avenue = this...
 this.street = this...

 }

public class TestRobot...
{ public static void

main(String[] args)
 {
 ...
 karel.move(2);
 ...
 }
}

public class SimpleBot...
{ ...
 public void move(int howFar)
 {
 this.avenue = this...
 this.street = this...
 }

Inside the method, the parameter variable behaves like any other temporary variable. It
can be used in expressions, passed as an argument to another method, and assigned a
new value. Its scope is the entire method. Like a temporary variable, it has a short life
time, disappearing when the method finishes executing. It is re-created and reinitialized
each time the method is executed. The difference is in how it is initialized.

As we’ve seen in previous chapters, a method may have more than one parameter. For
example, the following method is called with two arguments, karel.move(5,
Constants.EAST). It turns karel to face the specified direction and then move the
specified distance. Each pair of declarations is separated with a comma.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 298

298
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

publicƒvoidƒmove(intƒhowFar,ƒintƒaDir)
{ƒthis.face(aDir);
ƒƒthis.move(howFar);
}

Overloading Methods

We now have three methods named move, the usual one without a parameter, one with
a single parameter, and one with two parameters. Fortunately, this does not usually
cause a problem as long as every method in the class has a different signature. A
method’s signature is its name together with an ordered list of its parameter types.

The signature of the usual move method is simply move(). It has no parameters and
hence its ordered list of parameter types is empty. The signature of the move method
shown in the right side of Figure 6-8 is move(int). Notice that the parameter name is
not included in the signature. The last version of move has the signature
move(int,ƒint).

Assuming karel is an instance of a SimpleBot class that has these three methods
defined, karel.move(), karel.move(3), and karel.move(3,ƒConstants.NORTH)
are all legal method calls. In each case, Java executes the method with the matching
signature.

Methods and constructors that have the same name but different signatures are said to
be overloaded. Note that we now have two terms incorporating the word “over”:

➤	 Overload—A method overloads another method in either a superclass or the
same class when they have the same name but different signatures. Any of the
methods may be executed, depending on the arguments provided when it is
called.

➤	 Override—A method in a subclass overrides a method in a superclass if they
have the same signatures. The overriding method is executed and the overrid
den method is not (unless it is called by the overriding method).

Constructors may also be overloaded. The same principles apply to them.

Using Parameters to Initialize Instance Variables

Parameters are also useful for writing constructors. Our current implementation of
SimpleBot always begins on 4th Street and 2nd Avenue facing east. We can use para
meters in the constructor to make it more flexible.

Listing 6-9 shows a constructor with four parameters to construct a robot in a speci
fied city at a specified location. Three of the parameters are used to provide the initial
values to the instance variables street, avenue, and direction. Because the initial

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 299

299
6.2

T
EM

PO
RARY AN

D
 P

ARAM
ETER V

ARIABLES

KEY IDEA values are provided in the constructor, initial values are no longer needed on lines 2–4
Initialize each where the variables are declared; there is no need to initialize them in both places.

instance variable
either where it is

declared or in the
constructor. Listing 6-9: A version of the SimpleBot class that uses parameters to initialize its location

1 publicƒclassƒSimpleBotƒextendsƒPaintable
2 {ƒprivateƒintƒstreet;
3 ƒƒprivateƒintƒavenue;
4 ƒƒprivateƒintƒdirection;
5
6 ƒƒ/** Construct a new robot in the given city at the given location.
7 ƒƒ * @param aCity The city in which this robot appears.
8 ƒƒ * @param aStreet This robot's initial street.
9 ƒƒ * @param anAvenue This robot's initial avenue.

10 ƒƒ * @param aDirection This robot's initial direction. */
11 ƒƒpublicƒSimpleBot(SimpleCityƒaCity,ƒ
12 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒaStreet,ƒintƒanAvenue, intƒaDirection)
13 ƒƒ{ƒsuper();
14 ƒƒƒƒthis.streetƒ=ƒaStreet;
15 ƒƒƒƒthis.avenueƒ=ƒanAvenue;
16 ƒƒƒƒthis.directionƒ=ƒaDirection;
17 ƒƒƒƒaCity.add(this,ƒ2); // Add this robot to the given city in the top level.
18 ƒƒ}
19 ƒƒ// Remainder of the class omitted.
20 }

One of the constructor’s parameters—the city—is not used to initialize an instance
variable. Recall that the robot must be added to the city, which keeps a list of all the
objects to be painted. So far the robot has been added to the city in the main method.
The following lines show how it was done in Listing 6-4.

7 SimpleCityƒnewYorkƒ=ƒnewƒSimpleCity();
8 SimpleBotƒkarelƒ=ƒnewƒSimpleBot();

...
11 newYork.add(karel,ƒ2);

With this new constructor, line 8 is changed as follows to place the robot in the city
named newYork on 4th Street and 2nd Avenue, facing east:

8 SimpleBotƒkarelƒ=ƒnewƒSimpleBot(newYork,ƒ4,ƒ2,ƒConstants.EAST);

Line 11 is omitted from the main method because that task is now performed in the
SimpleBot constructor. When the constructor is called as shown in the preceding
code, the value stored in newYork is assigned to the parameter variable aCity. The
reference to the newly created object is assigned to the implicit parameter variable

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 300

300
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

this. Both variables are used in line 17 of Listing 6-9 to add this robot to the city
known within the constructor as aCity. The effect is the same as our previous
approach, newYork.add(karel,ƒ2).

Name Conflicts

It is often the case that the natural name for a parameter is the same as the name of an
instance variable. For example, some people find the parameter names in lines 11 and
12 of Listing 6-9 awkward and would rather use names like street and avenue. In
fact, the names of the parameters can be the same as the names of the instance vari
ables. Using this removes the ambiguity that would otherwise be present. For exam
ple, lines 11–14 could be reimplemented as follows:

11 publicƒSimpleBot(Cityƒcity,ƒ

12 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒstreet,ƒintƒavenue,ƒDirectionƒdirection)

13 {ƒsuper();

14 ƒƒthis.streetƒ=ƒstreet;

...

A temporary variable may also have the same name as an instance variable, but tem
porary and parameter variables within the same method must have unique names.

There is, however, a danger in using the same names. As noted briefly earlier, this is
actually optional in most circumstances, and many programmers, unfortunately, habit
ually omit it. Omitting this when the parameter name and instance variable name are
different poses no danger. But suppose this was omitted from line 14 of the preceding
code, as follows:

14 streetƒ=ƒstreet;

The compiler would interpret this as assigning the value in the parameter to itself—a
useless but perfectly valid action. The instance variable would remain uninitialized.

Using the final Keyword with Parameter Variables

Like other kinds of variables, parameter variables can use the keyword final. As else
where, it means that the variable’s value may not be changed. As with other kinds of
parameters, use final to emphasize and enforce that intention.

6.3 Extending a Class with Variables

KEY IDEA

A reference to this
object can be passed
as a parameter
using this.

In Section 6.1, we saw how instance variables can be used inside a class such as

SimpleBot. It is also possible to extend an existing class with new instance variables,

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 301

301

KEY IDEA

Instance variables in
a subclass add to the

information
maintained by the

superclass.

just as we extended an existing class with new methods in Chapter 2. In defining the
new class, we will specify only the new instance variables. The Java compiler will
automatically include them with the instance variables already defined in the super
class.

In the following example, we will extend Robot (not the SimpleBot class used earlier
in this chapter) to create a new class, LimitedBot. Our goal is to create a kind of
robot that can carry only a limited number of things; if it attempts to carry more, it will
break. Each of these limited robots will need to know two pieces of information: How
many things it can hold before breaking, and how many things it is currently holding.
We’ll call one maxHold (the maximum the robot can hold at one time) and call the
other numHeld (the number held right now).

These two pieces of information will be stored as instance variables. Why use instance
variables and not some other kind of variable? A temporary variable won’t work
because the robot needs to remember this information even when a method is not
being executed. A parameter variable isn’t what we need because we don’t want to rely
on the client to tell the robot how much it can carry every time a method is called.

In Chapter 1, we illustrated the attributes of a robot with an object diagram similar to
the one shown on the left side of Figure 6-9. It represents a robot on the corner of (1, 0)
facing east.

We can imagine an instance of LimitedBot as having a Robot object inside itself,
along with the new instance variables it defines. This is illustrated on the right side of
Figure 6-9. In this case, the robot is limited to holding five things at a time; it is cur
rently holding none.

6.3
E

XTEN
D
IN

G
 A C

LASS W
ITH

 V
ARIABLES

(figure 6-9)

Visualizing instance

variables in a Robot
object and a

LimitedBot object

karel:

1

0

EAST

street:

avenue:

direction:

backpack:

Robot

Robot object

5

0

maxHold:

numHeld:

LimitedBot

1

0

EAST

street:

avenue:

direction:

backpack:

Robot

sue:

LimitedBot object

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 302

302
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

6.3.1 Declaring and Initializing the Variables

Listing 6-10 shows the beginning of our new kind of robot, LimitedBot. It includes
the two new instance variables and the constructor, but nothing else. LimitedBot
objects are identical to normal Robot objects except for the (currently unused)
instance variables.

Listing 6-10: A LimitedBot is like a normal Robot, but has two additional (yet to be used)

instance variables

1 importƒbecker.robots.*;
2
3 /** A LimitedBot can carry or hold only a limited number of things. The
4 * actual limit set when the robot is constructed.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒLimitedBotƒextendsƒRobot
8 {
9 ƒƒprivateƒintƒmaxHold; // Maximum # of things this robot can hold.

10 ƒƒprivateƒintƒnumHeldƒ=ƒ0; // Number of things currently held by this robot.
11
12 ƒƒ/** Construct a new LimitedBot.
13 ƒƒ* @param aCity This robot's city.
14 ƒƒ* @param aStr This robot's initial street.
15 ƒƒ* @param anAve This robot's initial avenue.
16 ƒƒ* @param aDir This robot's initial direction.
17 ƒƒ* @param maxCanHold The maximum number of things this robot can carry/hold. */
18 ƒƒpublicƒLimitedBot(CityƒaCity,ƒintƒaStr,ƒintƒanAve,ƒ
19 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒDirectionƒaDir,ƒintƒmaxCanHold)
20 ƒƒ{ƒsuper(aCity,ƒaStr,ƒanAve,ƒaDir);
21 ƒƒƒƒthis.maxHoldƒ=ƒmaxCanHold;
22 ƒƒ}
23 }

The number of things held by the robot will always be zero when the robot is con
structed, and so the numHeld instance variable is initialized to 0 when it is declared in
line 10. The initial value of maxHold, however, isn’t known when the class is written.
It is initialized in the constructor with the value passed to the maxCanHold parameter,
allowing its initial value to be determined when the LimitedBot is constructed.

Invoking super in line 20 calls a constructor in the superclass. Parameters such as
aStr and anAve are passed as arguments to super, where they are likely used to ini
tialize instance variables in the superclass.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 303

303

This example illustrates two guidelines that are seldom broken:

➤	 Every instance variable is initialized either where it is declared or in the con
structor, with information passed via a parameter.

➤	 Parameters to a constructor are used to initialize an instance variable in the
same class via an assignment statement or an instance variable in a superclass
via the call to super.

6.3.2 Maintaining and Using Instance Variables

Having the maxHold and numHeld instance variables is not enough. We need to main
tain and use the information they store.

First, we need to monitor how many things are currently held by the robot, and call
breakRobot if this number exceeds the number stored in maxHold. The number of
things held by the robot changes whenever it picks a thing up or puts a thing down.
Thus, we will need to override the definitions of pickThing and putThing.

Let’s focus on pickThing first. In pseudocode, we want it to perform the following tasks:

ifƒ(already holding the maximum number of things)
{ƒbreak the robot
}ƒelse
{ƒpick up a thing
ƒƒincrement the count of the number of things being held
}

The pseudocode for putting a thing down is similar except that there is no need to
check if the maximum has been exceeded:

put down a thing

decrement the count of the number of things being held

These two methods are shown in lines 24–33 and 35–39 of Listing 6-11.

6.3
E

XTEN
D
IN

G
 A C

LASS W
ITH

 V
ARIABLES

Listing 6-11: Source code for a kind of robot that can pick up only a limited number

of things

1 importƒbecker.robots.*;
2
3 /** A LimitedBot can carry or hold only a limited number of things. The
4 * actual limit set when the robot is constructed.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒLimitedBotƒextendsƒRobot

ch06/limitedBot/

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 304

304
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

Listing 6-11: Source code for a kind of robot that can pick up only a limited number

of things (continued)

8 {
9 ƒƒprivateƒintƒmaxHold; // Maximum # of things this robot can hold.

10 ƒƒprivateƒintƒnumHeldƒ=ƒ0; // Number of things currently held by this robot.
11 ƒƒ
12 ƒƒ/** Construct a new LimitedBot.
13 ƒƒ* @param aCity This robot's city
14 ƒƒ* @param aStr This robot's initial street.
15 ƒƒ* @param anAve This robot's initial avenue.
16 ƒƒ* @param aDir This robot's initial direction.
17 ƒƒ* @param maxCanHold The maximum number of things this robot can carry/hold. */
18 ƒƒpublicƒLimitedBot(CityƒaCity,ƒintƒaStr,ƒintƒanAve,ƒ
19 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒDirectionƒaDir,ƒintƒmaxCanHold)
20 ƒƒ{ƒsuper(aCity,ƒaStr,ƒanAve,ƒaDir);
21 ƒƒƒƒthis.maxHoldƒ=ƒmaxCanHold;
22 ƒƒ}
23
24 ƒƒ/** Pick up a thing. If the robot is already holding the maximum number
25 ƒƒ* of things, it breaks. */
26 ƒƒpublicƒvoidƒpickThing()
27 ƒƒ{ƒifƒ(this.numHeldƒ==ƒthis.maxHold)
28 ƒƒƒƒ{ƒthis.breakRobot("Tried to pick up too many things.");
29 ƒƒƒƒ}ƒelse
30 ƒƒƒƒ{ƒsuper.pickThing();
31 ƒƒƒƒƒƒthis.numHeldƒ=ƒthis.numHeldƒ+ƒ1;
32 ƒƒƒƒ}
33 ƒƒ}
34 ƒƒ
35 ƒƒ/** Put down one thing. */
36 ƒƒpublicƒvoidƒputThing()
37 ƒƒ{ƒsuper.putThing();
38 ƒƒƒƒthis.numHeldƒ=ƒthis.numHeldƒ-ƒ1;
39 ƒƒ}
40 }

In pickThing, we call super.pickThing() at line 30. This statement calls the unmodi- LOOKING BACK

fied version of pickThing provided by the LimitedBot’s superclass. The code surround- Overriding methods

ing this call details the additional steps that should be taken when a LimitedBot’s version was discussed in
Section 2.6.1.of pickThing is called. super.putThing() is called at line 37 for similar reasons.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 305

305

6.3.3 Blank Final Instance Variables

In Listing 6-11, maxHold is given a value when the object is initialized, but thereafter
the value is unchanged. This suggests that maxHold is really a kind of constant even
though we don’t know its value until the object is instantiated.

The constructor may assign a value to a final instance variable as long as the variable
hasn’t been used already. This suggests that line 9 of Listing 6-11 should be rewritten
as follows:

9	 privateƒfinalƒintƒMAX_HOLD; // Maximum # of things this robot can hold.

Appropriate changes in the variable name should also be made in lines 21 and 27. A
final variable that is not initialized until later is called a blank final. The compiler must
be able to verify that a blank final is not used before it is assigned a value.

6.4 Modifying vs. Extending Classes

6.3
E

XTEN
D
IN

G
 A C

LASS W
ITH

 V
ARIABLES

We now have two distinct approaches to modifying a class to do something new:

➤	 Extending the class with additional methods and instance variables.

➤	 Adding additional functionality within the class itself. In fact, the problem set
for this chapter asks for many modifications to SimpleBot.

So, which is preferable: to extend a class with new functionality or modify the class itself?

As usual, the answer depends on the context. If the source code is not available (as is
the case with Robot), you can’t modify the class directly. The question becomes more
interesting when the source code is available. The decision is usually made based on
two criteria:

➤	 How extensively has the class already been used, including subclasses?
Modifying a class that is extensively used carries a significant risk of breaking
code that already works. It also carries the burden of significant testing. In
these cases, extending the class is usually the better idea.

➤	 Are the proposed changes useful in many circumstances? If they are, modify
ing the class may be a good idea. However, if the changes are of limited use,
the class becomes cluttered with features that are not typically used. Extending
the class is often the wiser course in this situation as well.

These observations are represented in Table 6-2.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 306

306
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

Modifications are Modifications are Modifications are
useful almost useful in many useful in only a few
everywhere. settings. settings.

Class is already
used extensively.

Modify the class. Extend the class. Extend the class.

Class is not used
extensively.

Modify the class. Modify the class. Extend the class.

(table 6-2)

Factors in deciding

whether to modify or

extend a class

A third option is to create a new class that makes substantial use of an existing class to
do its job. That’s the topic of Chapter 8.

6.5 Comparing Kinds of Variables

We have examined three kinds of variables: instance variables, temporary variables,
and parameter variables. How do you choose which kind of variable to use? This sec
tion compares and contrasts them, and provides some guidelines on selecting an
appropriate kind of variable.

6.5.1 Similarities and Differences

Table 6-3 compares and contrasts the different kinds of variables.

Instance Variables... Temporary Variables... Parameter Variables...

are declared... inside a class but
outside of the methods.

inside a method. inside a method’s
parameter list.

are declared... with an access modifier;
beginning programmers
should always use
private.

without an access
modifier.

without an access
modifier.

use the final
keyword when...

the value stored
should not be
changed.

the value stored
should not be
changed.

the value stored
should not be
changed.

are named (by
convention)...

like methods: the first
“word” is lowercase;
subsequent “words”
have an initial capital.
If the final keyword
is used, names should
be all uppercase.

like methods: the
first “word” is
lowercase;
subsequent “words”
have an initial
capital.

like methods: the
first “word” is
lowercase;
subsequent “words”
have an initial
capital.

can be used... in any method in
the class.

in the smallest block
enclosing the
declaration.

in the method where
they are declared.

(table 6-3)

Comparing the different

kinds of variables

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 307

307

(table 6-3) continued

Comparing the different

kinds of variables

Instance Variables... Temporary Variables... Parameter Variables...

are initialized... where they are declared
or in the constructors.

where they are
declared.

where the method is
called.

store their value
until...

it is changed or
the object is no
longer used.

it is changed or the
smallest enclosing
block has finished
executing.

it is changed or the
method has finished
executing.

are referenced... with the keyword
this, a dot, and the
variable’s name; may
be accessed with the
class name when
modifiers permit and
they have the static
keyword.

with only the
variable’s name.

with only the
variable’s name.

6.5
C

O
M

PARIN
G
 K

IN
D
S O

F V
ARIABLES

6.5.2 Rules of Thumb for Selecting a Variable

Table 6-4 can help you decide when each kind of variable is an appropriate choice
based on your program’s needs. The solutions are ordered from the most preferred to
the least preferred; therefore, read the table from the top and use the first solution that
meets your needs.

(table 6-4)

Rules of thumb for

choosing which kind of

variable to use

If you... Then...

need a value that never changes while
the program is running

use a final instance variable (constant). Valid
exceptions are for the values 0, 1, and -1,
unless the special value could be something
else but just happens to be one of these.

need to store a value that will be used in
a calculation later in the same method
but then discarded

use a temporary variable.

have a method that could do things
slightly differently based on a value
known by the client

use a parameter.

find yourself writing almost identical code
several times

look for a way to put the code in a method,
accounting for the differences with parameters.

need a value in many methods
within a class

consider using an instance variable.

need to implement an attribute of
an object

use an instance variable or calculate the
value based on existing instance variables.

have an object that must store a value
even when none of its services are
being used

use an instance variable.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 308

308
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

6.5.3 Temporary versus Instance Variables

One of the hardest choices for many beginning programmers is deciding whether to use
an instance variable or a temporary variable. This choice is difficult because nearly
anything that can be done with a temporary variable can also be done with an instance
variable. This situation often leads beginning programmers to overuse instance vari
ables and underuse temporary variables.

Suppose that you need a query, numIntersectionsWithThings, that counts the num
ber of intersections containing Things between the robot’s current location and a wall
that is somewhere in front of it. Invoking numIntersectionsWithThings on the robot
shown in Figure 6-10 would move the robot to just before the wall and return the value 3.

(figure 6-10)

Initial situation for

counting the number of

things before a wall
We could solve this problem using an instance variable, as shown in Listing 6-12. This
approach is not appropriate for an instance variable, however, because it stores tempo
rary information, not an attribute of the robot.

Listing 6-12: An inappropriate use of an instance variable

1 importƒbecker.robots.*;
2
3 publicƒclassƒCounterBot1ƒextendsƒRobotSE
4 {ƒprivate int intersections = 0;
5
6 ƒƒpublicƒCounterBot1(Cityƒc,ƒintƒstr,ƒintƒave,ƒDirectionƒd)
7 ƒƒ{ƒsuper(c,ƒstr,ƒave,ƒd);
8 ƒƒ}
9

10 ƒƒpublicƒintƒnumIntersectionsWithThings()
11 ƒƒ{ƒƒwhile(true)
12 ƒƒƒƒƒ{ƒƒifƒ(this.canPickThing())
13 ƒƒƒƒƒƒƒƒ{ƒƒthis.intersectionsƒ=ƒthis.intersectionsƒ+ƒ1;
14 ƒƒƒƒƒƒƒƒ}
15 ƒƒƒƒƒƒƒƒifƒ(!this.frontIsClear())ƒƒƒ{ƒƒbreak;ƒ}
16 ƒƒƒƒƒƒƒƒthis.move();
17 ƒƒƒƒƒƒ}
18 ƒƒƒƒƒƒreturnƒthis.intersections;
19 ƒƒƒ}
20 }ƒ

ch06/counter/

LOOKING AHEAD

This code can give an
incorrect answer. See
Written Exercise 6.3.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 309

309
6.5

C
O
M

PARIN
G
 K

IN
D
S O

F V
ARIABLES

A better solution is to use a temporary variable. Rewriting the class in Listing 6-12 to
use a temporary variable results in the class shown in Listing 6-13. The differences are
shown in bold in both listings.

Listing 6-13: A robot using a temporary variable in numIntersectionsWithThings

1 importƒbecker.robots.*;
2
3 publicƒclassƒCounterBot2ƒextendsƒRobotSE
4 {
5 ƒƒpublicƒCounterBot2(Cityƒc,ƒintƒstr,ƒintƒave,ƒDirectionƒd)
6 ƒƒ{ƒsuper(c,ƒstr,ƒave,ƒd);
7 ƒƒ}
8 ƒƒ
9 ƒƒpublicƒintƒnumIntersectionsWithThings()

10 ƒƒ{ƒintƒintersectionsƒ=ƒ0;
11 ƒƒƒƒwhile(true)
12 ƒƒƒƒ{ƒifƒ(this.canPickThing())
13 ƒƒƒƒƒƒ{ƒintersectionsƒ=ƒintersectionsƒ+ƒ1;
14 ƒƒƒƒƒƒ}
15 ƒƒƒƒƒƒifƒ(!this.frontIsClear())ƒƒƒ{ƒƒbreak;ƒ}
16 ƒƒƒƒƒƒthis.move();
17 ƒƒƒƒ}
18 ƒƒƒƒreturnƒintersections;
19 ƒƒ}
20 }

ch06/counter/

Does it matter whether you choose an instance variable or a temporary variable? Yes,
for the following reasons:

➤	 Reading a program is easiest if variables are declared close to their use.
Temporary variables keep declarations as close to their use as possible. That
way the reader doesn’t have to remember as many details for as long a time.

➤	 The class as a whole is easier to understand if it isn’t cluttered by extraneous
instance variables. Readers assume that each instance variable has a meaning
to the class as a whole and to several methods. If that’s not true, it can take
longer to understand the class.

➤	 The longer lifetimes and larger scope of instance variables give programmers more
opportunity to misuse them. Don’t provide such opportunities unless you must.

➤	 Extra instance variables increase the amount of memory required to run the
program. For large programs, this can become an issue because it may limit
the amount of data it can handle.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 310

310
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

Temporary variables should be used when the value is not an attribute of the object
and is primarily local to a method, or when storing a temporary value. Prime candi
dates include loop counters, a temporary variable to store an intermediate calculation,
an accumulator such as intersections in Listing 6-13, or the temporary storage of
the answer to a query before it’s used in further calculations.

For each instance variable, you should think carefully about whether it must be an
instance variable. Is the data relevant to more than one public method? Does the data
represent an attribute of the class? If so, make it an instance variable. If not, consider
other options.

6.6 Printing Expressions

KEY IDEA

Use parameter and
temporary variables
when you can;
instance variables
only when you must.

When debugging programs that use variables and expressions, it is often useful to print
their values as the program is running. There are two approaches: inserting temporary
code in the class to print the values out, and using a tool called a debugger.

6.6.1 Using System.out

System.out is an object that is automatically made available throughout every Java
program. It has two methods, print and println, that are used to print values in the
console window. The console is usually a separate window used specifically for default
textual input and output. This is also where Java prints its error messages.

For example, the pickThing method in LimitedBot (see Listing 6-11) can be modified
to print out useful debugging information by adding lines 2 and 3 in the following code:

1 publicƒvoidƒpickThing()
2 {ƒSystem.out.print("PickThing: numHeld="); // debug
3 ƒƒSystem.out.println(this.numHeld);ƒ // debug
4 ƒƒifƒ(this.numHeldƒ==ƒthis.maxHold)
5 ƒƒ{ƒthis.breakRobot("Tried to pick up too many things.");
6 ƒƒ}ƒelse
7 ƒƒ{ƒsuper.pickThing();
8 ƒƒƒƒthis.numHeldƒ=ƒthis.numHeldƒ+ƒ1;
9 ƒƒ}
10 }

The result of picking up three things using the modified class is shown in Figure 6-11.
The black window in front of the usual robot window is the console.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 311

311

(figure 6-11)

Information printed in the

console window using

System.out

6.6
P

RIN
TIN

G
 E

XPRESSIO
N
S

The print and println methods are overloaded to take all of Java’s types as argu
ments. In line 2, the print method is used to print the given string literal. In the next
line, the println method is used to print the value stored in an integer variable.

Most programmers would combine lines 2 and 3 as follows:

System.out.println("PickThing: numHeld="ƒ+ƒthis.numHeld);

When the plus operator (+) is used with a string, the result is a single string composed
of the first operand textually followed by the second operand. The resulting string is
then printed.

The difference between print and println is in where text will go the next time one of
these methods is called. Using print causes subsequent text to be printed on the same
line; using println causes subsequent text to be printed on the next line. The “ln” in
println stands for “line.”

6.6.2 Using a Debugger

A debugger is a tool that can be used to view values while the program is running. It
does not require you to add temporary code to your program. An example of one
debugger is shown in Figure 6-12. It is part of the Eclipse project, a freely available
integrated development environment. Three areas of the debugger are shown under the
robot’s window:

➤	 The source code that is currently being executed is shown in the bottom left of
the figure. It helps remind the programmer which variables are currently rele
vant. It is possible to set breakpoints before running the program. A break
point is associated with a program statement and causes the debugger to stop
executing the program each time the statement is reached, giving the user an
opportunity to examine the values held by variables.

➤	 The variables that are currently in scope are shown in the upper-right corner
of Figure 6-12. In this example, all the variables happen to be instance vari
ables, but parameter and temporary variables can also appear in this area. The
current value held by each variable is also shown. If the variable happens to
refer to an object, a plus sign appears to the left, allowing its instance variables

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 312

312
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

to be shown as well. The debugger even shows private instance variables in
LimitedBot’s superclasses.

➤	 After a program stops at a breakpoint, the toolbar shown in the upper-left cor
ner of Figure 6-12 is used to continue execution. For example, the arrow on
the far left continues execution until the next breakpoint is reached. Some of
the other tools allow the programmer to step to the next statement. One tool
treats a method call as one statement to execute while another steps into a
method to execute the next statement.

Currently executing code

Variables and
their values

Tools used to control
program execution

(figure 6-12)

Eclipse debugger in use

Debuggers are powerful tools that are worth learning. However, they are also complex
and may distract beginning programmers from more important learning tasks.

6.7 GUI: Repainting

In this section, we’ll create a new kind of graphical user interface component, a
Thermometer. The major difference between a Thermometer and the StickFigure
component created in Chapter 2 is that the Thermometer has an instance variable that
controls its appearance. As Figure 6-13 shows, each thermometer can be set to show a
different temperature.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 313

313

(figure 6-13)

Three Thermometer
components, each with a

different temperature

setting

6.7
G
U
I: R

EPAIN
TIN

G

The program in Listing 6-14 was used to create this image and may be used as a test
harness during the development process. It creates three instances of the Thermometer
class, displays them, and sets each to show a different temperature.

ch06/thermometer/

Listing 6-14: A test harness for the Thermometer class

1 importƒjavax.swing.*;
2
3 /** Test a thermometer component.
4 *
5 * @author Byron Weber Becker */
6 publicƒclassƒMainƒextendsƒObject
7 {
8 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
9 ƒƒ{ƒ// Create three thermometer components.

10 ƒƒƒƒThermometerƒt0ƒ=ƒnewƒThermometer();
11 ƒƒƒƒThermometerƒt1ƒ=ƒnewƒThermometer();
12 ƒƒƒƒThermometerƒt2ƒ=ƒnewƒThermometer();
13
14 ƒƒƒƒ// Create a panel to hold the thermometers.
15 ƒƒƒƒJPanel contents = new JPanel();
16 ƒƒƒƒcontents.add(t0);
17 ƒƒƒƒcontents.add(t1);
18 ƒƒƒƒcontents.add(t2);
19
20 ƒƒƒƒ// Set up the frame.
21 ƒƒƒƒJFrameƒfƒ=ƒnewƒJFrame();
22 ƒƒƒƒf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23 ƒƒƒƒf.setContentPane(contents);
24 ƒƒƒƒf.pack();
25 ƒƒƒƒf.setVisible(true);
26

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 314

314
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

Listing 6-14: A test harness for the Thermometer class (continued)

27 ƒƒƒƒ// Set the temperature of each thermometer.
28 ƒƒƒƒt0.setTemperature(0);
29 ƒƒƒƒt1.setTemperature(30);
30 ƒƒƒƒt2.setTemperature(50);
31 ƒƒ}
32 }

6.7.1 Instance Variables in Components

In Section 2.7.3, we learned that the paintComponent method can be called by the
Java system at any time. The user can resize a frame or expose a previously hidden
frame. In either case, paintComponent will be called to repaint the contents of the
frame. Therefore, the paintComponent method must be able to determine what the
component should look like. For a Thermometer, this includes determining how high
the alcohol (the modern replacement for mercury) should be drawn. It does so by con
sulting an instance variable. A client can set the instance variable to a given tempera
ture with a small method called setTemperature.

Listing 6-15 shows the beginnings of the Thermometer class, complete with the
instance variable used to store the current temperature. Most of the code in
paintComponent must still be developed.

Listing 6-15: The beginnings of the Thermometer class

1 importƒjavax.swing.*;
2 importƒjava.awt.*;
3
4 /** A thermometer component to use in graphical user interfaces. It can
5 * display temperatures from MIN_TEMP to MAX_TEMP, inclusive.
6 *
7 * @author Byron Weber Becker */
8 publicƒclassƒThermometerƒextendsƒJComponent
9 {

10 ƒƒpublicƒfinalƒintƒMIN_TEMPƒ=ƒ0;
11 ƒƒpublicƒfinalƒintƒMAX_TEMPƒ=ƒ50;
12 ƒƒprivateƒintƒtempƒ=ƒMIN_TEMP;
13

ch06/thermometer/

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 315

315
6.7

G
U
I: R

EPAIN
TIN

G

Listing 6-15: The beginnings of the Thermometer class (continued)

14 ƒƒ/** Construct a new thermometer. */
15 ƒƒpublicƒThermometer()
16 ƒƒ{ƒsuper();
17 ƒƒƒƒthis.setPreferredSize(newƒDimension(50,ƒ250));
18 ƒƒ}
19
20 ƒƒ/** Paint the thermometer to show the current temperature. */
21 ƒƒpublicƒvoidƒpaintComponent(Graphicsƒg)
22 ƒƒ{ƒsuper.paintComponent(g);
23
24 ƒƒƒƒ// paint the thermometer
25 ƒƒ}
26
27 ƒƒƒ/** Set the thermometer's temperature.
28 ƒƒƒ* @param newTemp the new temperature. */
29 ƒƒƒpublicƒvoidƒsetTemperature(intƒnewTemp)
30 ƒƒƒ{ƒthis.tempƒ=ƒnewTemp;
31 ƒƒƒ}
32 }

LOOKING AHEAD

Programming
Project 6.15 asks you
to improve upon the
hard-coded minimum
and maximum.

Recall that the preferred size, set in line 17, is used by the frame to determine how large
the thermometer should be. Forgetting to set the preferred size will make the compo
nent so small that it is almost invisible.

This version of the class fixes the minimum and maximum temperature the thermome
ter can display with two named constants.

Working out the actual code for paintComponent is somewhat tedious. It helps to
declare temporary variables initialized with significant values. The diagram in Figure 6-14
illustrates the meaning of those used in Listing 6-16.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 316

316
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

stemLeft

bulbLeft

w
h

stem
Height

bulbTop

fluidTop
fluidHeight

stem
W

idth
bulbDia

(figure 6-14)

Thermometer
calculations

The height and width of the component are found first in lines 5 and 6 and stored in
variables to make using them more convenient. All the calculations should ultimately
depend on the height and width so that the thermometer is drawn appropriately as the
component is resized.

The variables with names ending in Left and Top hold values specifying the location
of a shape. Variables with names ending in Height, Width, and Dia (short for “diam
eter”) hold values specifying the size of a shape.

Listing 6-16: The finished implementation of paintComponent

ch06/thermometer/
1 /** Paint the thermometer to show the current temperature. */

2 publicƒvoidƒpaintComponent(Graphicsƒg)

3 {ƒsuper.paintComponent(g);

4

5 ƒƒfinalƒintƒwƒ=ƒthis.getWidth();

6 ƒƒfinalƒintƒhƒ=ƒthis.getHeight();

7 ƒƒ

8 ƒƒfinalƒintƒbulbDiaƒ=ƒh/10;

9 ƒƒfinalƒintƒbulbLeftƒ=ƒw/2ƒ-ƒbulbDia/2;

10 ƒƒfinalƒintƒbulbTopƒ=ƒhƒ-ƒbulbDia;

11

12 ƒƒfinalƒintƒstemWidthƒ=ƒbulbDia/3;

13 ƒƒfinalƒintƒstemLeftƒ=ƒw/2ƒ-ƒstemWidth/2;

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 317

317
6.7

G
U
I: R

EPAIN
TIN

G

Listing 6-16: The finished implementation of paintComponent (continued)

14 ƒƒfinalƒintƒstemHeightƒ=ƒhƒ-ƒbulbDia;
15
16 ƒƒfinalƒintƒfluidHeightƒ=ƒstemHeightƒ*ƒ
17 ƒƒƒƒƒƒƒƒ(this.tempƒ-ƒMIN_TEMP)ƒ/ƒ(MAX_TEMPƒ-ƒMIN_TEMP);
18 ƒƒfinalƒintƒfluidTopƒ=ƒstemHeightƒ-ƒfluidHeight;
19 ƒ
20 ƒƒ// paint the fluid
21 ƒƒg.setColor(Color.RED);
22 ƒƒg.fillOval(bulbLeft,ƒbulbTop,ƒbulbDia,ƒbulbDia);
23 ƒƒg.fillRect(stemLeft,ƒfluidTop,ƒstemWidth,ƒfluidHeight);
24
25 ƒƒ// paint the stem above the fluid
26 ƒƒg.setColor(Color.BLACK);
27 ƒƒg.fillRect(stemLeft,ƒ0,ƒstemWidth,ƒfluidTop);
28 }

KEY IDEA

Call repaint when
instance variables

affecting the
image change.

6.7.2 Triggering a Repaint

If you run the test harness with the current version of Thermometer, you will notice
that the thermometers are painted as though the temperature is 0 rather than the tem
peratures set in the test harness. However, if you resize the frame, forcing the ther
mometers to be repainted, then they will be drawn with the correct temperatures. In
other words, the thermometers display a temperature change only when they are
repainted.

Somehow we need to be able to trigger the repainting of the component whenever the
temperature changes. We do so with an inherited method, repaint. Calling repaint
after we have reset the instance variable informs the Java system that it should call
paintComponent as soon as possible. The revised version of setTemperature is:

publicƒvoidƒsetTemperature(intƒnewTemp)
{ƒthis.tempƒ=ƒnewTemp;
ƒƒthis.repaint();
}

6.7.3 Animating the Thermometer

Adding the following code to the end of the test harness will cause the thermometer to
show a steadily increasing temperature—just like the temperature climbing on a hot
summer’s morning.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 318

318
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

for(intƒtempƒ=ƒt0.MIN_TEMP;ƒtempƒ<=ƒt0.MAX_TEMP;ƒtempƒ=ƒtemp

+ƒ1)

{ƒƒt0.setTemperature(temp);

ƒƒƒUtilities.sleep(50);

}

The call to Utilities.sleep causes the current thread to pause for 50 milliseconds,
or 0.050 seconds, to give the Java system a chance to repaint the screen—and so you
have time to see the change in the thermometer.

The sleep method should not be called inside the paintComponent method.
paintComponent is called by the Java system; it has many important things to do and
should not be forced to wait for anything.

6.8 Patterns

Every time you are writing an expression, you need values. These values could come
from any of the constructs discussed in this chapter. In almost every situation, one of
the constructs is a better choice than the others. Carefully consider which of the fol
lowing patterns best describes your situation and is best suited to solve your problem.

6.8.1 The Named Constant Pattern

Name: Named Constant

Context: You have a literal value used one or more times in your program. The value is
known when you write the program and does not change while the program is running.

Solution: Use a named constant, as suggested by the following examples:

privateƒstaticƒfinalƒintƒDAYS_IN_WEEKƒ=ƒ7;
privateƒstaticƒfinalƒintƒCOST_PER_MOVEƒ=ƒ25;

In general, a named constant has the following form:

«accessModifier»ƒstaticƒfinalƒ«type»ƒ«name»ƒ=ƒ«value»;

where «accessModifier» is public, protected, or private. Use private if the
value is used only within the class where it is defined. Use public if other classes might
need it—for example, as an actual parameter to a method defined within the class.

«type» is the type of the value stored in the constant. So far, we have discussed only
integers, but any type (including a class name) is possible. «name» is the name of the
variable, and «value» is the first (and last) value assigned to it.

Graphics programs often use many constants in the course of drawing a picture. (See
paintComponent in Section 2.7.3 for an example.) Having a named constant for each

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 319

319

can become tedious, and it is common practice to use literals instead. An excellent mid
dle ground is to look for relationships between the numbers. It is often possible to
define a few well-chosen constants that can be used in expressions to calculate the
remaining values.

Consequences: Programs become more self-documenting when special values are
given meaningful names. Reading, debugging, and maintaining a program become eas
ier and faster when the program uses meaningful names.

Related Patterns:
➤	 This pattern is a specialization of the Instance Variable pattern.

➤	 When constants are used to distinguish a set of values, such as the four direc
tions or MALE and FEMALE, the Enumeration pattern (see Section 7.7.3) is
often a better choice.

6.8.2 The Instance Variable Pattern

Name: Instance Variable

Context: An object needs to maintain a value. The value must be remembered for
longer than one method call (when a temporary variable would be appropriate). The
value is usually needed in more than one method.

Solution: Use an instance variable. Instance variables are declared within the class but
outside of all the methods. Following are examples of instance variables:

privateƒintƒnumMovesƒ=ƒ0;
privateƒintƒcurrentAve;

An instance variable is declared with one of two general forms:

«accessModifier»ƒ«type»ƒ«name»ƒ=ƒ«initialValue»;
«accessModifier»ƒ«type»ƒ«name»;

where «accessModifier» is usually private and «type» is the type of the variable.
Examples include int, double, boolean, and names of classes such as Robot.
«name» is the name used to refer to the value stored. The variable’s initial value should
either be established in the declaration, as shown in the first form, or assigned in the
constructor. Assign the initial value in the declaration if all instances of the class start
with the same value. Assign it in the constructor if each instance will have its initial
value supplied by parameters to a constructor.

An instance variable may be accessed within methods or constructors with the implicit
parameter, this, followed by a dot and the name of the variable. It may also be
accessed by giving the name of the variable if the name is not the same as a parameter
or temporary variable.

6.8
P

ATTERN
S

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 320

320
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

An instance variable that is not explicitly initialized will be given a default value appro
priate for its type, such as 0 for integer types and false for boolean.

Consequences: An instance variable stores a value for the lifetime of the object. It can
be explicitly changed by an assignment statement.

Related Patterns:
➤	 The Instance Variable pattern is inappropriate for storing values used within a

single method for intermediate calculations, counting events, or loop indices.
Use the Temporary Variable pattern instead.

➤	 The Instance Variable pattern is inappropriate for communicating a value
from client code to a method. Use the Parameterized Method pattern instead.

➤	 The Instance Variable pattern always occurs within an instance of the Class
pattern.

6.8.3 The Accessor Method Pattern

Name: Accessor Method

Context: You have a class with instance variables that are private to prevent misuse by
clients. However, clients have a legitimate need to know the values of the instance vari
ables even though they should not be allowed to directly change them.

Solution: Provide public accessor methods using the following template:

publicƒ«typeReturned»ƒget«Name»()

{ƒreturnƒthis.«instanceVariable»;

}

An example is an accessor for the street in the SimpleBot class, as follows:

publicƒclassƒSimpleBot

{ƒprivateƒintƒstreet;

ƒƒ...

ƒƒpublicƒintƒgetStreet()

ƒƒ{ƒreturnƒthis.street;

ƒƒ}

}

Consequences: Restricted access is provided to an instance variable.

Related Patterns: The Accessor Method pattern is a specialization of the Query pattern.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 321

321

6.9 Summary and Concept Map

Variables are used to store information that will be useful at a later point in the pro
gram. The three fundamental kinds of variables are instance variables, temporary vari
ables, and parameter variables. They differ in their scope, lifetime, and initialization.

Instance variables belong to an object. Each instance of a class has its own set of
instance variables that implement that object’s attributes. The lifetime is the same as
the lifetime of the object. The scope is the entire class.

Temporary variables belong to the method or the block within a method in which they
are declared, which also limits their scope. Of the three kinds of variables, temporary
variables have the most limited scope. They are used for tasks such as storing interme
diate calculations and counting events, such as loop iterations, within the method.

Parameter variables are temporary variables that are initialized when the method is
called. Their scope is the entire method where they are declared, and their lifetime is
for as long as the method executes. Both temporary and parameter variables disappear
when the method in which they are declared finishes execution. If the method is exe
cuted again, space for the variable is reallocated and the variable is reinitialized.

Classes may be extended with additional instance variables, much as they can be
extended with additional methods.

6.9
S

U
M

M
ARY AN

D
 C

O
N
CEPT M

AP

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 322

322
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

temporary
variables

methods

parameter
variables

constants

variables
type

name

attributes
instance
variables

an assignment
statement

lifetime

scope

int

accessor
methods

modified with the keyword final are

are used to implement
m

ay
 b

e
ar

e
as

sig
ne

d
a

ne
w

va
lu

e
wi

th

is a
have a

have a

m
ay be

m
ay

be

ar
e

sp
ec

ia
lly

in
iti

al
ize

d

hav
e a

 sm
all

may be made available to clients via

can be accessed from all of the classes’

have a long

have a large

communicat
e inf

orm
ati

on

fro
m

cli
en

ts
to

store information relev
ant

to
the

ir de
cla

rin
g

have a short

6.10 Problem Set

Written Exercises

6.1	 What kind of variable does not occur in a class diagram?

6.2	 The Account class models a bank account. Identify which type of variable
(temporary, parameter, or instance) should be used in each of the following val
ues. Justify your answers using Table 6-4.

a. The bank account’s balance.

b. The amount to deposit in the account.

c. The account’s current interest rate.

d. The amount of interest earned in the last month.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 323

323

6.3	 Listing 6-12 and Listing 6-13 contain code for CounterBot1 and
CounterBot2, both of which purport to count the number of intersections
with things between the robot’s current location and a wall. Consider executing
the following main method in the initial situation shown in Figure 6-15.
Execute it again, but using CounterBot2 in line 3. The two solutions display
different values for side1 and side2.

a. What are the four values printed (two for CounterBot1 and two for
CounterBot2)?

b. Explain why they differ.

ƒ1 publicƒstaticƒvoidƒmain(String[]ƒargs)
ƒ2 {ƒCityƒtestCityƒ=ƒnewƒCity("testCity.txt");
ƒ3 ƒƒCounterBot1ƒkarelƒ=ƒnewƒCounterBot1(...);
ƒ4
ƒ5 ƒƒintƒside1ƒ=ƒkarel.numIntersectionsWithThings();
ƒ6 ƒƒkarel.turnLeft();
ƒ7 ƒƒintƒside2ƒ=ƒkarel.numIntersectionsWithThings();
ƒ8
ƒ9 ƒƒSystem.out.println("side1 ="ƒ+ƒside1);

10 ƒƒSystem.out.println("side2 ="ƒ+ƒside2);

11 }

6.10
P

RO
BLEM

 S
ET

(figure 6-15)

Count the number of

things

6.4	 Draw an evaluation diagram for the expression assigned to fluidHeight in
lines 16 and 17 of Listing 6-16. Assume the value of stemHeight is 225,
this.temp is 35, MIN_TEMP is -30, and MAX_TEMP is 110.

6.5	 Section 6.2.1 noted that the remainder operator can be used to implement
“wrap around” arithmetic and gave the example of
varƒ=ƒ(varƒ+ƒ1)ƒ%ƒupperLimit.

a. Assume upperLimit has a value of 4. Calculate the new value for var
assuming that var is 0, 1, 2, ..., 9.

b. Implementing turnLeft with the following expression seems like it should
work, but it doesn’t. Explain why.

this.directionƒ=ƒ(this.directionƒ-ƒ1)ƒ%ƒ4

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 324

324
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

6.6	 In Section 6.2.1 we saw the following code to place a Thing on every 5th

intersection:

whileƒ(...)

{ƒifƒ(this.getAvenue()ƒ%ƒ5ƒ==ƒ0)

ƒƒ{ƒthis.putThing();

ƒƒ...

What difference would it make if the if statement’s Boolean expression was
changed to this.getAvenue()ƒ%ƒ5ƒ==ƒ2?

Programming Exercises

6.7	 Finish the following code to sum, and print the individual digits stored in
digits. For example, the sum, of the digits of 312 is 6 because 3 + 1 + 2 = 6.
(Hint: Review the integer division and remainder operations and apply the
four-step process to construct a loop.)

publicƒstaticƒvoidƒmain(String[]ƒargs)

{ƒintƒdigitsƒ=ƒ312;

ƒƒintƒsumƒ...

ƒƒƒ

ƒƒSystem.out.println(sum);

}

6.8	 Write a class named FixedDistanceBot that can only travel a specified num
ber of intersections. The exact limit should be specified when the robot is con
structed. If the limit is reached, the robot should break. Write a main method
to test your class.

6.9	 Extend the harvester robot from Section 3.2.7 to pick up all the things on each
intersection (there may be 0, 1, or many), and count the total number of things
it collects. Make the total available to the robot’s client with a query. The robot
is not guaranteed to start with an empty backpack.

6.10 Write a class named DistanceBot that extends Robot. It will have a query
named totalDistance that returns the total distance traveled by the robot so
far. A second query, tripDistance, returns the distance traveled since the
“trip” was started by a call to resetTrip.

6.11 Create a component similar to the stick figure shown in Figure 2-15. Add
methods named setShirtColor and setPantsColor that each take a single
parameter of type Color. Invoking these methods should change the color of
the corresponding article of clothing. (Hint: You will need variables of type
Color; import java.awt.Color.)

6.12 Create a subclass of JFrame named JClosableFrame. Its constructor takes a
JPanel as a parameter and does everything necessary to display it. Rewrite the
main method in Listing 6-14 to test your class. (Hint: Your class will have a
constructor but no methods of its own.)

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 325

325

6.13 Modify the Thermometer class as follows:

a. Allow different minimum and maximum temperatures for each instance of
Thermometer. For example, a candy thermometer might show 100 to 400
degrees Fahrenheit, whereas a fever thermometer might show 37 to 42
degrees Celsius. Don’t forget to test the class with negative numbers. The
Fahrenheit or Celsius isn’t relevant, only the numeric range.

b. Modify the Thermometer class so that it prints the minimum and maxi
mum temperatures beside the fluid to form a scale. Also, print the current
temperature beside the top of the fluid.

Programming Projects

Robot problems in this section use the simplified Robot classes. Get them from your
instructor or download them from the Examples section of www.learningwithrobots.
com/software/downloads.html.

6.14 Download the SimpleBot classes from the Robots Web site. Make the follow
ing enhancements to the SimpleBot class. In all cases, write a main method to
test your work.

a. Complete the SimpleBot class as described in this chapter, including the
move, turnLeft, and paint methods as well as the SimpleBot constructor.

b. Add a turnRight method.

c. Add a method named goToOrigin. The effect of calling
karel.goToOrigin() is to have the robot named karel appear at the
origin, facing east, the next time its paint method is called.

d. Add a method named teleport. The effect of calling karel.teleport
(5,ƒ3) is to have karel appear on the intersection of 5th Street and
3rd Avenue the next time paint is called. The direction it faces should not
change. Of course, your method should work with values other than 5 and 3.

e. Implement a suite of three methods in the SimpleBot class that modify the
robot’s speed. ben.goFaster() causes the robot named ben to move 10%
faster. ben.goSlower() causes ben to move 10% slower. Finally,
ben.setMoveTime(400) causes ben to wait 400 milliseconds each time it
moves. Also accommodate values other than 400.

f. Modify the SimpleBot class so that its color can be specified. This change
will require a new instance variable, a change to the paint method, and a
new method named setColor that takes a parameter variable of type Color.

g. Modify the SimpleBot class so that the size of each robot can be specified.
puffer.setSize(30) causes the robot named puffer to have a body
with a radius of 30 pixels. Other features, such as the sensor, should change
size accordingly. Note that the size of the intersection should not change and
that your method should work with many different values, not just 30.

6.10
P

RO
BLEM

 S
ET

www.learningwithrobots

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 326

326
CH

AP
TE

R
6

| U
SI

N
G
 V

AR
IA

BL
ES

h. Rewrite the paint method in SimpleBot so that robots have two “eyes”

set on short antennae, as shown in Figure 6-16. Choose different colors for

the eyes and the body.

(figure 6-16)

Robot with two eyes

i.	 A color can be created with three integers that specify the red, green, and

blue components of the color. There is a constructor for the Color class that

takes these three values as parameters. Each color component must be in the

range of 0 to 255.

Modify the SimpleBot class so that the robot will change color slightly

every time it is painted. (Hint: Use the remainder operator (%).)

j. Modify the SimpleBot class so that the robot will move in four steps from

one intersection to the next—that is, instead of moving instantly to the next

intersection, move one step, wait a moment, move another step, wait a

moment, step again, wait, and then complete the move and wait again.

(Hint: This requires changes to both the move and the paint methods. One

approach is to add a new instance variable that represents which step the

robot is taking. This instance variable is set in move and used in paint.)

6.15 Write a class named HomingBot. A HomingBot’s home is the intersection
where it is constructed. Add a method named goHome that moves the robot to
its home facing east. Assume there are no obstacles. Write a main method to
test your class.

6.16 Write a class named FuelBot. A FuelBot has a “fuel tank” that can hold
“fuel.” The maximum number of units of fuel it can hold is specified when the
robot is created. Each move consumes one unit of fuel. If there is no fuel, the
robot won’t move. Each time the robot encounters an intersection with a
Thing on it, the fuel tank is refilled.

Extend the RobotRC (Remote Controlled) class and read the documentation to

learn to direct the robot’s actions from the keyboard. Set up a game to see if

you can choose a path to move between two points—with appropriate refuel
ing stops—without running out of fuel.

6.17 Write a new class named RobotME (My Edition) that extends Robot and
includes a method named clearArea. This method takes four parameters. The
first two are an avenue and street that specify the upper-left corner of a rectan
gular area. The third and fourth specify the width and height of the area.
Calling clearArea causes the robot to pick up everything in the given rectan
gular area and then move to the area’s upper-left corner and face east.

The robot may start anywhere in the city. Once it has reached the area, it

should not leave it.

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 327

327

6.18 Create a component similar to the stick figure shown in Section 4.7.

a. Modify the stick figure component so that a stick figure may be constructed
as either a child or an adult. An adult’s preferred size is 180 by 270 pixels. A
child has a preferred size that is half as large. Modify the test harness shown
in Listing 6-14 to show two child stick figures and 1 adult.

(Hints: First, each stick figure will be similar to the Thermometer class. Use
a test harness similar to Listing 6-14 to test your class. Second, define two
constants, CHILD and ADULT. Pass one of them as a parameter to the stick
figure’s constructor. Third, assuming the JPanel containing the stick figures
is named contents, include the statement contents.setLayout
(newƒRowLayout()) in your main method; it will align the stick figures
appropriately. You will need to import becker.gui.RowLayout.)

b. Modify the stick figure constructor so that it takes three parameters. One, as
in Part a, specifies whether the stick figure is an adult or a child. The other
two parameters specify whether the left and right arms should be up, down,
or straight out. Modify the test harness to construct six stick figures that are
holding hands, as shown in Figure 6-17.

c. Modify the stick figure from Part b to add methods allowing the client to
specify while the program is running whether an arm is up, down, or
straight out. Modify the test harness to make the stick figures at each end of
the line wave their free arm.

6.10
P

RO
BLEM

 S
ET

(figure 6-17)

Stick figures

holding hands

6 Chapter C5743 40143.ps 11/30/06 1:21 PM Page 328

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 329

Chapter 7 More on Variables
and Methods

After studying this chapter, you should be able to:

➤	 Write queries to reflect the state of an object

➤	 Use queries to write a test harness that tests your class

➤	 Write classes that use types other than integer, including floating-point types,
booleans, characters, and strings

➤	 Write and use an enumerated type

➤	 Write a class modeling a simple problem

➤	 Describe the difference between a class variable and an instance variable

➤	 Write classes that implement an interface and can be used with provided graphical
user interfaces from the becker library

We now have the intellectual tools to start writing object-oriented programs that have
nothing to do with robots. In this chapter, we’ll learn about additional kinds of infor
mation we can store (such as dollar values, individual characters, or strings of charac
ters). We’ll use that knowledge to build a class that could be used as part of a gas pump
at your local gas station.

One problem, however, is that such programs are not nearly as easy to debug as robot
programs because they are not as visual. We’ll start by learning some techniques for
testing and debugging our programs and finish by learning techniques for coupling a
class with a graphical user interface.

329

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 330

330

7.1 Using Queries to Test Classes

CH
AP

TE
R

7
| M

O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Writing a class that functions correctly is difficult; many things can go wrong. Having
a set of tests that demonstrates that a class is functioning correctly makes the job eas
ier. Tests are also useful to students before handing in an assignment and to customers
before they buy software. We’ll begin by learning how to test the SimpleBot class
used in Chapter 6. Later in this chapter, we’ll apply these same techniques to a non-
robot class.

7.1.1 Testing a Command

It is tempting to test the SimpleBot class by writing and running a short program that
creates a robot and moves it several times, and then looking at the screen to verify that
the robot did, indeed, move correctly. The problem with this approach is that a person
must remember what should happen and verify that it actually did happen. Relying on
people for such tedious details is a risky proposition.

Remembering and verifying tedious details is something that computers do well, how
ever. Our goal is to completely automate as much of the testing as possible by writing
a program called a test harness. A test harness is used to test a class, and usually con
tains many individual tests.

Writing a test involves five steps.

1. Decide which method you want to test.

2. Set up a known situation.

3. Determine the expected result of executing the method.

4. Execute the method.

5. Verify the results.

For example, we may want to test the move method in the SimpleBot class (Step 1).
To set up a known situation (Step 2), we create a robot named karel at (4, 2) facing
east in an empty city. This is shown in lines 7 and 8 of Listing 7-1. The choice of (4, 2)
facing east is not critical. We could just as easily use a different intersection. However,
we need to know which intersection is chosen so we can determine the expected result
(Step 3). In this case, moving from (4, 2) should result in the robot being on intersec
tion (4, 3), still facing east.

Line 11 in Listing 7-1 executes the code we want to test (Step 4).

KEY IDEA

A good set of tests
makes a
programmer’s life
much easier.

KEY IDEA

Testing involves many
tedious details—
something computers
are good at. Use them
as much as possible
in the testing process.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 331

331

Finally, we verify the results (Step 5) in lines 14–18. Before explaining these lines, let’s
take a look at the result of running the program, as shown in Figure 7-1, and note the
following:

➤	 This program prints results of the tests in the console window.

➤	 One line is printed for each invocation of ckEquals in lines 15–18. It prints
“Passed” if the last two arguments have equal values. If they do not, it
prints “***Failed”. In either case, ckEquals also prints the values of both
arguments.

➤	 The ckEquals method also prints the string given as the first argument. This
serves simply to identify the test.

7.1
U

SIN
G
 Q

U
ERIES TO

 T
EST C

LASSES

Listing 7-1: A program to test the SimpleBot’s move method

1 importƒbecker.util.Test;
2
3 publicƒclassƒTestHarness
4 {
5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
6 ƒƒ{ƒ// Set up a known situation (an empty city; a robot on (4, 2) facing east).
7 ƒƒƒƒSimpleCityƒcƒ=ƒnewƒSimpleCity();
8 ƒƒƒƒSimpleBotƒkarelƒ=ƒnewƒSimpleBot(c,ƒ4,ƒ2,ƒConstants.EAST);
9

10 ƒƒƒƒ// Execute the move method.
11 ƒƒƒƒkarel.move();
12
13 ƒƒƒƒ// Verify the results -- robot on intersection (4, 3).
14 ƒƒƒƒTestƒtesterƒ=ƒnewƒTest(); // This line isn't needed. See Section 7.5.2.
15 ƒƒƒƒtester.ckEquals("new ave",ƒ3,ƒkarel.getAvenue());
16 ƒƒƒƒtester.ckEquals("same str",ƒ4,ƒkarel.getStreet());
17 ƒƒƒƒtester.ckEquals("same dir",ƒConstants.EAST,
18 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒkarel.getDirection());
19 ƒƒ}
20 }

Test Harness

KEY IDEA

Testing a method
usually requires

repeating Steps 2–5
several times.

We should not be under the illusion that Listing 7-1 is sufficient to test the move
method. At a minimum, it should test moving in each of the four directions. If pro
grams using SimpleBots can include walls or similar obstructions, more tests are
required to verify that move behaves correctly when a robot is blocked. This observa
tion implies that Steps 2–5 for testing a method should be repeated as many times as
necessary.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 332

332
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

(figure 7-1)

Running the test in Listing

7-1, with a deliberate bug

What does ckEquals do? It compares the expected value (the second argument) with KEY IDEA

the actual value (the third argument) and prints an appropriate message. It is imple- ckEquals compares

mented approximately as shown in Listing 7-2. Overloaded versions for non-integer the expected value
with the actual value types have a few minor variations.
and prints an
appropriate message.

Listing 7-2: A possible implementation of the ckEquals method for integers

1 publicƒvoidƒckEquals(Stringƒmsg,ƒintƒexpected,ƒintƒactual)
2 {ƒStringƒresult;
3 ƒƒifƒ(expectedƒ==ƒactual)
4 ƒƒ{ƒresultƒ=ƒ" Passed: "ƒ+ƒmsg;
5 ƒƒ}ƒelse
6 ƒƒ{ƒresultƒ=ƒ"*** Failed: "ƒ+ƒmsg;
7 ƒƒ}
8 ƒƒresultƒ+=ƒ": expected '"ƒ+ƒexpectedƒ+ƒ"'; actual '"ƒ+ƒactualƒ+ƒ"'.";
9 ƒƒSystem.out.println(result);

10 }

7.1.2 Testing a Query

Testing a query is actually easier than testing a command. To test a command, we need
some way to verify what the command did. In the previous example, we used accessor
methods to get the current values of the critical instance variables. To test a query, we
only need to compare the query’s actual result with the expected result.

To further illustrate testing, let’s define a new SimpleBot query that answers the ques
tion “How far is this robot from the origin?” Remember that the origin is the intersec
tion (0, 0). Let’s assume that the distance we want is “as the robot moves” (the legs of a
triangle) rather than “as the crow flies” (the hypotenuse of a triangle). If the robot is on
Street 4, Avenue 2, the answer is 4 + 2 = 6.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 333

333

A first attempt at our query is as follows:

publicƒintƒdistanceToOrigin() // Contains a bug.

{ƒreturnƒthis.streetƒ+ƒthis.avenue;

}

To begin writing a test harness, we can perform the five steps mentioned previously.
The code to test (Step 1) is distanceToOrigin. Our first known situation (Step 2)
will be to create a robot at the origin facing east (testing easy cases first is a good strat
egy). In this situation, the distance to the origin should be 0 (Step 3). Executing the
code (Step 4) and verifying the result (Step 5) is shown in the following code in lines 7
and 10, respectively:

1 publicƒstaticƒvoidƒmain(String[]ƒargs)
2 {ƒ// Create a robot in an empty city at the origin facing east.
3 ƒƒSimpleCityƒcƒ=ƒnewƒSimpleCity();Test Harness
4 ƒƒSimpleBotƒkƒ=ƒnewƒSimpleBot(c,ƒ0,ƒ0,ƒConstants.EAST);

5

6 ƒƒ// Execute the code to test.

7 ƒƒintƒdƒ=ƒk.distanceToOrigin();

8

9 ƒƒ// Verify the result.

10 ƒƒTestƒtesterƒ=ƒnewƒTest(); // This line isn't needed. See Section 7.5.2.

11 ƒƒtester.ckEquals("at origin",ƒ0,ƒd);

12 }

This is a very incomplete test, however. The distanceToOrigin query could be writ
ten as follows and still pass this test:

publicƒintƒdistanceToOrigin()

{ƒreturnƒ0;

}

We can add more tests to this test harness that build from the original known situation.
For example, it’s not hard to see that after the previous test the robot should still be at
the origin. So let’s add another test immediately after it that moves the robot from the
origin and then checks the distance again.

1 publicƒstaticƒvoidƒmain(String[]ƒargs)

2 {ƒ// Create a robot in an empty city at the origin facing east.

3 ƒƒSimpleCityƒcƒ=ƒnewƒSimpleCity();

4 ƒƒSimpleBotƒkƒ=ƒnewƒSimpleBot(c,ƒ0,ƒ0,ƒ0);

5

6 ƒƒ// Execute the code to test.

7 ƒƒintƒdƒ=ƒk.distanceToOrigin();

8

9 ƒƒ// Verify the result.

7.1
U

SIN
G
 Q

U
ERIES TO

 T
EST C

LASSES

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 334

334
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

10 ƒƒTestƒtesterƒ=ƒnewƒTest(); // This line isn't needed. See Section 7.5.2.

11 ƒƒtester.ckEquals("at origin",ƒ0,ƒd);

12

13 ƒƒ// Move east 2 intersections and verify.

14 ƒƒk.move();

15 ƒƒk.move();

16 ƒƒdƒ=ƒk.distanceToOrigin();

17 ƒƒtester.ckEquals("east 2",ƒ2,ƒd);

18 }

So far we have only tested the robot on streets and avenues that are numbered zero or
larger. What if the robot turned left (facing north) and moved to Street -1, as shown in
Figure 7-2? Let’s test it to make sure distanceToOrigin works correctly.

-1 0 1
-1

0

2

Origin

(figure 7-2)

Robot at (-1, 2), three

moves from the origin

1

We could add the new test to our test harness by continuing to move the robot to (-1, 2).
The following code uses a simpler approach. It constructs a robot on intersection (-1, 2)
and then tests the result of the distanceToOrigin method. In this case, moving the
robot isn’t necessary. This code should be added after line 17 of the test harness.

SimpleBotƒk2ƒ=ƒnewƒSimpleBot(c,ƒ-1,ƒ2,ƒ0);

dƒ=ƒk2.distanceToOrigin();

tester.ckEquals("neg str",ƒ3,ƒd);

Running the test harness says that the test fails. The expected value is 3, but the actual
value is 1.

Reviewing the distanceToOrigin method shows why: we add the current street to
the current avenue. When both are positive values, that works fine. But in this situa
tion, it gives -1 + 2, or 1—a wrong answer.

The problem is that we want to add the distance between the origin and the robot’s
street. Distances are always positive. When the street (or avenue) is negative, we need
to convert it to a positive number. We can do this with the helper method abs, short
for “absolute value.”

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 335

335
7.1

U
SIN

G
 Q

U
ERIES TO

 T
EST C

LASSES

LOOKING AHEAD

In Section 7.5.2 we
will learn about using

a library of math
functions. It already

has abs.

KEY IDEA

Each class can have
its own main

method.

The following implementation of distanceToOrigin will fix this problem.

1 publicƒintƒdistanceToOrigin()
2 {ƒreturnƒthis.abs(this.street)ƒ+ƒthis.abs(this.avenue);
3 }
4
5 privateƒintƒabs(intƒx)
6 {ƒintƒanswerƒ=ƒx;
7 ƒƒifƒ(xƒ<ƒ0)
8 ƒƒ{ƒanswerƒ=ƒ-x;
9 ƒƒ}ƒ
10 ƒƒreturnƒanswer;
11 }

With this change, all of the tests shown earlier will pass.

7.1.3 Using Multiple Main Methods

One fact that is implicit in the previous discussion is that Java allows multiple main
methods. You can have only one main method in any given class, but as many classes
as you want may each have their own main method. This is a good thing. If only one
main method were allowed, we would need to choose between writing a test harness
and writing a main method to run the program to perform its task.

One common way to exploit the ability for each class to have a main method is to
write one class that has nothing but main—the way we have been doing. This class is
used to run the program to perform the desired task. However, every other class also
has a main method to act as a test harness for that class. For example, the test harness
shown in Listing 7-1 is in its own class. Instead, this could be written as part of the
SimpleBot class. An outline of this approach is shown in Listing 7-3. Lines 1–14
show representative parts of the SimpleBot class. The test harness is in lines 16–28.

Test Harness

Listing 7-3: An outline of how to include a test harness in the SimpleBot class

1 importƒjava.awt.*;
2 importƒbecker.util.Test;
3 ...
4
5 publicƒclassƒSimpleBotƒextendsƒPaintable
6 {
7 ƒƒprivateƒintƒstreet;
8 ƒƒprivateƒintƒavenue;
9 ƒƒprivateƒintƒdirection;

10 ƒƒ...
11 ƒƒpublicƒSimpleBot(...)ƒ{ƒ...ƒ}

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 336

336
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Listing 7-3: An outline of how to include a test harness in the SimpleBot class (continued)

12 ƒƒpublicƒvoidƒmove()ƒ{ƒ...ƒ}
13 ƒƒ...
14
15 ƒƒ// A test harness to test a SimpleBot.
16 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
17 ƒƒ{ƒ// Set up a known situation -- a robot on intersection (4, 2)
18 ƒƒƒƒSimpleCityƒcƒ=ƒnewƒSimpleCity();
19 ƒƒƒƒSimpleBotƒkarelƒ=ƒnewƒSimpleBot(c,ƒ4,ƒ2,ƒEAST);
20
21 ƒƒƒƒ// Execute the code we want to test.
22 ƒƒƒƒkarel.move();
23
24 ƒƒƒƒ// Verify the results -- robot on intersection (4, 3).
25 ƒƒƒƒTestƒtesterƒ=ƒnewƒTest(); // This line isn't needed. See Section 7.5.2.
26 ƒƒƒƒtester.ckEquals("new ave",ƒ3,ƒkarel.getAvenue());
27 ƒƒƒƒ...
28 ƒƒ}
29 }

One issue that may be initially confusing is that even though main is within the
SimpleBot class, we don’t use the keyword this. Inside the test harness, we construct
a specific SimpleBot object, karel. Throughout the main method, we invoke
karel’s methods to test what has happened to that specific object.

One advantage of placing a main method inside the class it tests is that we have access
to the classes’ private instance variables. For example, line 26 of Listing 7-3 can be
replaced with the following:

tester.ckEquals(“newƒave”,ƒ3,ƒkarel.avenue);

We should use an accessor method such as getAvenue when it is available. However,
we can access the instance variables directly when their values are needed for testing
but should not be provided to others via an accessor method.

Many programmers take testing even further with a tool named JUnit. It provides a
graphical user interface, shown in Figure 7-3, and does a better job of isolating indi
vidual tests from each other. More information, and the tool itself, is available at
www.junit.org.

KEY IDEA

The main method
can’t use this.

http:www.junit.org

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 337

337

(figure 7-3)

A popular testing tool

named JUnit

7.2
U

SIN
G
 N

U
M

ERIC T
YPES

7.2 Using Numeric Types

KEY IDEA

Java’s primitive types
store values such as

159 and ‘d’.

KEY IDEA

An int can only
store values in a

certain range.

Not everything in Java is an object like a Robot or a Thing. Integers and the type int
are the most prominent examples we’ve seen of a primitive type. Primitive types store
values such as integers (159) and characters (‘d’), and correspond to how information
is represented in the computer’s hardware. Primitive types can’t be extended and they
don’t have methods that can be called. In this sense, primitive types distort the design
of the language. However, the designers of Java felt it necessary to use primitive types
for integers and similar values to increase the execution speed of programs.

Java includes eight primitive types. Six of these store numbers, one stores the Boolean
values true and false, and the last one stores characters.

7.2.1 Integer Types

Why would Java have six different types to store numbers? Because they differ in the size
and precision of the values they store. An int, for example, can only store values
between -2,147,483,648 and 2,147,483,647. This range is large enough to store
the net worth of most individuals, but not that of Bill Gates. It’s more than enough to
store the population of any city on earth, but not the population of the earth as a whole.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 338

338
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

To address these issues, Java offers several kinds of integers, each with a different KEY IDEA

range, or number of different values it can store. The ranges of the four integer types Different types can

are shown in Table 7-1. Variables with a greater range require more memory to store. store different ranges
of values. For programs with many small numbers to store, it makes sense to use a type with a

smaller range. Because beginning programmers rarely encounter such programs, we
won’t need to use byte and short in this book and will use long only rarely.

Type Smallest Value Largest Value Precision

byte -128 127 exact

short -32,768 32,767 exact

int -2,147,483,648 2,147,483,647 exact

long -9,223,372,036,854,775,808 9,223,372,036,854,775,807 exact

(table 7-1)

Integer types and their

ranges

7.2.2 Floating-Point Types

Two other primitive types, float and double, store numbers with decimal places,
such as 125.25, 3.14259, or -134.0. They are called floating-point types because of the
way they are stored in the computer hardware.

Floating-point types can be so large or small that they are sometimes written in
scientific notation. The number 6.022E23 has two parts, the mantissa (6.022) and
the exponent (23). To convert 6.022E23 to a normal number, write down the man
tissa and then add enough zeros to slide the decimal point 23 places to the right. If
the exponent is negative, you must add enough zeros to slide the decimal point that
many places to the left. For example, 6.022E23 is the same number as
602,200,000,000,000,000,000,000, while 5.89E-4 is the same as 0.000589. Their
ranges and precisions are listed in Table 7-2.

Type Smallest Magnitude Largest Magnitude Precision

float ±1.40239846E-45 ±3.40282347E+38 About 7
significant
digits

double ±4.94065645841246544E-324 ±1.79769313486231570E+308 About 16
significant
digits

KEY IDEA

Scientific notation can
be used to express
very large or very
small numbers.

(table 7-2)

The ranges and

precisions of the various

floating-point types

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 339

339

KEY IDEA

Comparing floating-
point numbers for

equality is usually a
bad idea.

How big are these numbers? Scientists believe the diameter of the universe is about
1.0E28 centimeters, or 1.0E61 plank units—the smallest unit we can measure. The
universe contains approximately 1.0E80 elementary particles such as quarks, the com
ponent parts of atoms. So the range of type double will certainly be sufficient for most
applications.

Floating-point numbers don’t behave exactly like real numbers. Consider, for a
moment, 1/3 written in decimal: 0.33333.... No matter how many threes you add,
0.33333 won’t be exactly equal to 1/3. The situation is similar with 1/10 in binary, the
number system computers use. It’s impossible to represent 1/10 exactly; the best we can
do is to approximate it. The closeness of the approximation is given by the precision.
floats have about 7 digits of precision, while doubles have about 16 digits. This
means, for example, that a float can’t distinguish between 1.00000001 and
1.00000002. As far as a float is concerned, both numbers are indistinguishable
from 1.0. Another effect is that assigning 0.1 to a float and then adding that num
ber to itself 10 times does not yield 1.0 but 1.0000001.

The fact that floating-point numbers are only approximations can cause programmers
headaches if their programs require a high degree of precision. For beginning pro
grammers, however, this is rarely a concern. One exception, however, is when com
paring a float or a double for equality, the approximate nature of these types may
cause an error. For example, the following code fragment appears to print a table of
numbers between 0.0 and 10.0, increasing by 0.1, along with the squares of those
numbers.

doubleƒdƒ=ƒ0.0;

whileƒ(dƒ!=ƒ10.0)
{ƒSystem.out.println(dƒ+ƒ“ƒ“ƒ+ƒd*d);
ƒƒdƒ=ƒdƒ+ƒ0.1;
}

The first few lines of the table would be:

0.0ƒ0.0
0.1ƒ0.010000000000000002
0.2ƒ0.04000000000000001
0.30000000000000004ƒ0.09000000000000002
0.4ƒ0.16000000000000003

Already we can see the problem: d, the first number on each line, is not increasing by
exactly 0.1 each time as expected. In the fourth line the number printed is only
approximately 0.3.

7.2
U

SIN
G
 N

U
M

ERIC T
YPES

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 340

340
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

By the time d gets close to 10.0, the errors have built up. The result is that d skips
from 9.99999999999998 to 10.09999999999998 and is never exactly equal to
10.0, as our stopping condition requires. Consequently, the loop keeps printing for a
very long time.

The correct way to code this loop is to use an inequality, as in the following code:

whileƒ(dƒ<=ƒ10.0)
{ƒ...
}

7.2.3 Converting Between Numeric Types

Sometimes we need to convert between different numeric types. In many situations,
information is not lost and Java makes the conversion automatically. For example,
consider the following statement:

doubleƒdƒ=ƒ159;

Java will implicitly convert the integer 159 to a double value (159.0) and then assign
it to d.

The reverse is not true. If assigning a value to another type risks losing information, a
cast is required. A cast is our assurance to the compiler that we either know from the
nature of the problem that information will not be lost, or know that information will
be lost and accept or even prefer that result.

For example, consider the following statements:

doubleƒdƒ=ƒ3.999;
intƒiƒ=ƒd;

Java will display an error message regarding the second assignment because an integer
can’t store the decimal part of 3.999, only the 3. If we want to perform this assign
ment anyway and lose the .999, leaving only 3 in the variable i, we need to write it as
follows:

doubleƒdƒ=ƒ3.999;
intƒiƒ=ƒ(int)d;

The new part, (int), is the cast. The form of a cast is the destination type placed in
parentheses. It can also apply to an entire expression, as in the following statement:

intƒiƒ=ƒ(int)(dƒ*ƒdƒ/ƒ2.5);

Casting has a high precedence, so you will usually need to use parentheses around
expressions.

KEY IDEA

Casting converts
values from one type
to another.
Sometimes it loses
information.

LOOKING AHEAD

Section 7.5.2
discusses a method to
round a number rather
than truncate it.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 341

341

Assigning from a double to an int is not the only place information can be lost and a
cast required. Information can also be lost assigning values from a double to a float
or from a bigger integer type such as long to a smaller type such as int.

7.2.4 Formatting Numbers

Java automatically converts a primitive type to a string before concatenating it to
another string. This capability allows us to easily print out a mixture of strings and
numbers, such as System.out.println("Age = "ƒ+ƒage); where age is an integer.

Automatic conversion to a string does not work as well for double values, where we
often want to control how many significant digits are printed. For example, the fol
lowing code might be used in calculating the price of a used car:

doubleƒcarPriceƒ=ƒ12225.00;

doubleƒtaxRateƒ=ƒ0.15;

System.out.println(“Car:ƒ“ƒ+ƒcarPrice);
System.out.println(“Tax:ƒ“ƒ+ƒcarPriceƒ*ƒtaxRate);
System.out.println(“Total:ƒ“ƒ+ƒcarPriceƒ*ƒ(1.0ƒ+ƒtaxRate));

This code gives the following output:

Car:ƒ12225.0

Tax:ƒ1833.75

Total:ƒ14058.749999999998

These results are far from ideal. We want to see a currency symbol such as $ or £
printed. All of the amounts should have exactly two decimal places, rounding as nec
essary. The thousands should also be grouped with commas or spaces, depending on
local conventions. It’s difficult to implement all these details correctly.

Using a NumberFormat Object

Fortunately, Java provides a set of classes for formatting numbers, including curren
cies. These classes all include a method named format that takes a number as an argu
ment and returns a string formatted appropriately. Listing 7-4 shows how to use a
currency formatting object named money. These statements produce formatted output
such as the following:

Car:ƒ$12,225.00

Tax:ƒ$1,833.75

Total:ƒ$14,058.75

7.2
U

SIN
G
 N

U
M

ERIC T
YPES

http:Total:�$14,058.75
http:Tax:�$1,833.75
http:Car:�$12,225.00
http:Tax:�1833.75
http:double�taxRate�=�0.15
http:double�carPrice�=�12225.00

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 342

342
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

ch07/formatNumbers/

Listing 7-4: Using a currency formatting object

1 doubleƒcarPriceƒ=ƒ12225.00;
2 doubleƒtaxRateƒ=ƒ0.15;
3
4 System.out.println("Car: "ƒ+ƒmoney.format(carPrice));
5 System.out.println("Tax: "ƒ+ƒ
6 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒmoney.format(carPriceƒ*ƒtaxRate));
7 System.out.println("Total: "ƒ+ƒ
8 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒmoney.format(carPriceƒ*ƒ(1.0ƒ+ƒtaxRate)));

A formatting object is not normally obtained by using a constructor. Instead, a
factory method in the NumberFormat class is called. A factory method returns an
object reference, as a constructor does. Unlike a constructor, a factory method has
the option of returning a subclass of NumberFormat that is specialized for a specific
task. In this case, the factory method tries to determine the country where the com
puter is located and returns an object customized for the local currency.

The NumberFormat class contains the getCurrencyInstance, getNumberInstance,
and getPercentInstance factory methods, along with several others. The
getCurrencyInstance factory method can be used by importing
java.text.NumberFormat and including the following statement before line 4 in
Listing 7-4.

NumberFormatƒmoneyƒ=ƒNumberFormat.getCurrencyInstance();

A formatter for general numbers can be obtained with the getNumberInstance fac
tory method. It can be customized to format numbers with a certain number of decimal
places and to print grouping characters. Consider the following example:

NumberFormatƒfƒ=ƒNumberFormat.getNumberInstance();
f.setMaximumFractionDigits(4);
f.setGroupingUsed(true);
System.out.println(f.format(3141.59265359));

These statements will print the value 3,141.5927—the value rounded to four decimal
places with an appropriate character (in this case, a comma) used to group the digits.

Columnar Output

Programs often produce lots of numbers that are most naturally formatted in columns.
Even with the program to calculate the tax for a car purchase, aligning the labels and
numbers vertically makes the information easier to read.

LOOKING AHEAD

Implementing factory
methods will be
discussed in
Chapter 12.

KEY IDEA

Factory methods help
you obtain an object
already set up for a
specific situation.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 343

343

One of the easiest approaches uses the printf method in the System.out object. It
was added in Java 1.5, and is not available in earlier versions of Java.

The printf method is unusual in that it takes a variable number of arguments. It
always takes at least one, called the format string, that includes embedded codes
describing how the other arguments should be printed.

Here’s an example where printf has three arguments.

System.out.printf("%-10s%10s",ƒ"Car:",ƒmoney.format(carPrice));

The first argument is the format string. It includes two format specifiers, each one
beginning with a percent (%) sign and ending with a character indicating what kind of
data to print. The first format specifier is for the second argument; the second specifier
is for the third argument. Additional specifiers and arguments could easily be added.

In each case, the s indicates that the argument to print should be a string. The 10
instructs printf to print the string in a field that is 10 characters wide. The minus sign
(-) in one says to print that string left justified (starting on the left side of the column).
The specifier without the minus sign will print the string right justified (on the right
side of the column).

This line, as specified, does not print a newline character at the end; thus, any subse
quent output would be on the same line. We could call println() to end the line, or
we could add another format specifier. The specifier %n is often added to the format
string to begin a new line. It does not correspond to one of the arguments.

Table 7-3 gives several examples of the most common format specifiers and the results
they produce. A d is used to print a decimal number, such as an int. An f is used to
print a floating-point number, such as a double. In addition to the total field width, it
specifies how many decimal places to print. More examples and a complete description
are available in the online documentation for the java.util.Formatter class.

7.2
U

SIN
G
 N

U
M

ERIC T
YPES

KEY IDEA

printf’s format
string says how to

format the other
arguments.

ch07/formatNumbers/

(table 7-3)

Examples of common

format specifiers; dots

signify spaces

Format Specifier and Argument Result

“%-10s”,ƒ“Car:” Car:••••••

“%10s”,ƒ“Car:” ••••••Car:

“%10d”,ƒ314 •••••••314

“%10.4f”,ƒ3.1415926 3.1416••••

“%-10.4f”,ƒ3.1415926 ••••3.1416

The printf method has many other options that are documented in the Formatter
class. Discussing them further, however, is beyond the scope of this book.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 344

344
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

7.2.5 Taking Advantage of Shortcuts

Java includes a number of shortcuts for some of the most common operations per- KEY IDEA

formed with numeric types. For example, one of the most common is to add 1 to a i++ is a shortcut for
variable. Rather than writing aveƒ=ƒaveƒ+ƒ1, Java permits the shortcut of writing i = i + 1.

ave++. A similar shortcut is writing ave-- in place of aveƒ=ƒaveƒ-ƒ1.

It is also common to add the result of an expression to a variable. For example, the fol
lowing is SimpleBot’s move method as written in Listing 6-6:

publicƒvoidƒmove()

{ƒthis.streetƒ=ƒthis.streetƒ+ƒthis.strOffset();

ƒƒthis.avenueƒ=ƒthis.avenueƒ+ƒthis.aveOffset();

ƒƒUtilities.sleep(400);

}

Instead of repeating the variable on the right side of the equal sign, we can use the +=
operator, which means to add the right side to the value of the variable on the left, and
then store the result in the variable on the left. More precisely, «var» += «expres
sion» means «var» = «var»ƒ+ƒ(«expression»). The parentheses are important in
determining what happens if «expression» contains more than a single value. The
following example is equivalent to the previous code:

publicƒvoidƒmove()

{ƒthis.streetƒ+=ƒthis.strOffset();

ƒƒthis.avenueƒ+=ƒthis.aveOffset();

ƒƒUtilities.sleep(400);

}

There are also -=, *=, and /= operators. They are used much less frequently but
behave the same as += except for the change in numeric operation.

7.3 Using Non-Numeric Types

Variables can also store information that is not numeric, using the types boolean,
char, and String.

7.3.1 The boolean Type

The boolean type is used for true and false values. We have already seen Boolean
expressions used to control if and while statements, and as a temporary variable and
the return type in predicates (see, for example, Listing 5-3). We have also explored
using boolean values in expressions (see Section 5.4).

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 345

345

LOOKING BACK

A Boolean temporary
variable is used in

rightIsBlocked,
section 5.2.5.

Instance variables, named constants, and parameter variables can also be of type
boolean. For example, a Boolean instance variable can store information about
whether a robot is broken. The robot might consult that variable each time it is asked
to move, and only move if it has not been previously broken.

publicƒclassƒSimpleBotƒextendsƒPaintable

{ƒprivateƒintƒavenue;

ƒƒprivateƒintƒstreet;

ƒƒprivateƒbooleanƒisBrokenƒ=ƒfalse;

ƒƒ...

ƒƒpublicƒvoidƒbreakRobot()

ƒƒ{ƒthis.isBrokenƒ=ƒtrue;

ƒƒ}

ƒƒpublicƒvoidƒmove()

ƒƒ{ƒifƒ(!this.isBroken)

ƒƒƒƒ{ƒthis.avenueƒ=ƒ...

ƒƒƒƒƒƒthis.streetƒ=ƒ...

ƒƒƒƒ}

ƒƒ}

ƒƒ...

}

7.3.2 The Character Type

A single character such as a, Z, ?, or 5 can be stored in a variable of type char. These
include the characters you type at the keyboard—and many more that you can’t type
directly. Like the other primitive types, the char type may be used for instance vari
ables, temporary variables, parameter variables, and named constants, and may be
returned from queries.

One use for characters is to control a robot from the keyboard. Sim, a superclass of
Robot, has a protected method named keyTyped that is called each time a key is
typed, yet it does nothing. The method has a char parameter containing the character
that was typed. By overriding the method, we can tell a robot to move when ‘m’ is
typed, turn right when ‘r’ is typed, and so on. The KeyBot class in Listing 7-5 defines
such a robot. The same technique can be used in subclasses of Intersection and
Thing because they all descend from Sim—the class implementing keyTyped. (When
running a program using this feature, you must click on the image of the city before it
will accept keystrokes. The image will have a black outline when it is ready to accept
keystrokes.)

7.3
U

SIN
G
 N

O
N-N

U
M

ERIC T
YPES

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 346

346
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Listing 7-5: A robot that responds to keystrokes

1 importƒbecker.robots.*;
2
3 publicƒclassƒKeyBotƒextendsƒRobotSE
4 {
5 ƒƒpublicƒKeyBot(Cityƒc,ƒintƒstr,ƒintƒave,ƒDirectionƒdir)
6 ƒƒ{ƒsuper(c,ƒstr,ƒave,ƒdir);
7 ƒƒ}
8
9 ƒƒprotectedƒvoidƒkeyTyped(charƒkey)

10 ƒƒ{ƒifƒ(keyƒ==ƒ'm'ƒ||ƒkeyƒ==ƒ'M')
11 ƒƒƒƒ{ƒthis.move();
12 ƒƒƒƒ}ƒelseƒifƒ(keyƒ==ƒ'r'ƒ||ƒkeyƒ==ƒ'R')
13 ƒƒƒƒ{ƒthis.turnRight();
14 ƒƒƒƒ}ƒelseƒifƒ(keyƒ==ƒ'l'ƒ||ƒkeyƒ==ƒ'L')
15 ƒƒƒƒ{ƒthis.turnLeft();ƒƒƒƒ// Watch out. The above test uses
16 ƒƒƒƒ// a lowercase 'L', not a "one".
17 ƒƒ}
18 }

ch07/keyBot/

The parameter, key, is compared to the letters ‘m’, ‘r’, and ‘l’ in lines 10, 12, and 14.
In each case, if the comparison is true (that is, the parameter contains an ‘m’, ‘r’, or
‘l’), an action is taken. If a different key is pressed, the robot does nothing. A slightly
enhanced version of this method is implemented in the RobotRC class. You can extend
RobotRC anytime you want to use the keyboard as a remote control (RC) for a robot.

The 'm', 'r', and 'l' are character literals. To write a specific character value, place
the character between two single quotes. What if you want to compare a value to a sin
gle quote? Placing it between two other single quotes (''') confuses the compiler,
causing an error message. The solution is to use an escape sequence. An escape
sequence is an alternative way to write characters that are used in the code for other
purposes. The escape sequence for a single quote is \' (a backslash followed by a sin
gle quote). All escape sequences begin with a backslash. The escape sequence is placed
in single quotes, just like any other character literal. Table 7-4 shows some common
escape sequences, many of which have their origins in controlling printers.

The last escape sequence, \udddd, is used for representing characters from a wide
range of languages, and includes everything from accented characters to Bengali char
acters to Chinese ideograms. You can find more information online at
www.unicode.org. Unfortunately, actually using these characters requires correspond
ing fonts on your computer.

KEY IDEA

Override keyTyped
to make a robot that
can be controlled
from the keyboard.

KEY IDEA

Some characters have
special meaning to
Java. They have to be
written with an
escape sequence.

http:www.unicode.org

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 347

347

(table 7-4)

Character escape

sequences

Sequence Meaning

\' Single quote

\” Double quote

\\ Backslash

\n Newline—used to start a new line of text when printing at the console

\t Tab—inserts space so that the next character is placed at the next tab stop.
Each tab stop is a predefined distance from the previous tab stop.

\b Backspace—moves the cursor backwards over the previously printed
character

\r Return—moves the cursor to the beginning of the current line

\f Form feed—moves the cursor to the top of the next page in a printer

\udddd A Unicode character, each d being a hexadecimal digit (0–9, a–f, A–F)

7.3
U

SIN
G
 N

O
N-N

U
M

ERIC T
YPES

KEY IDEA

Java provides special
support for the
String class.

7.3.3 Using Strings

Strings of characters such as “Hello, karel!” are used frequently in Java programs. Strings
are stored, appropriately, in variables of type String. A string can hold thousands of char
acters or no characters at all (the empty string). These characters can be the familiar ones
found on the keyboard or those specified with escape characters, as shown in Table 7-4.

String is not a primitive type. In fact, it is a class just as Robot is a class. On the other
hand, strings are used so often that Java’s designers included special support for them
that other classes do not have—so much special support that it sometimes feels like
strings are primitive types.

Special Java Support for Strings

The special support the String class enjoys from the Java compiler falls into three
categories:

➤	 Java will automatically construct a String object for each sequence of char
acters between double quotes; that is, Java has literal values for strings just
like it has literal values for integers (5, -259), doubles (3.14159), and
Booleans (true).

➤	 Java will “add” two strings together with the plus operator to create a new
string consisting of one string followed by the other. This is called concatenation.

➤	 Java will automatically convert primitive values and objects to strings before
concatenating them with a string.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 348

348
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Listing 7-6: A simple program demonstrating built-in Java support for the String class

1 importƒbecker.robots.*;
2
3 publicƒclassƒMain
4 {
5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
6 ƒƒ{ƒStringƒgreetingƒ=ƒ"Hello";
7 ƒƒƒƒStringƒnameƒ=ƒ"karel";
8
9

10 ƒƒƒƒSystem.out.println(greetingƒ+ƒ", "ƒ+ƒnameƒ+ƒ"!");
11
12
13
14 ƒƒƒƒSystem.out.println("Did you know that 2*PI = "ƒ+ƒ2*Math.PIƒ+ƒ"?");
15
16 ƒƒƒƒCityƒcƒ=ƒnewƒCity();
17 ƒƒƒƒRobotƒkarelƒ=ƒnewƒRobot(c,ƒ1,ƒ2,ƒDirection.SOUTH);
18 ƒƒƒƒSystem.out.println("c="ƒ+ƒc);
19 ƒƒ}
20 }

Program output:
Hello,ƒkarel!
Didƒyouƒknowƒthatƒ2*PIƒ=ƒ6.283185307179586?
c=becker.robots.City[SimBag[robots=[becker.robots.Robot
[street=1,ƒavenue=2,ƒdirection=SOUTH,ƒisBroken=false,ƒnumThings
InBackpack=0]],ƒthings=[]]]

A String object is created
automatically from the string
literal "Hello"

Four strings are concatenated using
the "+" operator to produce a single
string, "Hello, karel!"

The primitive value resulting from this expression is automatically
converted to a string and concatenated using the plus operator

The object referenced by c is
automatically converted to a
string by calling its
toString method

Listing 7-6 shows several examples of this special support. The program uses
System.out.println to print the strings, as we did in Section 6.6.1. The difference
here is the manipulations of the strings before they are printed.

ch07/stringDemo/

In lines 6 and 7, two String objects are created using the special support the Java lan
guage provides for strings. These lines would look more familiar if they used a normal
constructor, which works as expected:

Stringƒgreetingƒ=ƒnewƒString("Hello");
Stringƒnameƒ=ƒnewƒString("karel");

Line 14 contains an expression that is evaluated before it is passed as an argument to
println. The normal rules of evaluation are used: multiplication has a higher prece
dence than addition, so 2*Math.PI is evaluated first. Then, two string additions, or
concatenations, are performed left to right. Because the left and right sides of the first

http:2*Math.PI

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 349

349

KEY IDEA

Every class should
override toString

to provide meaningful
information.

addition operator do not have the same type, the less general one (the result of
2*Math.PI) is converted to a string before being “added” to the other operand.

Finally, when Java converts an object to a string, as it does in line 18, it calls the
method named toString, which every class inherits from Object.

Overriding toString

Java depends on the fact that every object has a toString method that can be called
to provide a representation of the object as a string. The default implementation,
inherited from the Object class, only prints the name of the class and a number
identifying the particular object. To be useful, the method should be overridden in
classes you write. The information it presents is often oriented to debugging, but it
doesn’t have to be.

The standard format for such information is the name of the object’s class followed by an
open bracket, “[”. Information relevant to the object follows, and then ends with a clos
ing bracket, “]”. This format allows objects to be nested. For example, when the City
object is printed, we see that it prints the Robot and Thing objects it references. Each of
these, in turn, print relevant information about themselves, such as their location.

Listing 7-7 shows a toString method that could be added to the SimpleBot class
shown in Listing 6-6.

7.3
U

SIN
G
 N

O
N-N

U
M

ERIC T
YPES

Listing 7-7: A sample toString method

1 publicƒclassƒSimpleBotƒextendsƒPaintable
2 {ƒprivateƒintƒstreet;
3 ƒƒprivateƒintƒavenue;
4 ƒƒprivateƒintƒdirection;
5
6 ƒƒ// Constructor and methods are omitted.
7
8 ƒ/** Represent a SimpleBot as a string. */
9 ƒpublicƒStringƒtoString()

10 ƒ{ƒreturnƒ"SimpleBot"ƒ+
11 ƒƒ" [street="ƒ+ƒthis.streetƒ+ƒ
12 ƒƒ", avenue="ƒ+ƒthis.avenueƒ+ƒ
13 ƒƒ", direction="ƒ+ƒthis.directionƒ+ƒ
14 ƒƒ"]";
15 ƒ}
16 }

toString

http:2*Math.PI

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 350

350
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Querying a String

The String class provides many methods to query a String object. These include
finding out how long a string is, whether two strings start the same way, the first loca
tion of a particular character, and so on. The most important of these queries are
shown in Table 7-5.

Method Description

charƒcharAt(intƒindex) Returns the character at the location specified by
the index. The index is the position of the char
acter—an integer between 0 (the first character)
and one less than the length of the string (the
last character).

intƒcompareTo(StringƒaString) Compares this string to aString, returning a
negative integer if this string is lexicographically
smaller than aString, 0 if the two strings are
equal, and a positive integer if this string is lexi
cographically greater than aString.

booleanƒequals(ObjectƒanObject) Compares this string to another object (usually a
string). Returns true if anObject is a string con
taining exactly the same characters in the same
order as this string.

intƒindexOf(charƒch) Returns the index within this string of the first
occurrence of the specified character. If the char
acter is not contained within the string, -1 is
returned.

intƒindexOf(charƒch,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒintƒfromIndex)

Returns the index within this string of the first
occurrence of the specified character, starting the
search at fromIndex. If no such character exists,
-1 is returned.

intƒindexOf(Stringƒsubstring) Returns the index of the first character of the first
occurrence of the given substring within this
string. If the given substring is not contained
within this string, -1 is returned.

intƒlastIndexOf(charƒch) Returns the index of the last occurrence of the
given character within this string. If the given
character is not contained within this string, -1 is
returned.

intƒlength() Returns the number of characters contained in
this string.

booleanƒstartsWith(Stringƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprefix)

Returns true if this string starts with the
specified prefix.

(table 7-5)

Methods that query a

string

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 351

351

KEY IDEA

Characters in strings
are numbered

starting at position 0.

KEY IDEA

>, >=, <, and <=
don’t work for

strings.

KEY IDEA

Use the equals
method to compare
strings for equality.

KEY IDEA

Use compareTo to
compare strings for

order.

The charAt and indexOf methods in Table 7-5 refer to a character’s index, or posi
tion within the string. In the string “Hello”, ‘H’ is at index 0, ‘e’ is at index 1, and ‘o’
is at index 4. For example, if the variable greeting refers to “Hello”, then greet-
ing.charAt(1) returns the character ‘e’.

It may seem strange for strings to begin indexing at zero, but this is common in com
puter science. We have already seen it in the robot cities, where streets and avenues
begin with zero. We’ll see it again in upcoming chapters, where collections of values
are indexed beginning with zero.

When a and b are primitive types, we can compare them with operators such as
aƒ==ƒb, aƒ<ƒb, and aƒ>=ƒb. For reference types such as String, only the == and !=
operators work—and they do something different than you might expect.

Instead of ==, compare two strings for equality with the equals method. It returns
true if every position in both strings has exactly the same character.

ifƒ(oneString.equals(anotherString))
{ƒSystem.out.println(“Theƒstringsƒareƒequal.”);
}

Instead of !=, use a Boolean expression, as follows:

!oneString.equals(anotherString)

The string equivalent to less than and greater than is the compareTo method. It can be
used as shown in the following code fragment:

Stringƒaƒ=ƒ...

Stringƒbƒ=ƒ...

ifƒ(a.compareTo(b)ƒ<ƒ0)

{ƒ// a comes before b in the dictionary

}ƒelseƒifƒ(a.compareTo(b)ƒ>ƒ0)

{ƒ// a comes after b in the dictionary

}ƒelseƒ// if (a.compareTo(b) == 0)

{ƒ// a and b are equal

}

The compareTo method determines the lexicographic order of two strings—essentially,
the order they would have in the dictionary. To determine which of two strings comes
first, compare the characters in each string, character by character, from left to right.
Stop when you reach the end of one string or a pair of characters that differ. If you stop
because one string is shorter than the other, as is the case with “hope” and “hopeful”
in Figure 7-4, the shorter string precedes the longer string. If you stop because charac
ters do not match, as is the case with “f” and “l” in “hopeful” and “hopeless”,
then compare the mismatched characters. In this case “f” comes before “l”, and so
“hopeful” precedes “hopeless” in lexicographic order.

7.3
U

SIN
G
 N

O
N-N

U
M

ERIC T
YPES

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 352

352

hope (figure 7-4)
hopeful

Lexicographic ordering hopeless

CH
AP

TE
R

7
| M

O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

If the strings have non-alphabetic characters, you may consult Appendix D to deter
mine their ordering. For example, a fragment of the ordering is as follows:

!ƒ“ƒ#ƒ…ƒ0ƒ1ƒ2ƒ…ƒ9ƒ:ƒ;ƒ<ƒ…ƒAƒBƒCƒ…ƒZƒ[ƒ\ƒ…ƒaƒbƒcƒ…ƒzƒ{ƒ|ƒ}

This implies that “hope!” comes before “hopeful” because ! appears before f in the
previous ordering. Similarly, “Hope” comes before “hope”.

Transforming Strings

Other methods in the String class do not answer questions about a given string, but
rather return a copy of the string that has been transformed in some way. For example,
the following code fragment prints “WarningƒWARNING”; message2 is a copy of
message1 that has been transformed by replacing all of the lowercase characters with
uppercase characters.

Stringƒmessage1ƒ=ƒ“Warning”;
Stringƒmessage2ƒ=ƒmessage1.toUpperCase();
System.out.println(message1ƒ+ƒ“ƒ“ƒ+ƒmessage2);

The designers of the String class had two options for the toUppercase method. They
could have provided a command that changes all of the characters in the given string to
their uppercase equivalents. The alternative is a method that makes a copy of the string,
changing each lowercase letter in the original string to an uppercase letter in the copy.

The designers of the String class consistently chose the second option. This makes the
String class immutable. After a string is created, it cannot be changed. The methods
given in Table 7-6, however, make it easy to create copies of a string with specific trans
formations. The StringBuffer class is similar to String, but includes methods that
allow you to modify the string instead of creating a new one.

The substring method is slightly different. Its transformation is to extract a piece of
the string, returning it as a new string. For example, if name refers to the string
“Karel”, then name.substring(1,4) returns “are”. Recall that strings are indexed
beginning with 0, so the character at index 1 is a. The second index to substring, 4 in
this example, is the index of the first character not included in the substring.

KEY IDEA

An immutable class is
one that does not
provide methods to
change its instance
variables.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 353

353

(table 7-6)

Methods that return

a transformed copy

of a string

Method Description

Stringƒreplace(charƒoldChar,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcharƒnewChar)

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒendIndex)
Stringƒsubstring(intƒbeginIndex,ƒ

Returns a copy of this string that has all
occurrences of oldChar replaced with newChar.

characters between beginIndex and
endIndex-1, inclusive. The character at
endIndex is the first character not included in
the new string.

Returns a new string containing all the

StringƒtoLowerCase() Returns a copy of this string that has all the
uppercase characters replaced with their lower
case equivalents.

StringƒtoUpperCase() Returns a copy of this string that has all the
lowercase characters replaced with their upper
case equivalents.

Stringƒtrim() Returns a copy of this string that has all white
space (such as space, tab, and newline charac
ters) removed from the beginning and end of
the string.

7.3
U

SIN
G
 N

O
N-N

U
M

ERIC T
YPES

Example: Counting Vowels

As an illustration of what you can do with strings, let’s write a program that counts the
number of vowels (a, e, i, o, u) in a string. As a test, we’ll use the famous quotation
from Hamlet, “To be, or not to be: that is the question.” The expected answer is 13.

To begin solving this problem, let’s think about how to solve it without a computer.
One straightforward method is to look at each letter, proceeding from left to right. If
the letter is a vowel, we can put a tick mark on a piece of paper. When we get to the
end, the number of ticks corresponds to the number of vowels. Our program can adopt
a similar strategy by using a variable to record the number of vowels.

This illustration will require us to examine individual letters in a string and compare
letters to other letters. We don’t have experience solving these kinds of problems, so
let’s proceed by solving a series of simpler problems. First, let’s print the individual let
ters in the quotation. This shows that we can process the letters one at a time. After
mastering that, let’s count the number of times a single vowel, such as ‘o’, occurs.
Finally, after solving these subproblems, we’ll count all the vowels.

To print all the letters in the quotation, we must access each individual letter.
According to Table 7-5, the charAt method will return an individual character from a
string. However, it needs an index, a number between 0 and one less than the length of
the string. Evidently, the length method will also be useful. To obtain the numbers
between 0 and the length, we could use a for loop. We’ll start a variable named index
at 0 and increment it by 1 each time the loop is executed until index is just less than

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 354

354
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

the length. These ideas are included in the following Java program that prints each
character in the quotation, one character per line.

1 publicƒstaticƒvoidƒmain(String[]ƒargs)

2 {ƒStringƒquotationƒ=ƒ"To be, or not to be: that is the question.";

3

4 ƒƒ// Loop over each letter in the quotation.

5 ƒƒforƒ(intƒindexƒ=ƒ0;ƒindexƒ<ƒquotation.length();ƒindex++)

6 ƒƒ{ƒ// Examine one letter in the quotation.

7 ƒƒƒƒcharƒchƒ=ƒquotation.charAt(index);

8 ƒƒƒƒSystem.out.println(ch);

9 ƒƒ}

10 }

Notice that the for loop starts the index at 0, the first position in the string. The loop KEY IDEA

continues executing as long as the index is less than the length of the string. As soon as A string of length 5

it equals the length of the string, it’s time to stop. For example, Figure 7-5 illustrates a has indices numbered
0 to 4.string of length 5, but its largest index is only 4. Therefore, the appropriate test to

include in the for loop is indexƒ<ƒquotation.length().

0 1 2 3 4
 T o b e

(figure 7-5) Index:
Characters: A string with its index

positions marked

To modify this program to count the number of times ‘o’ appears, we can replace the
println with an if statement and add a counter. The call to println in line 14 con
catenates the value of our counter variable with two strings to make a complete sen
tence reporting the results. The modifications are shown in bold in the following code:

1 publicƒstaticƒvoidƒmain(String[]ƒargs)

2 {ƒStringƒquotationƒ=ƒ"To be, or not to be: that is the question.";

3

4 ƒƒintƒcounterƒ=ƒ0; // Count number of os.

5 ƒƒ// Loop over each letter in the quotation.

6 ƒƒforƒ(intƒindexƒ=ƒ0;ƒindexƒ<ƒquotation.length();ƒindex++)

7 ƒƒ{ƒ// Examine one letter in the quotation.

8 ƒƒƒƒcharƒchƒ=ƒquotation.charAt(index);

9 ƒƒƒƒifƒ(chƒ==ƒ'o')

10 ƒƒƒƒ{ƒcounterƒ+=ƒ1;

11 ƒƒƒƒ}

12 ƒƒ}

13

14 ƒƒSystem.out.println("There are "ƒ+ƒcounterƒ+ƒ" occurrences of 'o'.");

15 }

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 355

355
7.3

U
SIN

G
 N

O
N-N

U
M

ERIC T
YPES

KEY IDEA

indexOf searches a
string for a particular

character.

The last step is to count all the vowels instead of only the os. A straightforward
approach is to add four more if statements, all similar to the one in lines 9–11.
However, when we consider that other quotations might include uppercase vowels
(totaling 10 if statements), looking for an alternative becomes attractive.

We can reduce the number of tests if we first transform the quote using toLowerCase,
as shown in line 3 of Listing 7-8. This assures us that all vowels will be lowercase.

The indexOf method shown in Table 7-5 offers an interesting possibility. It will search
a string and return the index of the first occurrence of a given character. If the charac
ter isn’t there, indexOf returns -1. Suppose we take a letter from our quotation and
search for it in a string that has only vowels. If the letter from the quotation is a vowel,
it will be found and indexOf will return a 0 or larger. If it’s not there, indexOf will
return -1. This idea is implemented in Listing 7-8. The changes from the previous ver
sion are again shown in bold.

ch07/countVowels/

Listing 7-8: Searching a string to count the number of vowels

1 publicƒstaticƒvoidƒmain(String[]ƒargs)
2 {ƒStringƒquotationƒ=ƒ"To be, or not to be: that is the question";
3 ƒƒStringƒlowerQuoteƒ=ƒquotation.toLowerCase();
4 ƒƒStringƒvowelsƒ=ƒ"aeiou";
5
6 ƒƒintƒcounterƒ=ƒ0; // Count the number of vowels.
7 ƒƒ// Loop over each letter in the quotation.
8 ƒƒforƒ(intƒindexƒ=ƒ0;ƒindexƒ<ƒlowerQuote.length();ƒindex++)
9 ƒƒ{ƒ// Examine one letter in the quotation.

10 ƒƒƒƒcharƒchƒ=ƒlowerQuote.charAt(index);
11 ƒƒƒƒifƒ(vowels.indexOf(ch)ƒ>=ƒ0)
12 ƒƒƒƒ{ƒcounterƒ+=ƒ1;
13 ƒƒƒƒ}
14 ƒƒ}
15
16 ƒƒSystem.out.println("There are"ƒ+ƒcounterƒ+ƒ"vowels.");
17 }

7.3.4 Understanding Enumerations

KEY IDEA Programmers often need a variable that holds a limited set of values. For example, we
Java version 1.5 or may you need to store a person’s gender—either male or female. For this we need only

higher is required to two values.
use this feature.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 356

356
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

We could define some constants, using m for male and f for female, as follows:

publicƒclassƒPersonƒextendsƒObject

{ƒpublicƒstaticƒfinalƒcharƒMALEƒ=ƒ'm';

ƒƒpublicƒstaticƒfinalƒcharƒFEMALEƒ=ƒ'f';

ƒƒprivateƒStringƒname;

ƒƒprivateƒcharƒgender;

ƒƒpublicƒPerson(StringƒaName,ƒcharƒaGender)

ƒƒ{ƒsuper();

ƒƒƒƒthis.nameƒ=ƒaName;

ƒƒƒƒthis.genderƒ=ƒaGender;

ƒƒ}

ƒƒ...

}

But still, someone could create a Person object like this, either by mistake or maliciously:

Personƒjuanƒ=ƒnewƒPerson("Juan",ƒ'z');

Is Juan male or female? Neither. This mistake might create a severe problem later in the
program. It might crash, or it could just cause embarrassment if Juan happened to be
male and was assigned to a sports team with the following if statement:

ifƒ(juan.getGender()ƒ==ƒMALE)

{ƒadd to the boy’s team

}ƒelse

{ƒadd to the girl’s team

}

A better solution is to define an enumeration, also called an enumerated type. An enu
meration lists all of the possible values for that type. Those values can be used as liter
als in the program, and the compiler will allow only those literals to be used. This
makes it impossible to assign Juan the gender of ‘z’. Direction, used extensively in
robot programs, is an example of an enumeration.

An enumeration for gender can be defined as shown in Listing 7-9. Like a class, the
code is placed in a file matching the type name, Gender.java.

KEY IDEA

An enumeration has
an explicitly listed set
of values.

Listing 7-9: Defining an enumeration

ch07/enums/
1 /** An enumeration of the genders used in the Person class.

2 *

3 * @author Byron Weber Becker */

4 publicƒenumƒGenderƒ

Enumeration
5 {ƒMALE,ƒFEMALEƒ

6 }

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 357

357
7.3

U
SIN

G
 N

O
N-N

U
M

ERIC T
YPES

KEY IDEA

The compiler
guarantees that only

valid values are
assigned to

enumerations.

This is similar to a class definition except that the keyword class replaces the key
word enum and the enumeration does not include a clause to extend another class.
Inside the braces, we list the different values for variables of type Gender, separating
each with a comma.

The Person class shown earlier can be rewritten using this enumeration, as shown in
Listing 7-10. Notice that Gender is used as a type, just like int or Robot, when the
instance variable gender is declared in line 9. Similarly, it’s used to declare a parame
ter variable in line 12 and a return type in line 19. In each of these cases, the Java com
piler will guarantee that the value is Gender.MALE, Gender.FEMALE, or null—and
nothing else. null is a special value that means “no value”; we will learn more about
null in Section 8.1.2.

The main method in lines 24–29 uses the value Gender.MALE twice, once to construct
a new Person object and once to test that the getGender method returns the
expected value.

Listing 7-10: Using the Gender enumerated type

ch07/enums/
1 importƒbecker.util.Test;
2
3 /** Represent a person.
4 * Enumeration
5 * @author Byron Weber Becker */

Test Harness 6 publicƒclassƒPersonƒextendsƒObject
7 {
8 ƒƒprivateƒStringƒname;
9 ƒƒprivateƒGenderƒgender;

10
11 ƒƒ/** Construct a person. */

12 ƒƒpublicƒPerson(StringƒaName,ƒGenderƒaGender)

13 ƒƒ{ƒsuper();

14 ƒƒƒƒthis.nameƒ=ƒaName;

15 ƒƒƒƒthis.genderƒ=ƒaGender;

16 ƒƒ}

17

18 ƒƒ/** Get this person's gender. */

19 ƒƒpublicƒGenderƒgetGender()

20 ƒƒ{ƒreturnƒthis.gender;

21 ƒƒ}

22

23 ƒƒ// Test the Person class

24 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

25 ƒƒ{ƒPersonƒjuanƒ=ƒnewƒPerson("Juan",ƒGender.MALE);

26 ƒƒƒƒTestƒtesterƒ=ƒnewƒTest(); // This line isn't needed. See Section 7.5.2.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 358

358
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Listing 7-10: Using the Gender enumerated type (continued)

27 ƒƒƒƒtester.ckEquals("gender",ƒGender.MALE,ƒjuan.getGender());
28 ƒƒ}
29 }

7.4 Example: Writing a Gas Pump Class

We now have all the pieces needed to write a class that has nothing to do with robots.
It could be a part of a drawing program, a payroll package, or a word processor.

For our first example, we’ll start small and write a class that could be used as part of a
gas pump. Every gas pump must have a meter to measure the gas that is delivered to
the customer. Of course, measuring the gas is not enough. We must also be able to get
the measurement so that we can display it on the gas pump. Our meter can also pro
vide the following information:

➤ The price of one unit of gas (the price per liter or price per gallon)

➤ The octane level of the gas (a performance measure, typically between 87 and 93)

➤ A marketing name for that kind of gas (for example, “silver” or “ultra”)

➤ The total cost of the gas delivered to the customer

In addition, when one customer is finished and another one arrives, we must be able to
reset the measurements.

We’ll call this class a Meter. To develop it, we’ll build on the testing strategies outlined
in Section 7.1.1 and include a main method for testing. An initial skeleton is shown in
Listing 7-11. It extends Object because a meter doesn’t seem to be based on any of the
classes we’ve seen so far. It includes a constructor with no parameters (so far), and a
main method for testing purposes. The main method creates a new Meter object, but
there is nothing to test (yet).

LOOKING AHEAD

In this chapter’s GUI
section, we’ll learn
how to add a
prepared user
interface to this class.

Listing 7-11: Beginning the Meter class

1 publicƒclassƒMeterƒextendsƒObject
2 {
3 ƒƒpublicƒMeter()
4 ƒƒ{ƒsuper();
5 ƒƒ}
6
7 ƒƒ// Test the class.
8 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 359

359

Listing 7-11: Beginning the Meter class (continued)

9 ƒƒ{ƒMeterƒmƒ=ƒnewƒMeter();
10 ƒƒ}
11 }

KEY IDEA We’ll proceed by repeating the following steps until we think we’re finished with the class:
Write tests as you ➤ Choose one part of the description that we don’t have working and decide

write the class. what method is required to implement it.

➤ Understand what the method is to do and give it a name.

➤ Write one or more tests to determine if the method is working correctly.

➤ Write code so that the method passes the test(s).

7.4.1	 Implementing Accessor Methods

Once again, we’ll use a question-and-answer style to get started.

Expert	 What is one part of the description that isn’t working?

Novice	 Well, nothing is working, so we’re really just looking for something to imple
ment. I think the first bullet in the description, to provide the price of one unit
of gas, would be a good place to start.

Expert	 What is this method supposed to do?

Novice	 Return the price of one unit of gas. I guess that would be, for example,
$1.109/liter or $2.85/gallon. I think a good name for the method would be
getUnitCost.

Expert	 How can we test if getUnitCost is working correctly?

Novice	 We can add a statement in main that calls ckEquals:

tester.ckEquals("unit cost",ƒ1.109,ƒm.getUnitCost());

Expert So, you’re assuming that gas costs $1.109 per liter?

Novice Yes.

7.4
E

XAM
PLE: W

RITIN
G
 A G

AS P
U
M

P C
LASS

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 360

360
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Expert	 How would you implement getUnitCost so that it passes this test?

Novice	 It’s easy. Just return the value. I’ll even throw in the documentation:

/** Get the cost per unit of fuel.
* @return cost per unit of fuel */
publicƒdoubleƒgetUnitCost()

{ƒreturnƒ1.109;

}

A number with a decimal point like 1.109 can be stored in a variable of type
double, so that will be the return type of the method.

Expert	 Aren’t you assuming that gas is always $1.109 per liter? What if the price goes
up or down? Or what if the gas pump can deliver three different grades of
gasoline? Surely they wouldn’t all have the same price.

Novice	 I see your point. Somehow each Meter object should have its own price for
the gas it measures, just like each Robot object must have its own street and
avenue. To test that, we want to have two Meter objects, each with a differ
ent price:1

tester.ckEquals("Cost 1",ƒ1.109,ƒm1.getUnitCost());
tester.ckEquals("Cost 2",ƒ1.159,ƒm2.getUnitCost());

It sounds like we need to have an instance variable to store the unit price.

Expert	 Suppose you had an instance variable. How would you initialize it?

Novice	 Well, it couldn’t be where the instance variable is declared because then we’re
right back where we started—each Meter object would always have the same
price for its gas. I guess we’ll have to initialize it in the constructor. I think that
means the constructor requires a parameter so that the price can be specified
when the Meter object is created.

Putting these observations together results in the class shown in Listing 7-12. It adds an
instance variable, unitCost, at line 5 to remember the unit cost of the gas for each
Meter object. The instance variable is initialized at line 11 using the parameter vari
able declared in line 9. In line 22, the value 1.109 is passed to the Meter constructor.
This value is copied into the parameter variable unitCost declared in line 9. The
value in unitCost is then copied into the instance variable in line 11. The value is
stored in unitCost for as long as the object exists (or it is changed with an assignment
statement).

Finally, the contents of unitCost are returned at line 17 each time getUnitCost is called.

1 ckEquals verifies that two double values differ by less than 0.000001.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 361

361
7.4

E
XAM

PLE: W
RITIN

G
 A G

AS P
U
M

P C
LASS

Listing 7-12: A partially completed Meter class

1 importƒbecker.util.Test;
2
3 publicƒclassƒMeterƒextendsƒObject
4 {
5 ƒƒprivateƒdoubleƒunitCost;
6
7 ƒƒ/** Construct a new Meter object.
8 ƒƒ* @param unitCost The cost for one unit (liter or gallon) of gas */
9 ƒƒpublicƒMeter(doubleƒunitCost)

10 ƒƒ{ƒsuper();
11 ƒƒƒƒthis.unitCostƒ=ƒunitCost;
12 ƒƒ}
13
14 ƒƒ/** Get the cost per unit of fuel.
15 ƒƒ* @return cost per unit of fuel */
16 ƒƒpublicƒdoubleƒgetUnitCost()
17 ƒƒ{ƒreturnƒthis.unitCost;
18 ƒƒ}
19
20 ƒƒ// Test the class.
21 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
22 ƒƒ{ƒMeterƒm1ƒ=ƒnewƒMeter(1.109);
23 ƒƒƒƒTestƒtesterƒ=ƒnewƒTest(); // This line isn't needed. See Section 7.5.2.
24 ƒƒƒƒtester.ckEquals("unit cost",ƒ1.109,ƒm1.getUnitCost());
25 ƒƒƒƒMeterƒm2ƒ=ƒnewƒMeter(1.149);
26 ƒƒƒƒtester.ckEquals("unit cost",ƒ1.149,ƒm2.getUnitCost());
27 ƒƒ}
28 }

Two other parts of the requirements—getting the octane level and getting the market
ing name—follow a similar strategy. The difference is that they will use an integer and
a String, respectively. See Listing 7-13 for their implementations.

7.4.2	 Implementing a Command/Query Pair

Expert	 So, how are you going to implement the actual measurement of the gas?
Wasn’t the point of the Meter class to measure how much gas is delivered to
a customer?

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 362

362
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Novice	 Yes. Somehow, it seems we need to find out when the pump is actually pump
ing gas—and how much. You know, when the handle is only squeezed a little
way, only a little gas flows from the pump into the car. But when you squeeze
the handle all the way, a lot of gas flows.

Expert	 It sounds like the pump—the code that is going to be using your Meter
class—needs to call a method every time a little bit of gas is pumped. Does it
get called repeatedly?

Novice	 Yes, and it needs to tell how much gas was pumped in that time. The job of
the Meter object is to keep track of the units of gas that are pumped.

Expert	 I’m getting confused. Can you explain it another way?

Novice	 Sure. Think of a real pump. It has a motor to pump the gas. Every time the
motor goes around, some gas is pumped. How much depends on the speed of
the motor.

In our system, it’s as if the motor called a method in the Meter class every
time it turns. Furthermore, it will tell that method how much gas it pumped.
If the motor is turning slowly, it pumps only a small amount of gas; but if the
motor is turning fast, it pumps more. We’ll add up all the units of gas that are
pumped to calculate the total amount delivered to the customer.

Expert	 What do you want to call this method that is called by the motor?

Novice	 How about calling it pump? It will need a parameter, so the full signature will be

publicƒvoidƒpump(doubleƒhowMuch)

It’s a command, not a query, so the return type is void.

Expert	 How would you test this method? How will you know if it’s working
correctly?

Novice	 It’s like the move method in the Robot class. To test it, we had to have some
queries: getAvenue and getStreet. For the Meter class, we’ll need a
query—something like getVolumeSold.

Expert	 How will that help you?

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 363

363

Novice	 First, we’ll call pump to “pump” some gas. Maybe we’ll call it several times,
just like the real pump would. Then we’ll call getVolumeSold and make sure
that the value it returns matches the amount we “pumped.” We could put the
following in the test harness:

Meterƒmƒ=ƒnewƒMeter(1.109);

tester.ckEquals("vol. sold",ƒ0.0,ƒm.getVolumeSold());

m.pump(0.02);

m.pump(0.03);

m.pump(0.01);

tester.ckEquals("vol. sold",ƒ0.06,ƒm.getVolumeSold());

Expert	 How will you implement these methods?

Novice	 Well, somehow we need to add up all the units of gas that get passed as an
argument to the pump command. I’m thinking of using a temporary variable
inside the pump command.

Expert	 Are you sure about that? Doesn’t a temporary variable disappear each time the
method is finished, only to be re-created the next time the method is called?
Besides, how would getVolumeSold get access to a temporary variable?

Novice	 You’re right. We should use an instance variable instead. It maintains a value
even when a method is not being executed—and every method, including
getVolumeSold—can access an instance variable.

Expert	 Please recap the plan for me.

Novice	 We’ll have an instance variable called volumeSold. It will be initialized to
0.0 when the Meter object is created. Every time pump is called, it will add
the value passed in the parameter variable to volumeSold. Each time
getVolumeSold is called, we’ll just return the current contents of the
volumeSold instance variable.

Expert	 Sounds good. What about resetting when a new customer comes? That was
another one of the requirements. I think we’re also supposed to return the cost
of the gas sold.

Novice	 We’ll create a reset method that will assign 0.0 to the volumeSold instance
variable. A method named calcTotalCost can simply return the volume
sold times the cost per unit. Both of those values will be stored in instance
variables.

Expert	 And your plan for testing?

7.4
E

XAM
PLE: W

RITIN
G
 A G

AS P
U
M

P C
LASS

http:m.pump(0.01
http:m.pump(0.03
http:m.pump(0.02

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 364

364
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Novice	 Much like the others. We’ll set up a Meter object with a known unit price for
the gas. We’ll “pump” some gas and then call getVolumeSold and
calcTotalCost. Then we can reset the pump and verify that the volume sold
is back to 0.

This plan is a good one and is implemented in Listing 7-13.

Listing 7-13: The completed code for the Meter3 class

1 importƒbecker.util.Test;
2
3 /** Measure the volume of fuel sold and calculate the amount owed by the
4 * customer, given the current fuel cost.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒMeter3ƒextendsƒObject
8 {
9 ƒƒprivateƒdoubleƒunitCost; // unit cost

10 ƒƒprivateƒdoubleƒvolumeSoldƒ=ƒ0.0; // volume sold
11 ƒƒprivateƒintƒoctane; // octane rating
12 ƒƒprivateƒStringƒlabel; // marketing label
13
14 ƒƒ/** Construct a new Meter object.
15 ƒƒ* @param unitCost The cost for one unit (liter or gallon) of gas
16 ƒƒ* @param octaneRating An integer related to the "performance" of
17 ƒƒ* the fuel; usually between 87 and 93.
18 ƒƒ* @param theLabel A label for the fuel, such as "Gold" or "Ultra". */
19 ƒƒpublicƒMeter3(doubleƒunitCost,ƒintƒoctaneRating,ƒ
20 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒStringƒtheLabel)
21 ƒƒ{ƒsuper();
22 ƒƒƒƒthis.unitCostƒ=ƒunitCost;
23 ƒƒƒƒthis.octaneƒ=ƒoctaneRating;
24 ƒƒƒƒthis.labelƒ=ƒtheLabel;
25 ƒƒ}
26
27 ƒƒ/** Get the cost per unit of fuel.
28 ƒƒ* @return cost per unit of fuel */
29 ƒƒpublicƒdoubleƒgetUnitCost()
30 ƒƒ{ƒreturnƒthis.unitCost;
31 ƒƒ}
32
33 ƒƒ/** Get the octane rating of the fuel.
34 ƒƒ* @return octane rating (typically between 87 and 93) */
35 ƒƒpublicƒintƒgetOctane()
36 ƒƒ{ƒreturnƒthis.octane;

ch07/gasPump/
Meter3.java

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 365

365

Test Harness

7.4
E

XAM
PLE: W

RITIN
G
 A G

AS P
U
M

P C
LASS

Listing 7-13: The completed code for the Meter3 class (continued)

37 ƒƒ}
38 ƒƒ
39 ƒƒ/** Get the label for this meter's fuel. For example, "Gold" or "Ultra".
40 ƒƒ* @return this meter's fuel label */
41 ƒƒpublicƒStringƒgetLabel()
42 ƒƒ{ƒreturnƒthis.label;
43 ƒƒ}
44
45 ƒƒ/** Pump some fuel into a tank. This method is called
46 ƒƒ* repeatedly while the "handle" on the pump is pressed.
47 ƒƒ* @param howMuch How much fuel was pumped since the last time
48 ƒƒ* this method was called. */
49 ƒƒpublicƒvoidƒpump(doubleƒhowMuch)
50 ƒƒ{ƒthis.volumeSoldƒ=ƒthis.volumeSoldƒ+ƒhowMuch;
51 ƒƒ}
52
53 ƒƒ/** Get the volume of fuel sold to this customer.
54 ƒƒ* @return volume of fuel sold */
55 ƒƒpublicƒdoubleƒgetVolumeSold()
56 ƒƒ{ƒreturnƒthis.volumeSold;
57 ƒƒ}
58
59 ƒƒ/** Calculate the total cost of fuel sold to this customer.
60 ƒƒ* @return price/unit * number of units sold */
61 ƒƒpublicƒdoubleƒcalcTotalCost()
62 ƒƒ{ƒdoubleƒtCostƒ=ƒthis.unitCostƒ*ƒthis.volumeSold;
63 ƒƒƒƒreturnƒtCost;
64 ƒƒ}
65
66 ƒƒ/** Reset the meter for a new customer. */
67 ƒƒpublicƒvoidƒreset()
68 ƒƒ{ƒthis.volumeSoldƒ=ƒ0.0;
69 ƒƒ}
70
71 ƒƒ// Test the class.
72 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
73 ƒƒ{ƒTestƒtesterƒ=ƒnewƒTest();
74 ƒƒƒƒMeter3ƒm1ƒ=ƒnewƒMeter3(1.109,ƒ87,ƒ"Regular");
75 ƒƒƒƒtester.ckEquals("unit cost",ƒ1.109,ƒm1.getUnitCost());
76 ƒƒƒƒtester.ckEquals("octane",ƒ87,ƒm1.getOctane());
77 ƒƒƒƒtester.ckEquals("label",ƒ"Regular",ƒm1.getLabel());
78
79 ƒƒƒƒMeter3ƒm2ƒ=ƒnewƒMeter3(1.149,ƒ89,ƒ"Ultra");

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 366

366
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Listing 7-13: The completed code for the Meter3 class (continued)

80 ƒƒƒƒtester.ckEquals("unit cost",ƒ1.149,ƒm2.getUnitCost());
81 ƒƒƒƒtester.ckEquals("octane",ƒ89,ƒm2.getOctane());
82 ƒƒƒƒtester.ckEquals("label",ƒ"Ultra",ƒm2.getLabel());
83
84 ƒƒƒƒtester.ckEquals("volSold",ƒ0.0,ƒm2.getVolumeSold());
85 ƒƒƒƒm2.pump(0.02);
86 ƒƒƒƒm2.pump(0.03);
87 ƒƒƒƒm2.pump(0.01);
88 ƒƒƒƒtester.ckEquals("volSold",ƒ0.06,ƒm2.getVolumeSold());
89 ƒƒƒƒtester.ckEquals("totCost",ƒ0.06*1.149,ƒm2.calcTotalCost());
90 ƒƒƒƒm2.reset();
91 ƒƒƒƒtester.ckEquals("after reset",ƒ0.0,ƒm2.getVolumeSold());
92 ƒƒƒƒtester.ckEquals("after reset",ƒ0.0,ƒm2.calcTotalCost());
93 ƒƒ}
94 }

7.5 Understanding Class Variables and Methods

So far we have studied instance variables, temporary variables, parameter variables,
constants, and methods. We now need to look at variables and methods that use the
static keyword. Such variables and methods apply to the entire class rather than to a
single object.

7.5.1 Using Class Variables

Instance variables are always associated with a specific object. Each Robot object
knows which avenue and street it is on. Each Meter object knows the price of the gas
it is measuring.

A class variable (also called a static variable) relates to the class as a whole rather than to
an individual object. A class variable is declared using the static keyword and is used
to store information common to all the instances of the class.

Consider an analogy: suppose that people are objects and that all people live in the
same town. Some information is specific to each individual—their name, age, birth date,
and so on. This information is stored in instance variables. But other information is
known by everyone—the current year, the name of the town, the name of the mayor,
whether the sun is up, and so on. In this situation, it doesn’t make sense for each
person object to have its own instance variable to store the year. Using a class variable,

KEY IDEA

Variables and
methods declared
with static apply to
the entire class.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 367

367

KEY IDEA

Access a class
variable with the

name of the class
containing it.

the year is stored only once but is still accessible to each person object. Using an
instance variable, there are as many copies of the year as there are person objects.

A class variable is declared like an instance variable but includes the static keyword:

publicƒclassƒPersonƒextendsƒObject

{ƒ...

ƒƒprivateƒintƒbirthYear;

ƒƒprivateƒstaticƒintƒyear; // a class variable

ƒƒ...

}

Inside the class, a class variable can be accessed using the name of the class, the name
only, or this. For example, here are three different implementations of the method
getAge:

publicƒintƒgetAge()

{ƒreturnƒPerson.yearƒ–ƒthis.birthYear;

}

publicƒintƒgetAge()

{ƒreturnƒyearƒ–ƒthis.birthYear;

}

publicƒintƒgetAge()

{ƒreturnƒthis.yearƒ–ƒthis.birthYear;

}

Of these three, the first is preferred because it is clear that year is a class variable. The
second example is probably the most common because it saves a few keystrokes (this
could also be omitted for birthYear). Accessing the year with this.year strongly
implies that year is an instance variable and is discouraged.

A method may also change a class variable. For example, the following method could
be used on January 1:

publicƒvoidƒincrementYear()

{ƒPerson.yearƒ=ƒPerson.yearƒ+ƒ1;

}

The effect of this is to change the year for every Person object—and it’s accomplished
with only one method call.

Class variables are created and initialized before a class is first used. They are set up
even before the first object is created for that class.

7.5
U

N
D
ERSTAN

D
IN

G
 C

LASS V
ARIABLES AN

D
 M

ETH
O
D
S

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 368

368
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Assigning Unique ID Numbers

One use of class variables is to assign individual objects identification numbers. For
example, suppose that we want each person to have a unique identification number.
Obviously, if each person has a unique number, we need to store it in an instance vari
able. We can use a class variable to make it unique, as follows:

➤	 Declare a class variable to store the ID number to assign to the next Person
object created.

➤	 In the Person constructor:

➤	 Assign the ID number using the class variable.

➤	 Increment the class variable in preparation for assigning the next number.

publicƒclassƒPersonƒextendsƒObject
{ƒ...
ƒƒprivatefinalƒintƒid;
ƒƒprivateƒstaticƒintƒnextIDƒ=ƒ1000000; // first id is 1000000
ƒƒ...
ƒƒ
ƒƒpublicƒPerson(Stringƒname)
ƒƒ{ƒsuper();
ƒƒƒƒthis.idƒ=ƒPerson.nextID;
ƒƒƒƒPerson.nextID++;
ƒƒƒƒ...
ƒƒ}
}

With this scheme, every time a Person object is created, it is assigned an ID number.
Because nextID is a class variable and is incremented as soon as it has been assigned,
the next Person object constructed will receive the next higher number.

A Guideline for Class Variables

Class variables are quite rare in object-oriented code. If you find yourself declaring a
class variable, you should be able to clearly explain why every instance of the class
should access the same value or why there won’t be any instances of the class at all.

7.5.2 Using Class Methods

The static keyword can also be applied to methods; doing so, however, involves a
trade-off. On the one hand, such a method cannot access any instance variables and
are limited to calling methods that are also declared static. On the other hand, class
methods can be called using only the name of the class. Because no object is needed,
this makes them easier to use in some circumstances.

Assign a Unique ID

KEY IDEA

Class variables are
relatively rare in
object-oriented code.

KEY IDEA

Class methods cannot
use instance variables
or nonstatic methods.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 369

369

KEY IDEA

Class methods can be
called without using

an object.

We can use two methods in the previous section as examples. The method getAge cannot
be a class method because it accesses an instance variable. However, incrementYear is a
perfect candidate because it accesses only a class variable. To make it into a class method,
add the static keyword as shown in the following code fragment:

publicƒstaticƒvoidƒincrementYear()
{ƒPerson.yearƒ=ƒPerson.yearƒ+ƒ1;
}

With this change, the year can be incremented as follows:

Person.incrementYear();

This works even if no Person objects have been created yet. Using a specific object
such as john.incrementYear() also works but using the class name is preferred
because it tells the reader that incrementYear applies to the entire class.

Class Methods in the Math Class

One of Java’s provided classes, java.lang.Math, contains only class methods. For
example, consider a method to calculate the maximum of two numbers:

publicƒstaticƒintƒmax(intƒa,ƒintƒb)
{ƒintƒanswerƒ=ƒa;
ƒƒifƒ(bƒ>ƒa)
ƒƒ{ƒanswerƒ=ƒb;
ƒƒ}ƒ
ƒƒreturnƒanswer;
}

This method does not use any instance variables. In fact, all of the methods in the Math
class are like this. Because the Math class does not have any instance variables, all of
the methods are static. Thus, all of the methods are called using the class name, Math,
as a prefix, as shown in the following example:

intƒmƒ=ƒMath.max(0,ƒthis.getStreet());

Most of the functions in the Math class are listed in Table 7-7. Some of them are over
loaded with different numeric types for their parameters.

7.5
U

N
D
ERSTAN

D
IN

G
 C

LASS V
ARIABLES AN

D
 M

ETH
O
D
S

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 370

370
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Method Returned Value

intƒƒƒƒabs(intƒx)
doubleƒabs(doubleƒx)

absolute value of x; also overloaded for long
and float

doubleƒacos(doubleƒx) arccosine of x, 0.0 ≤ x ≤ π

doubleƒasin(doubleƒx) arcsine of x, -π/2 ≤ x ≤ π/2

doubleƒatan(doubleƒx) arctangent of x, -π/2 ≤ x ≤ π/2

doubleƒcos(doubleƒx) cosine of the angle x, where x is in radians

doubleƒexp(doubleƒx) e, the base of natural logarithms, raised to the
power of x

doubleƒlog(doubleƒx) natural logarithm (base e) of x

intƒƒƒƒmax(intƒx,ƒintƒy)
doubleƒmax(doubleƒx,ƒdoubleƒy)

larger of x and y; also overloaded for long
and float

intƒƒƒƒmin(intƒx,ƒintƒy)
doubleƒmin(doubleƒx,ƒdoubleƒy)

the smaller of x and y; also overloaded for long
and float

doubleƒpow(doubleƒx,ƒdoubleƒy) x raised to the power of y

doubleƒrandom() random number greater than or equal to 0.0 and
less than 1.0

longƒƒƒround(doubleƒx) integer nearest x

doubleƒsin(doubleƒx) sine of the angle x, where x is in radians

doubleƒsqrt(doubleƒx) square root of x

doubleƒtan(doubleƒx) tangent of the angle x, where x is in radians

doubleƒtoDegrees(doubleƒx) converts an angle, x, measured in radians to
degrees

doubleƒtoRadians(doubleƒx) converts an angle, x, measured in degrees to
radians

(table 7-7)

Many of the mathematical

functions included in

java.lang.Math

In addition to these functions, java.lang.Math also includes two public constants:
PI (3.14159...) and E (2.71828...).

In Section 7.1.2, we wrote our own version of the absolute value function to use in the
distanceToOrigin query. We now know that we could have used the Math class, as
follows:

publicƒintƒdistanceToOrigin()
{ƒreturnƒMath.abs(this.street)ƒ+ƒMath.abs(this.avenue);
}

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 371

371
7.5

U
N
D
ERSTAN

D
IN

G
 C

LASS V
ARIABLES AN

D
 M

ETH
O
D
S

KEY IDEA

random returns a
pseudorandom

number, x, such that
0 ≤ x < 1.

(figure 7-6)

Sequence of 10

pseudorandom numbers

The absolute value function is overloaded for both int and double. Because street
and avenue are integers, Java selects the method with int parameters (which happens
to have an int return type).

Our version of distanceToOrigin was the “as the robot moves” interpretation. If
we wanted the “as the crow flies” interpretation, we could use the Pythagorean theo
rem (a2 + b2 = c2) and the square root function, as follows:

publicƒdoubleƒdistanceToOrigin()

{ƒdoubleƒa2ƒ=ƒthis.streetƒ*ƒthis.street; // one way to square a #

ƒƒdoubleƒb2ƒ=ƒMath.pow(this.avenue,ƒ2.0); // another way to square a #

ƒƒreturnƒMath.sqrt(a2ƒ+ƒb2);

}

In Section 7.2.3 we discussed casting. For example, when the variable d holds 3.999,
the statement intƒiƒ=ƒ(int)d assigns the value 3 to the variable i. In many cases,
however, we want the nearest integer, not just the integer portion. For example, we
want to round 3.999 to 4.

The Math class has a round method that will do just that. However, when the method
is passed a double as an argument it returns a long integer. This implies that we often
cast the result when working with integers. For example,

intƒiƒ=ƒ(int)Math.round(d);

One of the most fun methods in the Math class is random. Each time it is called, it
returns a number greater than or equal to 0 and less than 1. When called repeatedly,
the sequence of numbers appears to be random.2 The first 10 numbers returned in one
experiment are shown in Figure 7-6. The first number in the sequence depends on the
date and time the program begins running.

0.425585145743809
0.49629326982879207
0.4467070769009338
0.23377387885697887
0.33762066427975934
0.25442482711460535
0.9986103921074468
0.9822012645708958
0.420499613228824
0.22309030308848088

2 These numbers appear to be random but are not. If the numbers were really random, the next num
ber could not be predicted. Because the next number in these sequences can be predicted, they are
called “pseudorandom.”

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 372

372
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

A computer implementation of a game with dice will often use random to simulate the
dice. In this case, we need to map a double between 0 and 1 to an integer between 1
and 6. The following method will do so:

publicƒintƒrollDie()
{ƒreturnƒ(int)(Math.random()ƒ*ƒ6ƒ+ƒ1);
}

We can understand how this works with a slight variation of an evaluation diagram, as
shown in Figure 7-7. The fact that the random method returns a value greater than or
equal to 0 and less than 1 is reflected below its oval with the notation [0, 0.9999...].
After the multiplication by 6, the expression has a value in the range [0, 5.9999...], a
number greater than or equal to 0 and less than 6. After the other operations are car
ried out, we see that the result is an integer between one and six—exactly what is
needed to simulate rolling a die.

int (figure 7-7)

Evaluating an expression

used in simulating dice

Class Methods in the Character Class

The Character class is automatically imported into every Java class and includes a
number of methods for classifying characters. A selection of these methods is shown in
Table 7-8. They are all declared static and can be called using the Character class
name, as shown in the following example:

ifƒ(Character.isDigit(ch))...

double
(int)(Math.random() * 6 + 1)

[0, 0.9999...]

[0, 5.9999...]

double

[1, 6.9999...]

double

[1, 6]

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 373

373

(table 7-8)

A selection of useful

methods in the

Character class

Method Returned value

booleanƒisDigit(charƒch) true if the specified character is a digit; false
otherwise

booleanƒisLetter(charƒch) true if the specified character is a letter; false
otherwise

booleanƒisLowerCase(charƒch) true if the specified character is a lowercase
character; false otherwise

booleanƒisUpperCase(charƒch) true if the specified character is an uppercase
character; false otherwise

booleanƒisWhitespace(charƒch) true if the specified character is white space
(space, tab, new line, etc.) ; false otherwise

7.5
U

N
D
ERSTAN

D
IN

G
 C

LASS V
ARIABLES AN

D
 M

ETH
O
D
S

Class Methods in the Test Class

The methods in the Test class are other examples of class methods. The code for
ckEquals, as shown in Listing 7-2, does not use any instance variables or nonstatic
methods and can therefore be declared with the static keyword. Indeed, all the meth
ods in the class are like this.

Because the methods are static, a typical test harness will not instantiate a Test object.
For example, the test harness in Listing 7-1 could be rewritten by removing line 14 and
replacing tester with test in lines 15–17, as follows:

1 importƒbecker.util.Test;

2

3 publicƒclassƒTestHarnessƒextendsƒObject

4 {

5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

6 ƒƒ{ƒ// Set up a known situation (an empty city; a robot on (4, 2) facing east).

7 ƒƒƒƒSimpleCityƒcƒ=ƒnewƒSimpleCity();

8 ƒƒƒƒSimpleBotƒkarelƒ=ƒnewƒSimpleBot(c,ƒ4,ƒ2,ƒConstants.EAST);

9

10 ƒƒƒƒ// Execute the move method.

11 ƒƒƒƒkarel.move();

12

13 ƒƒƒƒ// Verify the results -- robot on intersection (4, 3).

14 ƒƒƒƒTestƒtesterƒ=ƒnewƒTest();

15 ƒƒƒƒtesterTest.ckEquals("new ave",ƒ3,ƒkarel.getAvenue());

16 ƒƒƒƒtesterTest.ckEquals("same str",ƒ4,ƒkarel.getStreet());

17 ƒƒƒƒtesterTest.ckEquals("same dir",ƒConstants.EAST,

18 karel.getDirection());

19 }

20 }

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 374

374
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

The City class in the becker library automatically displays the city which is usually
not desirable in a test harness. This behavior can be controlled with another class
method, showFrame. The following code fragment shows how to use this method to
avoid having the city show.

publicƒstaticƒvoidƒmain(String[]ƒargs)
{ƒCity.showFrame(false);
ƒƒCityƒcƒ=ƒnewƒCity();
ƒƒ...
}

The main Method

We also write a class method for every program—main. Java requires main to be sta
tic so that the Java system can call it using only the name of the class containing it. The
name of the class is passed to the Java system when the program is run.

7.6 GUI: Using Java Interfaces

The becker.xtras package contains a number of graphical user interfaces that can LOOKING AHEAD

be used to make programs that look and feel more professional than we can write with The skills to write a
the skills learned so far. The GasPumpGUI class in the becker.xtras.gasPump pack- graphical user

interface likeage is an example; it can be used with the Meter class we developed earlier in this
GasPumpGUI are

chapter to create a program with the graphical user interface shown in Figure 7-8. covered in Chapter 13.

(figure 7-8)

Image of the graphical

user interface provided by

the gasPump package

The problem set refers to several such GUIs in the becker.xtras package. A problem will
often begin by directing you to explore the documentation for a particular package. You
may want to do that now for the gasPump package. Go to www.learningwithrobots.com.

http:www.learningwithrobots.com

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 375

375

Navigate to “Software” and then “Documentation.” In the large panel on the right, click
becker.xtras.gasPump. You’ll see a brief description of each of the classes included in
the package. Scroll down and you’ll find an image of the graphical user interface and a
sample main method that you can use to run the program (see Listing 7-14).

This gas pump user interface is set up for a program that uses three instances of the
Meter class—one for each of three different octane levels. Of course, each octane level
has its own price.

7.6
G
U
I: U

SIN
G
 JAVA IN

TERFACES

ch07/gasPump/

Listing 7-14: A sample main method to run our class (Meter) with the provided graphical user

interface

1 importƒbecker.xtras.gasPump.*;
2
3 /** Run a gas pump with a graphical user interface.
4 *
5 * @author Byron Weber Becker */
6 publicƒclassƒMainƒextendsƒObject
7 {
8 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒ
9 ƒƒ{ƒ// Create three meters for the pump.

10 ƒƒƒƒMeterƒsilverƒ=ƒnewƒMeter(1.109,ƒ87,ƒ"Silver");
11 ƒƒƒƒMeterƒgoldƒ=ƒnewƒMeter(1.149,ƒ89,ƒ"Gold");
12 ƒƒƒƒMeterƒplatinumƒ=ƒnewƒMeter(1.199,ƒ93,ƒ"Platinum");
13
14 ƒƒƒƒ// Create the graphical user interface.
15 ƒƒƒƒGasPumpGUIƒguiƒ=ƒnewƒGasPumpGUI(
16 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒsilver,ƒgold,ƒplatinum,ƒ"Liter");
17 ƒƒ}
18 }

7.6.1 Specifying Methods with Interfaces

The graphical user interface class GasPumpGUI will not work with just any class. It
must somehow be assured that the Meter objects passed in lines 15 and 16 have meth
ods to get the price of the gasoline, the octane level, how much gas has been pumped to
the current customer, and how much that gasoline is worth so that it can display this
information to the user. Furthermore, just having methods that perform these functions
is not enough. The methods must be named exactly as GasPumpGUI expects, return the
expected types of values, and take the expected arguments; otherwise, it won’t be able
to call them.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 376

376
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

This is a common problem: Two classes need to work together, but they are written by
different people at different times and places. This problem was also faced by the pro
grammers who wrote the classes used in graphical user interfaces, such as JComponent,
JButton, and JFrame. To fully exploit their functionality, classes written several years
ago must be assured that objects we give them possess methods with specified signatures.

Fortunately, Java provides a solution. The person who writes the first class also pro
vides a list of the methods it requires to be in the second class. The list written by the
author of GasPumpGUI includes the following methods:

publicƒdoubleƒgetUnitCost();

publicƒdoubleƒgetVolumeSold();

publicƒintƒgetOctane();

publicƒStringƒgetLabel();

publicƒvoidƒreset();

publicƒvoidƒpump(doubleƒhowMuch);

publicƒdoubleƒcalcTotalCost();

This list, together with documentation, is put into a Java interface. Unfortunately, the
word interface has two meanings in this section. One meaning is “graphical user inter
face,” like the one shown in Figure 7-8. The other meaning—the one intended here—is
a Java file used to guarantee that a class contains a specified set of methods.

Listing 7-15 shows a complete interface except for the documentation, and is similar to
a class. It has a name (IMeter) and must be in a file with the same name as the inter
face (IMeter.java). The list of methods is enclosed in curly braces. Interfaces may
also have constants, defined as they would be defined in a class. An interface should be
documented like a class.

The differences between an interface and a class are as follows:

➤	 An interface uses the keyword interface instead of class.

➤	 An interface cannot extend a class.3

➤	 Method bodies are omitted. Each method lists its return type and signature. If
an access modifier is present, it must be public (all methods in an interface
are assumed to be public).

KEY IDEA

A Java interface is
used to guarantee the
presence of specified
methods.

3 It is possible, however, for an interface to extend another interface. In fact, it can extend several
interfaces, but that’s beyond the scope of this textbook.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 377

377
7.6

G
U
I: U

SIN
G
 JAVA IN

TERFACES

Listing 7-15: An interface for Imeter (documentation is omitted to better show the essential

structure)

1 publicƒinterfaceƒIMeter
2 {
3 ƒƒpublicƒdoubleƒgetUnitCost();
4 ƒƒpublicƒintƒgetOctane();
5 ƒƒpublicƒStringƒgetLabel();
6 ƒƒpublicƒdoubleƒgetVolumeSold();
7 ƒƒpublicƒvoidƒreset();
8 ƒƒpublicƒvoidƒpump(doubleƒhowMuch);
9 ƒƒpublicƒdoubleƒcalcTotalCost();

10 }

KEY IDEA

An interface name can
be used as the type in
variable declarations.

KEY IDEA

An interface name can
be used to declare the

type of a variable.

KEY IDEA

An interface name is
used in a class

declaration.

7.6.2 Implementing an Interface

So, how is the IMeter interface used? The author of GasPumpGUI used it in at least
one place—defining the type of object required by the constructor. From the online
documentation, we know that the constructor’s signature is as follows:

publicƒGasPumpGUI(IMeterƒlowOctane,ƒIMeterƒmedOctane,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒIMeterƒhighOctane,ƒStringƒvolumeUnit)

As this example shows, an interface can be used as the type in a variable declaration,
including parameter variables, temporary variables, and instance variables.

The way we use IMeter is in the line that begins the definition of the Meter class:

publicƒclassƒMeterƒextendsƒObjectƒimplementsƒIMeter

It’s the last part—implementsƒIMeter—that tells the Java compiler that our class
must be sure to implement each method listed in IMeter and that the signatures must
match exactly. This phrase is also the part that allows a Meter object to be passed to a
GasPumpGUI constructor even though the constructor’s signature says the argument
should be an IMeter object.

There is no required relationship between the names IMeter and Meter, although
they are often similar. Both names are chosen by programmers, but should follow con
ventions. In the becker library, the convention is for interface names to begin with I.
What follows the I should give an indication of the interface’s purpose. The person
implementing the Meter class can choose any name he wants, but should of course fol
low the usual conventions for naming a class.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 378

378
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

A class can implement as many interfaces as required, although implementing only one is
the usual case. To implement more than one, list all the interfaces after the implements
keyword, separating each one from the next with a comma.

What happens if the Meter class omits one of the methods specified by IMeter, say
calcTotalCost? The Java compiler will print an error message and refuse to compile
the class. The error message might refer to a missing method or might say that the class
“does not override the abstract method calcTotalCost.”

7.6.3 Developing Classes to a Specified Interface

In a sense, we developed the Meter class in a backwards fashion. We first wrote the
class and then found out that it just happened to match the IMeter interface. A more
usual situation is one where we know, at the beginning, that we will be implementing a
particular interface. Suppose, for example, that our instructions were to develop a class
to use with the graphical user interface in the becker.xtras.gasPump package. As
soon as we investigated the package, we would know that we need to write a class
implementing the IMeter interface.

How should we proceed?

Begin by creating a class with your chosen name and a main method to be used for
testing. Add the implements keyword followed by the name of the interface. Add the
methods specified by the interface and a constructor that is implied by the main
method shown in the documentation. For each method with a non-void return type,
add a return statement—it doesn’t matter what value is returned—so that the method
will compile. Such a method is called a stub. Following these clues results in the skele
ton shown in Listing 7-16. Some development environments will do this much for you
almost automatically.

Finally, write tests and develop the methods, as we did earlier in this chapter.

LOOKING BACK

A stub is a method
with just enough code
to compile. Stubs
were first discussed in
Section 3.2.2.

Listing 7-16: Beginning the Meter class with methods required to implement IMeter

1 importƒbecker.xtras.gasPump.IMeter;
2 importƒbecker.util.Test;
3
4 publicƒclassƒMeterƒextendsƒObjectƒimplementsƒIMeter
5 {
6 ƒƒpublicƒMeter(doubleƒunitCost,ƒintƒoctaneRating,ƒ
7 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒStringƒtheLabel)ƒ
8 ƒƒ{ƒsuper();
9 ƒƒ}

10

ch07/gasPump/

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 379

379

Listing 7-16: Beginning the Meter class with methods required to implement IMeter (continued)

11 ƒƒpublicƒdoubleƒgetUnitCost()
12 ƒƒ{ƒreturnƒ0.0;
13 ƒƒ}
14
15 ƒƒpublicƒintƒgetOctane()
16 ƒƒ{ƒreturnƒ0;
17 ƒƒ}
18
19 ƒƒpublicƒStringƒgetLabel()
20 ƒƒ{ƒreturnƒ"dummy";
21 ƒƒ}
22
23 ƒƒpublicƒvoidƒpump(doubleƒhowMuch)
24 ƒƒ{
25 ƒƒ}
26

ƒƒƒƒ...
38
39 ƒƒ/** To use for testing. */
40 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
41 ƒƒ{ƒMeterƒmƒ=ƒnewƒMeter(1.109,ƒ87,ƒ"Regular");
42 ƒƒ}
43 }

7.6
G
U
I: U

SIN
G
 JAVA IN

TERFACES

KEY IDEA

The model must
inform the user
interface when
changes have

been made.

7.6.4 Informing the User Interface of Changes

Graphical user interfaces often use a pattern known as Model-View-Controller. We
will study this pattern in depth in Chapter 13, which is devoted to writing graphical
user interfaces.

The Meter class is the “model” part of this pattern. It keeps track of the information
that the user interface—the “view” and “controller” parts—displays. The model must
inform the user interface each time information on the screen needs updating. In practice,
this means calling a method named updateAllViews at the end of each method in
Meter that changes an instance variable. This can always be done in the same way, as
shown in Listing 7-17. The changes from the previous version of Meter (Listing 7-13)
are shown in bold.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 380

380
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Listing 7-17: Code required in the Meter class to inform the view of changes

1 importƒbecker.gasPump.IMeter;
2 importƒbecker.util.*;
3
4 publicƒclassƒMeterƒextendsƒObjectƒimplementsƒIMeter
5 {ƒ// Instance variables...
6 ƒƒprivateƒViewListƒviewsƒ=ƒnewƒViewList();
7
8 ƒƒ// Methods that do not change instance variables...
9

10 ƒƒ// Methods that do change instance variables...
11 ƒƒpublicƒvoidƒreset()
12 ƒƒ{ƒthis.volumeSoldƒ=ƒ0;
13 ƒƒƒƒthis.views.updateAllViews();
14 ƒƒ}
15
16 ƒƒpublicƒvoidƒpump(doubleƒhowMuch)
17 ƒƒ{ƒthis.volumeSoldƒ+=ƒhowMuch;
18 ƒƒƒƒthis.views.updateAllViews();
19 ƒƒ}
20
21 ƒƒpublicƒvoidƒaddView(IViewƒaView)
22 ƒƒ{ƒthis.views.addView(aView);
23 ƒƒ}
24 }

views, declared in line 6, is an object that maintains a list of graphical user interface
parts (the views) that need to be updated when this model changes. The class,
ViewList, is imported from the package becker.util in line 2.

The graphical user interface adds views to this list by calling the method addView,
which is declared in lines 21–23. It receives a parameter that implements the IView
interface. By using an interface, we don’t need to know exactly what kind of object is
passed as an argument—only that it includes the methods named in IView. The
addView method doesn’t actually do anything with the view except tell the list of
views to add it.

With this infrastructure in place, the last step is to call the updateAllViews method
in the views object at the appropriate times. It should be called at the end of each
method in the model that changes an instance variable. What happens if you forget to
call updateAllViews? The user interface will not change when you expect it to.

Finally, addView is in the IMeter interface even though it was omitted from Listing 7-15.

ch07/gasPump/

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 381

381

7.7 Patterns

7.7
P

ATTERN
S

7.7.1 The Test Harness Pattern

Name: Test Harness

Context: You want to increase the reliability of your code and make the development
process easier with testing.

Solution: Write a main method in each class. The following template applies:

importƒbecker.util.Test;

publicƒclassƒ«className»ƒ...

{ƒ// Instance variables and methods

ƒƒ...

ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

ƒƒ{ƒ// Create a known situation.

ƒƒƒƒ«className»ƒ«instance»ƒ=ƒnewƒ«className»(...);

ƒƒƒƒ// Execute the code being tested.

ƒƒƒƒ«instance».«methodToTest»(...);

ƒƒƒƒ// Verify the results.

ƒƒƒƒTest.ckEquals(«idString»,ƒ«expectedValue»,ƒ

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ«actualValue»);

ƒƒƒƒ...

ƒƒ}

}

Verifying the results will often require multiple lines of code. A typical test harness will
include many tests, all of which set up a known situation, execute some code, and then
verify the results.

Consequences: Writing tests before writing code helps you focus on the code you need
to write. Being able to test as you write usually speeds up the development process and
results in higher quality code.

Related Pattern: The Test Harness pattern is a specialization of the Java Program pattern.

7.7.2 The toString Pattern

Name: toString

Context: You would like to be able to easily print information about an object, usually
for debugging purposes.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 382

382
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Solution: Override the toString method in the Object class. The usual format lists
the class name with values of relevant instance variables between brackets, as shown in
the following template:

publicƒStringƒtoString()

{ƒƒreturnƒ“«className»[“ƒ+

ƒƒƒƒƒƒƒƒƒƒ“«instanceVarName1»=”ƒ+ƒthis.«instanceVarName1»ƒ+

ƒƒƒƒƒƒƒƒƒƒ“,ƒ«instanceVarName2»=”ƒ+ƒthis.«instanceVarName2»ƒ

+

ƒƒƒƒƒƒƒƒƒƒ...

ƒƒƒƒƒƒƒƒƒƒ“,ƒ«instanceVarNameN»=”ƒ+ƒthis.«instanceVarNameN»ƒ

+

ƒƒƒƒƒƒƒƒƒƒ“]”;

}

Consequences: The toString method is called automatically when an object is con
catenated with a string or passed to the print or println method in System.out,
making it easy to use a textual representation of the object.

Related Patterns: This pattern is a specialization of the Query pattern.

7.7.3 The Enumeration Pattern

Name: Enumeration

Context: You would like to have a variable with a specific set of values such as MALE
and FEMALE or the four compass directions.

Solution: Define an enumeration type listing the desired values. A template follows:

publicƒenumƒ«typeName»

{ƒ«valueName1»,ƒ«valueName2»,ƒ...,ƒ«valueNameN»

}

For example, a set of values identifying styles of jeans for a clothing store inventory
system could be defined as follows:

publicƒenumƒJeanStyle

{ƒƒCLASSIC,ƒRELAXED,ƒBOOT_CUT,ƒLOW_RISE,ƒSTRAIGHT

}

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 383

383

Use the name of the enumeration to declare variables and return types, such as the
following:

publicƒclassƒDenimJeans

{ƒprivateƒJeanStyleƒstyle;

ƒƒpublicƒDenimJeans(JeanStyleƒaStyle)

ƒƒ{ƒthis.styleƒ=ƒaStyle;

ƒƒ}

ƒƒpublicƒJeanStyleƒgetStyle()

ƒƒ{ƒreturnƒthis.style;

ƒƒ}

}

Consequences: Variables using an enumeration type are prevented from having any
value other than those defined by the enumeration and the special value null, helping
to avoid programming errors. Well-chosen names help make programs more under
standable. Enumerations cannot be used with versions of Java prior to 1.5.

Related Pattern: Prior to Java 1.5, programmers often used the Named Constant pat
tern to define a set of values. The Enumeration pattern is a better choice.

7.7.4 The Assign a Unique ID Pattern

Name: Assign a Unique ID

Context: Each instance of a specified class needs a unique identifier. The class should
not depend on something external to itself to establish and maintain the uniqueness of
the identifiers.

Solution: Store the unique identifier in an instance variable. Use a class variable to
maintain the next unique identifier to assign. For example:

publicƒclassƒ«className»

{ƒprivatefinalƒintƒ«uniqueID»;

ƒƒprivateƒstaticƒintƒ«nextUniqueID»ƒ=ƒ«firstID»;

ƒƒpublicƒ«className»()

ƒƒ{ƒsuper();

ƒƒƒƒthis.«uniqueID»ƒ=ƒ«className».«nextUniqueID»;

ƒƒƒƒ«className».«nextUniqueID»++;

ƒƒ}

}

7.8
S

U
M

M
ARY AN

D
 C

O
N
CEPT M

AP

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 384

384
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Consequences: Unique identifiers are assigned to each instance of the class for each exe
cution of the program. If objects are stored in a file and then read again (see Section 9.4),
care must be taken to save and restore «nextUniqueID» appropriately.

Related Patterns: This pattern makes use of the Instance Variable pattern.

7.8 Summary and Concept Map

Variables can have one of many types, such as int, double, boolean, and String.
Incrementally testing variables and the methods that use them is a vital part of demon
strating that a program is correct. Developing tests before writing the code is a sound
development practice that can help programmers develop correct code faster. Class
variables and methods don’t depend on an instance of a class for their operation.

Methods and variables provide the essential tools needed to write classes that address
many different kinds of problems; the gas pump meter class is just one example.

Interfaces include a list of methods that implementing classes are required to define.
Interfaces allow classes to work together in situations where it isn’t possible or desir
able to specify a class name. One example of this is when two programmers work on a
project, one writing the graphical user interface and the other writing the model.

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 385

385

numeric
types

Strings

integer
types

floating-
point types

types

char

booleanenumerations

values

instance
variables

class
variables

variables

objects

testing

methods

a known
situation starts with

verifies correct values in

can be

can be

hold

share

explicitly list valid

include

have their own

interfaces

methods

verifies correct behavior of

ha
ve

ret
urn

in
clu

de

inc
lud

e

ha
ve

define valid

list required

7.9
P

RO
BLEM

 S
ET

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 386

386

7.9 Problem Set

CH
AP

TE
R

7
| M

O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

Written Exercises

7.1	 For each of the following situations, what would be the best choice(s) for the

variable’s type? Answer with one or more of int, double, char, boolean,

String, or an enumeration defined by a programmer.

a. Store the current temperature.

b. Store the most recent key typed on the keyboard.

c. Store a compass heading such as “north” or “southeast.”

d. Store the height of your best friend.

e. Pass the Dewey decimal number of a book to a method.

f. Store whether a recording is on cassette, CD, or a vinyl record.

g. Return the name of a company from a method.

h. Store the month of the year.

i.	 Store the number of books in your school’s library.

j. Store the area of your room.

k. Store the title of your favorite novel.

l.	 Pass a person’s admission category for the local museum (one of “Child,”
“Adult,” or “Senior”) to a method.

7.2	 Place the following strings in increasing lexicographic order: grated, grate!,
grate, grateful, grate99, grace, grate[], gratitude, grate(grace).

7.3	 Recall that a SimpleBot must extend Paintable to guarantee to the compiler
that it has a paint method. Could Paintable be an interface instead of a
class? If so, explain what changes to Paintable and SimpleBot are required.
If not, explain why.

7.4	 Draw evaluation diagrams for the expressions (double)3/4 and
(double)(3/4). Pay attention to the effects of precedence, automatic con
version, and integer division.

Programming Exercises

7.5	 Run the following main method. Describe what happens. Based on what you

know about the range of the type byte, why do you think this occurs?

publicƒstaticƒvoidƒmain(String[]ƒargs)

{ƒforƒ(byteƒbƒ=ƒ0;ƒbƒ<=ƒ128;ƒbƒ+=ƒ1)

ƒƒ{ƒSystem.out.println(b);

ƒƒƒƒUtilities.sleep(30);

ƒƒ}

}

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 387

387

7.6	 Write the following methods in the class Name. They all have a single String
parameter and return a string. The argument is a full name such as “Frank
Herbert,” “Orson Scott Card,” “Laura Elizabeth Ingalls Wilder,” or “William
Arthur Philip Louis Mountbatten-Windsor.”

a. firstName returns the first name (e.g., “Laura”).

b. lastName returns the last name (e.g., “Mountbatten-Windsor”).

c. initials returns the first letter of each name (e.g., “WAPLM”).

d. shortName returns the first initial and the last name (e.g., “O. Card”).

e. name returns all of the initials except the last plus the last name (e.g., “L. E.
I. Wilder”).

7.7	 Write a main method that outputs a multiplication table as shown on the left
side of Figure 7-9. Then modify it to print a neater table as shown on the right
side of the figure.

(figure 7-9) 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

Multiplication tables 3 6 9 12 15 18 21 24 27 30 3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40 4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60 6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70 7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80 8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90 9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

7.8	 Rewrite the SimpleBot class to use an enumeration for the directions.

7.9	 Write a class that implements IMeter but contains no methods whatsoever.
Compile the class. What error message or messages does your compiler give
you concerning the missing methods?

7.10 Write a class named BustedBot that extends RobotSE. A BustedBot is unre
liable, occasionally turning either right or left (apparently at random) before
moving. The probabilities of turning are given as two values (the probability of
turning left and the probability of turning right) when the BustedBot is con
structed. Write a main method that demonstrates your class.

Programming Projects

7.11 Explore the documentation for becker.xtras.comboLock. Write a class
named CombinationLock that implements the IComboLock interface. Run it
with the graphical user interface provided in becker.xtras.comboLock.
ComboLockGUI. The result should be as shown in Figure 7-10. (Hint: This
project is easier than the gas pump example.)

7.9
P

RO
BLEM

 S
ET

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 388

388

(figure 7-10)

Virtual combination lock

CH
AP

TE
R

7
| M

O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

7.12 Implement a Counter class that could be used as part of the admission pro
gram for a carnival. A Counter object will keep track of how many people
have entered the carnival so far. Each time a person enters, the increment
method will be called. A query, getCount, will return the number of people
who entered so far. A command, reset, will reset the counter back to zero to
begin counting the next day. Write a main method to test your class.

7.13 Implement a class, FuelUse, to track the fuel use in an automobile. The
fillTank method is called each time fuel is added to the automobile. It
requires two arguments: the amount of fuel added and the distance driven since
the last time the tank was filled. Provide two queries. One, getMileage,
returns the miles per gallon or liters per 100 km (depending on your local con
vention) since record keeping began. The other query, getTripMileage,
returns the miles per gallon or liters per 100 km since the most recent invoca
tion of the command resetTrip. Return -1 if mileage is requested when no
miles have actually been traveled. Write a main method to test your class.

7.14 Explore the documentation for becker.xtras.grapher. The provided
graphical user interface, GrapherGUI, will display the graph of a mathematical
function when given a class that implements one of the interfaces IFunction,
IQuadraticFunction, or IPolynomialFunction (see Figure 7-11).

(figure 7-11)

Graphing a mathematical

function

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 389

389

a. Write a class named FuncA that extends Object, implements IFunction,
and evaluates sin(x) + cos(x).

b. Write a class named FuncB that extends Object, implements

QuadraticFunction, and evaluates ax2 + bx + c.

7.15 Write a class named Time that represents the time of day in hours and minutes.
It should provide a constructor that can initialize the object to a specific time of
day, and accessor methods getHour, getMinute as well as toString. Write
four additional commands: addHour() and addMinute() to add a single hour
and minute, respectively; and addHours(intƒn) and addMinutes(intƒn) to
add the specified number of hours or minutes. Thoroughly test your class.

a. Write the Time class assuming a 24-hour clock. toString should return
strings such as “00:15” and “23:09.”

b. Write the Time class assuming a 12-hour clock—that is, getHour will
always return a number between 0 and 12. Add an additional accessor
method, getPeriodDesignator. The last accessor method returns a value
for “AM” if the time is between midnight and noon and “PM” if the time is
between noon and 1 minute before midnight. Use an enumerated type if you
can; otherwise, use a String. toString should return values such as
“00:15AM,” “12:00PM” (noon), and “11:59PM” (1 minute to midnight).

7.16 Write a class named Account. Each Account object has an account owner
such as “Suelyn Wang” and an account balance such as $349.12. Add an
appropriate constructor and methods with the following signatures:

publicƒintƒgetBalance()
publicƒStringƒgetOwner()
publicƒvoidƒdeposit(doubleƒhowMuch)
publicƒvoidƒwithdraw(doubleƒhowMuch)
publicƒvoidƒpayInterest(doubleƒrate)

The last method adds one month’s interest by multiplying the rate divided by
12 times the current balance and adding the result to the current balance. Write
a test harness.

7.17 Explore the documentation for becker.xtras.radio. Write two classes, one
named RadioTuner that extends Radio and implements the ITuner interface,
and another named Main that runs the program. The result should be similar
to Figure 7-12. The graphical user interface will use RadioTuner to keep track
of the current frequency, to search up and down for the next available fre
quency, and to remember up to five preset frequencies.

7.9
P

RO
BLEM

 S
ET

7 Chapter C5743 40143.ps 11/30/06 1:30 PM Page 390

390
CH

AP
TE

R
7

| M
O
RE

 O
N
 V

AR
IA

BL
ES

 A
N
D
 M

ET
H
O
D
S

figure 7-12

Graphical user interface

for an AM/FM radio

7.18 Explore the documentation for becker.xtras.hangman. Write two classes,
one named Hangman that implements the IHangman interface and another
named HangmanMain that includes a main method to run the program. The
result should be similar to Figure 7-13. Your Hangman class will use a String
to store the phrase the player is trying to guess and a second String to store
the letters the player has guessed so far. You could use a String to store the
phrase as the player has guessed it, but an instance of StringBuffer would
be easier. StringBuffer is very similar to String but allows you to change
individual characters.

(figure 7-13)

Graphical user interface

for a game of Hangman

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 391

Chapter 8 Collaborative Classes

After studying this chapter, you should be able to:

➤	 Write a class that uses references to an object by storing them in instance variables,
passing them to parameter variables, and using them with temporary variables

➤	 Draw class diagrams depicting collaborating classes

➤	 Explain how reference variables are different from primitive variables

➤	 Explain what an alias is and what dangers arise from aliasing

➤	 Write code that compares two objects for equivalence

➤	 Throw and catch exceptions

➤	 Use a Java collection object to collaborate with many objects, all having the
same type

So far, our programs have usually required writing only a single class plus the main
method. Almost any program of consequence, however, involves at least several classes
that work together—or collaborate—to solve the problem. In fact, most of our pro
grams already have this property of collaboration. For example, the Robot class col
laborates with City and Intersection objects, and the Meter class collaborates
with the GasPumpGUI that displays it. However, the mechanics of these collaborations
have usually been hidden.

In this chapter, we become more intentional about a particular kind of collaboration:
when one object has a reference to another object as an instance variable or is passed a
reference to another object via a parameter variable. We will also begin to investigate
exceptions, and how a class can collaborate with many instances of another class.

Now that we have many programming tools at our disposal, we will move away from
the robot examples. The rest of the book uses examples involving a Person class, a
program for a charitable organization, games, and others.

391

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 392

392

8.1 Example: Modeling a Person

CH
AP

TE
R

8
| C

O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

A Person class might be useful in many kinds of programs. Payroll systems, student
information systems, airline reservation systems, tax preparation programs, and pro
grams to track genealogies all maintain information about people and might use a
Person class.

In this section, we will develop a simple Person class, first as a single class using the
techniques we’ve seen so far, but then using collaborating classes. Complex concepts can
be modeled more easily using collaborating classes because they can divide the work.

Our simple Person class will be oriented toward registering births and deaths, perhaps
within a government, an insurance company, or a genealogical program. It will model
a person’s name, mother, father, birth date, and death date. Of course, it will need a
constructor and some accessor methods. We’ll also be interested in a daysLived
method. If the person has died, daysLived returns the number of days between his
birth and death dates. If the person is still alive, it returns the number of days between
his birth and the current date.

8.1.1 Using a Single Class

Building on what we have already learned, it’s not hard to imagine how a Person class
could be constructed. A suggested class diagram is shown in Figure 8-1, and an initial
test harness is shown in Listing 8-1.

Listing 8-1: The beginnings of a test harness for the Person class

1 importƒbecker.util.Test;
2
3 publicƒclassƒPersonƒextendsƒObject
4 {
5 ƒƒ// instance variables and methods omitted
6
7 ƒƒ// Test the class.
8 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
9 ƒƒ{ƒPersonƒpƒ=ƒnewƒPerson("Joseph Becker",ƒ

10 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ"Jacob B. Becker",ƒ"Elizabeth Unruh",ƒ1900,ƒ6,ƒ14);
11
12 ƒƒƒƒp.setDeathDate(1901,ƒ6,ƒ14);
13 ƒƒƒƒTest.ckEquals("exactly 1 year",ƒ365,ƒp.daysLived());
14 ƒƒƒƒp.setDeathDate(1901,ƒ6,ƒ13);
15 ƒƒƒƒTest.ckEquals("1 year less a day",ƒ364,ƒp.daysLived());

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 393

393
8.1

E
XAM

PLE: M
O
D
ELIN

G
 A P

ERSO
N

Listing 8-1: The beginnings of a test harness for the Person class (continued)

16 ƒƒƒƒp.setDeathDate(1902,ƒ6,ƒ15);
17 ƒƒƒƒTest.ckEquals("2 years plus a day",ƒ365*2+1,ƒp.daysLived());
18 ƒƒ}
19 }

(figure 8-1)

Suggested class diagram

for the Person class

Person

-String name
-String mother
-String father
-int birthYr
-int birthMth
-int birthDay
-int deathYr
-int deathMth
-int deathDay

+Person(String aName,
String dad, String mom,
int bYear, int bMonth, int bDay)

+Person(String aName,
String dad, String mom,
int bYear, int bMonth, int bDay,
int dYear, int dMonth, int dDay)

+int daysLived()
+String getFather()
+String getMother()
+String getName()
+void setDeathDate(int dYear,

int dMonth, int dDay)
. . .

All of the methods shown in the class diagram should be easy to write and test with the
exception of daysLived. The test harness chooses several easy ages to calculate—
exactly one year old, a year less one day, and two years plus a day. Many other combi
nations would be worth testing, but these three make a good start.

After considerable thought, we might come up with pseudocode for daysLived that
appears to solve the problem:

declare variables for end date

if (not dead)

{ set end date to today’s date

} else

{ set end date to death date

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 394

394
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

}

days = 0

for each full year lived

{ days = days + days in the year (remember leap years!)

}

daysLivedInFirstYear = # days between birth date and Dec 31

daysLivedInLastYear = # days between Jan 1 and end date

return days + daysLivedInFirstYear + daysLivedInLastYear

This is a complicated algorithm and some problems haven’t been solved yet (finding
the number of days between January 1 and a given date, getting today’s date, and
determining if a year is a leap year). Furthermore, these details are not part of the main
purpose of the class: maintaining information about a person. The Person class would
be easier to write and maintain if the details related to dates were in a separate class.

Using a separate class for dates is also a good idea because working with dates is a
common activity. Having a separate class allows us to write and debug the class once
but use it in many classes. For these reasons, we should either write our own Date
class or find one that has already been written. For both of these scenerios, we need to
learn to write the Person class to make effective use of a date class; this is the primary
focus of this chapter.

8.1.2 Using Multiple Classes

In fact, Java provides classes to deal with dates. One is GregorianCalendar in the
package java.util. It is rather complex to use, however. A simpler class is found in
becker.util and is called DateTime. We’ll use this class to simplify our implemen
tation of Person.

The DateTime Class

One possible class diagram for DateTime is shown in Figure 8-2. The diagram is
abbreviated because, as the name implies, the class also handles time. This aspect has
been omitted from the class diagram.

The first constructor in this class creates an object corresponding to the current date,
the second constructor allows you to create an object for a specific date, and the third
creates a copy of the specified DateTime object. The add methods allow the date to be
adjusted, either forward or backward in time. The daysUntil method calculates the
number of days between two dates.

KEY IDEA

Delegate peripheral
details to a separate
class.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 395

395

(figure 8-2)

Class diagram for

DateTime (methods

related to time are

not shown)

DateTime

-int year
-int month
-int day

+DateTime()
+DateTime(int yr, int mth, int day)
+DateTime(DateTime dateToCopy)
+void addYears(int howMany)
+void addMonths(int howMany)
+void addDays(int howMany)
+int daysUntil(DateTime d)
+boolean equals(Object obj)
+String format()
+int getYear()
+int getMonth()
+int getDay()
+boolean isAfter(DateTime d)
+boolean isBefore(DateTime d)
+void setFormatInclude(int what)
+void setFormatLength(int len)
+String toString()

8.1
E

XAM
PLE: M

O
D
ELIN

G
 A P

ERSO
N

Listing 8-2 shows a simple program to calculate and print Luke’s age, in days. It uses
two of the constructors and the query daysUntil to calculate the number of days
from Luke’s birthday until the current date.

Running this program on the day this paragraph was written gives an answer of
5,009 days.

ch08/lukesAge/

Listing 8-2: A simple program to calculate and print someone’s age, in days

1 importƒbecker.util.DateTime;
2
3 publicƒclassƒMain
4 {ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒ
5 ƒƒ{
6 ƒƒƒƒDateTimeƒlukesBDƒ=ƒnewƒDateTime(1990,ƒ10,ƒ1);
7 ƒƒƒƒDateTimeƒtodayƒ=ƒnewƒDateTime();
8
9 ƒƒƒƒintƒdaysOldƒ=ƒlukesBD.daysUntil(today);

10 ƒƒƒƒSystem.out.println("Luke is "ƒ+ƒdaysOldƒ+ƒ" days old.");
11 ƒƒ}
12 }

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 396

396
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Reimplementing the Person Class

Using the DateTime class, we can replace six instance variables in our original class
with only two—one to represent the birth date and another to represent the death date.
Besides eliminating instance variables, some of the code from the Person class can
now be delegated to the DateTime class. This is like a high-level manager delegating
work to one of her employees. Delegation can make more effective use of the resources
available.

In Listing 8-3, this delegation of work occurs at line 45. The daysLived method uses
the daysUntil method in DateTime by calling this.birth.daysUntil, which is
just like calling lukesBD.daysUntil (line 9, Listing 8-2) except that luke was a tem
porary variable within the main method. Here, we use this to access the instance
variable referring to the DateTime object. In both cases, we are asking a DateTime
object to perform a service on our behalf—and if DateTime can do it for us, we don’t
have to do it ourselves.

But we’re getting ahead of ourselves. Lines 12 and 13 of Listing 8-3 show the declara
tion of the two DateTime objects to store the birth and death dates. These declarations
are like other instance variable declarations except that instead of a primitive type such
as int, they use the name of a class or interface.

KEY IDEA

Collaborative classes
are all about getting
someone else to do
the work.

Listing 8-3: An implementation of Person that collaborates with the DateTime class

ch08/collabPerson/
1 importƒbecker.util.Test;

2 importƒbecker.util.DateTime;

3

4 /** Represent a person.

5 *

6 * @author Byron Weber Becker */

7 publicƒclassƒPersonƒextendsƒObject

8 {

9 ƒƒprivateƒStringƒname;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// person's name

10 ƒƒprivateƒStringƒmother;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// person's mother's name
11 ƒƒprivateƒStringƒfather;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// person's father's name

Has-a (Composition)
12 ƒƒprivateƒDateTimeƒbirth;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// birth date
13 ƒƒprivateƒDateTimeƒdeathƒ=ƒnull;ƒƒƒƒƒƒƒƒƒ// death date (null if still alive)
14
15 ƒƒ/** Represent a person who is still alive. */
16 ƒƒpublicƒPerson(StringƒaName,ƒStringƒmom,ƒStringƒdad,ƒ
17 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒbYear,ƒintƒbMonth,ƒintƒbDay)
18 ƒƒ{ƒthis(aName,ƒmom,ƒdad,ƒbYear,ƒbMonth,ƒbDay,ƒ0,ƒ0,ƒ0);
19 ƒƒ}
20

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 397

397

Listing 8-3: An implementation of Person that collaborates with the DateTime class (continued)

21 ƒƒ/** Represent a person who has died. */
22 ƒƒpublicƒPerson(StringƒaName,ƒStringƒmom,ƒStringƒdad,ƒ
23 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒbYear,ƒintƒbMonth,ƒintƒbDay,ƒ
24 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒdYear,ƒintƒdMonth,ƒintƒdDay)
25 ƒƒ{ƒsuper();
26 ƒƒƒƒthis.nameƒ=ƒaName;
27 ƒƒƒƒthis.motherƒ=ƒmom;
28 ƒƒƒƒthis.fatherƒ=ƒdad;
29
30 ƒƒƒƒthis.birthƒ=ƒnewƒDateTime(bYear,ƒbMonth,ƒbDay);
31 ƒƒƒƒifƒ(dYearƒ>ƒ0)
32 ƒƒƒƒ{ƒthis.deathƒ=ƒnewƒDateTime(dYear,ƒdMonth,ƒdDay);
33 ƒƒƒƒ}
34 ƒƒ}
35
36 ƒƒ/** Return the number of days this person has lived. */
37 ƒƒpublicƒintƒdaysLived()
38 ƒƒ{ƒDateTimeƒendDateƒ=ƒthis.death;
39 ƒƒƒƒifƒ(this.deathƒ==ƒnull)
40 ƒƒƒƒ{ƒendDateƒ=ƒnewƒDateTime();
41 ƒƒƒƒ}ƒ
42 ƒƒƒƒreturnƒthis.birth.daysUntil(endDate);
43 ƒƒ}
44
45 ƒƒ/** Set the death date to a new value. */
46 ƒƒpublicƒvoidƒsetDeathDate(intƒdYear,ƒintƒdMonth,ƒintƒdDay)
47 ƒƒ{ƒthis.deathƒ=ƒnewƒDateTime(dYear,ƒdMonth,ƒdDay);
48 ƒƒ}
49
50 ƒƒ// Accessor methods omitted.
51 ƒƒ// main method omitted. It's the same as Listing 8-1 but with a few additional tests.
52 }

8.1
E

XAM
PLE: M

O
D
ELIN

G
 A P

ERSO
N

KEY IDEA

Variables refer to
objects rather than

containing them.

The instance variable birth is initialized in line 30 to refer to a new DateTime object.
The form of its initialization is like all the objects we’ve constructed except that we use
this to access the instance variable assigned the new value. The birth date is always
dependent on information passed to the constructor’s parameters and is therefore
always performed in the constructor.

We say birth “refers” to an object rather than “contains” an object. This is a subtlety
that we’ll explore in detail in Section 8.2. Until then, we’ll use the appropriate language
for accuracy even though it hasn’t been fully explained.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 398

398
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

null Values

Unlike birth, death may or may not refer to an object, depending on whether the
person has already died. Lines 13 and 32 address the issue of what to do with a person
who hasn’t died. The declaration in line 13 assumes that the person has not died and
initializes death to the special value null. null can be assigned to any reference vari
able and means that the variable does not refer to any object at all. If it turns out that
the person has died, the variable is reinitialized in line 32 with a DateTime object.

This example represents a common situation: A reference variable is needed but some
times no object is appropriate to store there. At those times, use null. In this case,
storing null means that the person has not yet died. We can determine if the person
has died by comparing death with null using the ==ƒand != operators. This is
shown in line 39. If the death date is null, the person is still alive and the temporary
variable endDate is assigned the current date. Otherwise, endDate is assigned the
date the person died.

Null values can lead to trouble for beginning and experienced programmers alike. The
problem stems from assuming the variable refers to an object when it does not. For
example, suppose you want to know how many days have passed since a person died.
A natural approach is to add the following method to Person:

publicƒintƒdaysSinceDeath()
{ƒDateTimeƒtodayƒ=ƒnewƒDateTime();
ƒƒreturnƒthis.death.daysUntil(today);
}

If death refers to a DateTime object, this works as desired. However, if death con
tains null, executing this code will result in a NullPointerException. An excep
tion stops the program and prints a message that contains helpful information for
finding the problem. Adding a line that calls daysSinceDeath to the main method in
Listing 8-3 results in the following error message:

Exceptionƒinƒthreadƒ“main”ƒjava.lang.NullPointerException
ƒƒƒƒƒƒƒƒatƒPerson.daysSinceDeath(Person.java:53)
ƒƒƒƒƒƒƒƒatƒPerson.main(Person.java:75)

This message says that the problem was a NullPointerException (which means we
tried to use a null value as if it referred to an object). Furthermore, it tells us that it
occurred in the method we added (daysSinceDeath), which would appear in Listing 8
3 at line 53. Note that the error message tells us the filename and line number. If we’re
curious about why the program was executing daysSinceDeath in the first place, the
subsequent line(s) trace the execution all the way back to the main method.

KEY IDEA

Use null when there
is no object to which
the variable can refer.

KEY IDEA

Variables containing
null can’t be used
to call methods.

KEY IDEA

Exceptions give
useful information to
help find the error.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 399

399

8.1.3 Diagramming Collaborating Classes

KEY IDEA We have used class diagrams regularly to give an overview of an individual class. These
Class diagrams show diagrams can also be used to show the relationships between collaborating classes. In fact,

the relationships we’ve already seen class diagrams showing such collaborating classes: when we extended
between one class to form a new one with additional capabilities (see Sections 2.2 and 3.5.3). In

collaborating classes.
that situation, we generally place the superclass above the subclass and connect the two
with a closed arrow pointing to the superclass. A generic example is shown in Figure 8-3.

8.1
E

XAM
PLE: M

O
D
ELIN

G
 A P

ERSO
N

(figure 8-3)

Class diagram showing

two classes collaborating

via inheritance

attributes

Superclass

methods

attributes

Subclass

methods

However, the Person class does not extend DateTime (nor is the reverse true), and so
we use a different diagramming convention. This convention uses an open-headed
arrow from one class to the other. The tail of the arrow is the class containing the
instance variable and the head of the arrow is the class representing the variable’s type.
Usually the classes are drawn side by side, if possible. A class diagram for the Person
class in Figure 8-4 serves as an example.

(figure 8-4) Person

-String name
-String mother
-String father
-DateTime birth
-DateTime death

+Person(String aName,
String dad, String mom,
int bYear, int bMonth, int bDay)

+int getAge()
+String getFather()
+String getMother()
+String getName()
+void setDeathDate(int dYear,

int dMonth, int dDay)

1..2Class diagram for the

Person class showing its

collaboration with

DateTime

DateTime

-int year
-int month
-int day

+DateTime()
+DateTime(int yr, int mth, int day)
+void addYears(int howMany)
+void addMonths(int howMany)
+void addDays(int howMany)
+long daysUntil(DateTime d)
+boolean equals(Object obj)
+int getYear()
+int getMonth()
+int getDay()
+boolean isAfter(DateTime d)
+boolean isBefore(DateTime d)
+String toString()

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 400

400
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Another feature of the diagram is the multiplicity near the arrowhead. The 1..2 in the
diagram shows that each Person object uses at least one but no more than two
DateTime objects. A class diagram will show each class only once, no matter how
many objects are actually created using the classes. In general, the first number is the
minimum number of objects that will be used, and the second number is the maximum
number that will be used in the running program.

Other multiplicities are common. 1 is an abbreviation for 1..1 and means that exactly one
object is used. An asterisk (*) is used to mean “many.” An asterisk by itself is an abbrevia
tion for 0..* meaning “anywhere from none to many.” If there will always be at least one
but possibly many, use 1..*. An arrow without an explicit multiplicity is assumed to be 1.

The inheritance relationship, as shown in Figure 8-3, never includes a multiplicity.

Clients and Servers

In Section 1.1.2, we briefly discussed the terms client and server. Here we see those
roles depicted graphically. The arrow goes from the client to the server. The client,
Person, requests a service such as finding the days until another date. The server,
DateTime, is the class or object that performs the service.

“Is-a” versus “Has-a”

How do you know which diagramming convention to use? If you already have the Java
code, you examine the code. If the code says publicƒclassƒXƒextendsƒY, use the
“is-a” relationship shown in Figure 8-3. If the class has an instance variable referring
to an object, use the “has-a” relationship shown in Figure 8-4.

“Is-a” comes from the sentence “An X is a kind of Y.” For example, “a Harvester robot
is a kind of Robot” (see Listing 3-3) or “a Lamp is a kind of Thing” (see Listing 2-6).
Other examples include “a Circle is a kind of Shape,” “an Employee is a kind of
Person,” and “an Automobile is a kind of Vehicle.” Given two classes, if a sentence
like any one of these makes sense, then using extends and a diagram like Figure 8-3 is
often the right thing to do.

On the other hand, it’s more often the case that “an X has a Y.” In that case, we use the
“has-a” relationship, also called composition. “A Person has a birth date” or “a
GasPump has a Meter” or “an Automobile has an Engine.” Has-a relationships are
implemented by adding an instance variable in the class that “has” something and is
diagrammed similar to Figure 8-4.

Has-a (Composition)

LOOKING AHEAD

We’ll examine is-a
relationships more
carefully in Chapter 12.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 401

401

LOOKING BACK

Overloading involves
two or more methods

with the same name
but different

signatures. See
Section 6.2.2.

8.1.4 Passing Arguments

Passing object references as arguments is like passing an integer: declare a parameter
variable in the method’s declaration and pass a reference to an object when the method
is called. For example, the setDeathDate method (lines 46–48 in Listing 8-3) could
be overloaded with another version of setDeathDate that takes an object reference as
an argument:

publicƒvoidƒsetDeathDate(DateTimeƒdeathDate)
{ƒthis.deathƒ=ƒdeathDate;
}

Both this method and the original accomplish the same purpose: assigning a new
DateTime object to the death instance variable. The difference is in where the object
is constructed. In the original version, the method received the year, month, and day,
and then constructed the object itself. In this version, the client constructs the object.

8.1.5 Temporary Variables

We have been using temporary variables to refer to objects since our first program. In
our first program, we wrote the following lines:

8 Cityƒpragueƒ=ƒnewƒCity();
9 Thingƒparcelƒ=ƒnewƒThing(prague,ƒ1,ƒ2);
10 Robotƒkarelƒ=ƒnewƒRobot(prague,ƒ1,ƒ0,ƒDirection.EAST);

We didn’t mention that prague, karel, and parcel are all temporary variables refer
ring to objects, but they are. They can be similarly used in any method, not just main.
However, remember that temporary variables only exist while the method containing
them is executing. As soon as the method is finished, so are the temporary variables.

8.1.6 Returning Object References

Finally, a query may return an object reference as easily as it can return an integer. For
example, we could add a query to our Person class to get the person’s birth date.
Listing 8-4 shows an abbreviated version of the class.

8.1
E

XAM
PLE: M

O
D
ELIN

G
 A P

ERSO
N

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 402

402
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Listing 8-4: An abbreviated version of the Person class showing getBirthDate

7 publicƒclassƒPersonƒextendsƒObject
8 {ƒ...ƒ// instance variables omitted

12 ƒƒprivateƒDateTimeƒbirth;ƒƒƒƒƒƒƒƒƒƒƒƒ// birth date
13 ƒƒprivateƒDateTimeƒdeath;ƒƒƒƒƒƒƒƒƒƒƒƒ// death date (null if still alive)

ƒƒ...
51
52 ƒƒpublicƒDateTimeƒgetBirthDate()
53 ƒƒ{ƒreturnƒthis.birth;
54 ƒƒ}
55 }

A client could use this query to compare the ages of two persons, as in the following
example. Assume that luke and caleb both refer to Person objects.

1 DateTime lukesBD = luke.getBirthDate();

2 ifƒ(lukesBD.isBefore(caleb.getBirthDate())

3 {ƒSystem.out.println("Luke is older.");

4 }ƒelseƒifƒ(caleb.getBirthDate().isBefore(lukesBD))

5 {ƒSystem.out.println("Caleb is older.");

6 }ƒelse

7 {ƒSystem.out.println("Luke and Caleb are the same age.");

8 }

In line 1, the getBirthDate query is used to assign a value to the temporary variable
lukesBD.

The isBefore query is used in line 2 to compare two dates—Luke’s birth date and
Caleb’s birth date. In this case, Luke’s birth date is held in a temporary variable, but the
value to use for Caleb’s birth date is obtained directly from the relevant Person object
via our new query.

Line 4 shows that the object reference returned by getBirthDate does not even have
to be saved in a variable before it can be used to call a method. Read the statement left
to right. The first part, caleb, is a reference to a Person object. Any such reference
can be used to call the methods in the object, including getBirthDate. This call
returns a reference to a DateTime object. Any such reference, whether it is stored in a
variable or returned by a query, can be used to call methods in the DateTime class,
including isBefore. This query returns a Boolean value, so no further method calls
can be chained to the end of this expression.

KEY IDEA

Methods that return
references can be
chained together,
eliminating the need
for some temporary
variables.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 403

403

8.1.7 Section Summary

In this section, we’ve seen how to implement a class, Person, that collaborates with
another class, DateTime. This particular relationship is sometimes called the “has-a”
relationship because a person has a birth date and a death date. This relationship is
also called composition.

We have also seen that references to objects such as the birth date and death date can
be used much like integers and other primitive types. They can be used as instance vari
ables, temporary variables, and parameter variables, and can be returned by queries.

8.2 Reference Variables

8.2
R

EFEREN
CE V

ARIABLES

Throughout the previous section, we used phrases like “references to objects” and
“object references.” What do those phrases really mean?

Consider again the program to calculate Luke’s age in days, which appeared in Listing 8-2
and is reproduced in Listing 8-5. We’ll focus on two variables, lukesBD and daysOld. We
know that a variable stores a value; this was one of the basic concepts introduced in
Chapter 6, where variables were described as being like a box that has a name. Inside the
box is a value, such as 5009, that can be retrieved by giving the name of the variable.

Listing 8-5: A simple program reproduced from Listing 8-2

1 importƒbecker.util.DateTime;
2
3 publicƒclassƒMainƒextendsƒObject
4 {ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒ
5 ƒƒ{
6 ƒƒƒƒDateTimeƒlukesBDƒ=ƒnewƒDateTime(1990,ƒ10,ƒ1);
7 ƒƒƒƒDateTimeƒtodayƒ=ƒnewƒDateTime();
8
9 ƒƒƒƒintƒdaysOldƒ=ƒlukesBD.daysUntil(today);

10 ƒƒƒƒSystem.out.println("Luke is "ƒ+ƒdaysOldƒ+ƒ" days old.");
11 ƒƒ}
12 }

At this point you might imagine daysOld and lukesBD as something like the illustra
tions in Figure 8-5. The “box” for daysOld holds the value 5009 and the “box” for
lukesBD holds an object, represented with an object diagram.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 404

404

daysOld 5009 lukesBD

CH
AP

TE
R

8
| C

O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

1990

10

1

year

month

day

DateTime

(figure 8-5)

Simplistic visualization of

two variables

This is an accurate enough description for daysOld, but not for lukesBD. lukesBD is
a reference variable, a variable that refers to an object rather than actually holding the
object. To understand what this means, we need to better understand the computer’s
memory.

8.2.1 Memory

Every computer has memory, where it stores information. This information includes
values stored in variables such as daysOld and lukesBD, objects, text, images, and
audio clips. Even the programs themselves constitute information stored in the com
puter’s memory.

Memory is composed of many storage locations; these are the “boxes” we’ve described
that hold the information. Each location has its own address, numbered consecutively
beginning with 0. The address is how the computer program identifies which memory
location it should access. Each variable name in the program is associated by the Java
compiler with a specific memory address, as shown in Figure 8-6a. It shows the vari
able daysOld associated with the memory address 5104. The current value of
daysOld, 5009, is in that location. Notice that every location has a value, even if it’s 0.

The point of this discussion is that objects are handled differently from primitive types,
such as integers. The variable lukesBD, for example, is associated with an address,
and its value is stored in a memory location just like daysOld. However, that memory
location does not store the object itself but the address of the object; that is, it refers to
the object, as shown in Figure 8-6b. Notice that the object takes up several memory
locations—one for each of the three instance variables.1

1 We are glossing over the fact that one location is only big enough to store a value between –128 and
127. A larger number, such as occupied by an int or an address, requires four locations. Every int
requires four locations, even if the actual value is between –128 and 127.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 405

405

(figure 8-6)

5102 12
10160

5009

127

-49

0

0
0

0	

5102Illustrating a variable
5103 (lukesBD) 5103storing a primitive type

(daysOld) 5104and a reference variable 5104
5105
5106

10159
5107

(year) 101605108
(month) 101615109

5110 (day)	 10162

10163

12

-19

10160

5009

1990

10

1

20

8.2
R

EFEREN
CE V

ARIABLES

a. Variable storing a primitive type b. Reference variable

Why not store the object at the address associated with lukesBD, as illustrated in
Figure 8-5? Why do we store the address of the object in lukesBD instead? The answer
involves efficiency—making the program run faster. If you need to pass an object as an
argument, for example, it is faster to pass a reference than to pass the entire object. A
reference is always the same size and does not occupy very much memory. Objects, on
the other hand, vary in length and can occupy a large amount of memory.

Fortunately, we can usually ignore addresses and memory locations, and let the com
puter manage them. We only need to keep in mind that reference variables refer to an
object instead of hold the object directly. A simplified diagram, as shown in Figure 8-7
will be sufficient to do this.

(figure 8-7)	 lukesBD

Simplified diagram

showing a reference

variable
1990

10

1

year:

month:

day:

DateTime

References are often held in an object, as with the birth and death dates in a Person
object. In these cases, we can diagram the objects as shown in Figure 8-8.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 406

name: “Joseph Becker”
mother: “Elizabeth Unruh”

father: “Jacob B. Becker”

birth:

death:

406
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Person

(figure 8-8) joseph

Object with two instance

variables referring to

other objects

1900

6

14

year:

month:

day:

DateTime

DateTime

year: 1982

month: 12

day: 14

8.2.2 Aliases

One way that reference variables are different from primitive variables is that it is pos
sible to have several variables refer to the same object. For example, consider the fol
lowing statements:

DateTimeƒlukesBDƒ=ƒnewƒDateTime(1990,ƒ10,ƒ1); KEY IDEA
DateTimeƒannasBDƒ=ƒlukesBD;

Assigning reference
variables copies the The results of these statements are shown in Figure 8-9. In the second line, it’s the
address from one to

address of the date object that is copied from lukesBD to annasBD. Now both vari the other. The object
ables refer to the same object. itself is not copied.

(figure 8-9) annasBD

Assigning one reference lukesBD
variable to another

1990

10

1

year:

month:

day:

DateTime

We can use either reference variable to invoke the object’s methods, as in the following
statements:

lukesBD.addYear(1);

annasBD.addYear(2);

Executing these statements changes the date for this object from 1990 to 1993.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 407

407

KEY IDEA

Aliases can be used to
change objects

unintentionally or
maliciously.

Having two or more variables refer to the same object is called aliasing and is similar to
people with aliases. For example, the Beatles drummer would presumably answer to
either Ringo Starr or the name his parents gave him, Richard Starkey.

The question is, why would you want two variables that refer to the same object? The
example involving Luke’s and Anna’s birthdays is clear but rarely used. A closely
related example, however, occurs frequently. That is when a reference variable is
passed as an argument to a method. Consider the following method:

publicƒvoidƒadjustDate(DateTimeƒd)
{ƒd.addYear(2);
}

This method could be called as follows:

DateTimeƒlukesBDƒ=ƒnewƒDateTime(1990,ƒ10,ƒ1);

lukesBD.addYear(1);
this.adjustDate(lukesBD);

While the method adjustDate is executing, both lukesBD and the parameter vari
able d refer to the same object. When adjustDate is called, the value in the argument,
lukesBD, is copied into the parameter variable, d. Once again, two variables contain
the address of the same object. Either one can be used to invoke the object’s methods,
and the net result of this three-line fragment is that the object’s year, 1990, is changed
to 1993.

The Dangers of Aliases (advanced)

Aliases can lead to dangerous situations. Consider the following code, where joseph
and esther are both instances of Person. They died eight years apart.

1 DateTimeƒdeathƒ=ƒnewƒDateTime(1974,ƒ1,ƒ11);
2 esther.setDeathDate(death);
3 death.addYears(8);
4 joseph.setDeathDate(death);

Here, the programmer avoids constructing a new DateTime object. What is the effect
of this code? Because both esther and joseph refer to the same DateTime object,
one of their death dates will be wrong. In lines 1 and 2, esther’s death date is set cor
rectly. However, when death is changed in line 3, esther’s death date inadvertently
changes as well because they both refer to the same object. Finally, the date is set for
joseph, resulting in the situation shown in Figure 8-10—a single DateTime object
that has three references to it and is shared by both esther and joseph.

8.2
R

EFEREN
CE V

ARIABLES

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 408

death:

408
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

“Esther Unruh” name:

birth:

Person
(figure 8-10)

esther

DateTime

Two Person objects

inadvertently sharing the
death same DateTime object

joseph

1982

1

11

year:

month:

day:

“Joseph Becker” name:

birth:
death:

Person

A similar danger can result from an accessor method that returns a reference. The
getBirthDate method (Section 8.1.6) returns a reference to the relevant DateTime
object. Once the client has that reference, it could use it to reset the birth date—per
haps to a year that has not yet occurred.

DateTimeƒbirthƒ=ƒjoseph.getBirthDate();
birth.addYears(291);

A two-line example makes the error obvious, but such an error can also be separated
by many lines of code and be much more difficult to identify.

There are measures you can take to protect your code from aliasing errors. First, you
could verify that the referenced object is immutable, meaning it has no methods to
change its state. If the state can’t change, it doesn’t matter if the object is shared.
Unfortunately, DateTime is not immutable, so this approach won’t work here.
String, a commonly used class, is immutable.

Second, the methods could avoid accepting or returning references in the first place.
The first version of setDeathDate, which takes integer values for the year, month,
and day, avoids this problem. Instead of having getBirthDate return a reference,
determine why the client wants the reference. For example, if the purpose is to change
the birth date, provide an updateBirthDate method that performs integrity checks
to ensure the new date is reasonable.

A third approach, and probably the most common, is to hope that the object’s clients
won’t cause problems with the references. This is good enough in many situations, par
ticularly if the program is well tested. However, in safety-critical applications or an
application that may be the target of fraud, this approach is not sufficient.

LOOKING BACK

Immutable classes
were discussed in
Section 7.3.3.

LOOKING AHEAD

Listing 11-4 shows
how to use
DateTime to
make an immutable
Date class.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 409

409

The fourth, and safest, approach when using a mutable class is to make a copy of the
object. For example, setDeathDate could be implemented as follows:

publicƒvoidƒsetDeathDate(DateTimeƒdeathDate)

{ƒDateTimeƒcopyƒ=ƒnewƒDateTime(deathDate.getYear(),

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒdeathDate.getMonth(),ƒdeathDate.getDay());

ƒƒthis.deathƒ=ƒcopy;

}

Another DateTime constructor returns a copy of a DateTime object it is passed. The
following getBirthDate method uses it to return a copy of the birth date.

publicƒDateTimeƒgetBirthDate()

{ƒDateTimeƒcopyƒ=ƒnewƒDateTime(this.birth);

ƒƒreturnƒcopy;

}

8.2.3 Garbage Collection

Not only can an object have several variables referencing it, but it might have none.
Consider the following situation, illustrated in Figure 8-11. An object is created, but
then its reference is assigned a new value. The result is that the first object is garbage;
there is no way to access the object because there are no references to it.

DateTimeƒlukesBDƒ=ƒnewƒDateTime(1990,ƒ10,ƒ1);

...

lukesBDƒ=ƒnewƒDateTime(1994,ƒ1,ƒ28);

8.2
R

EFEREN
CE V

ARIABLES

(figure 8-11) lukesBD

Object with no references

1990

10

1

year:

month:

day:

DateTime

1994

1

28

year:

month:

day:

DateTime

As in the rest of life, garbage is undesirable. It consumes computer memory but cannot
affect the running of the program because there is no way to access it. To address this
situation, the Java system periodically performs garbage collection. It scans the com
puter’s memory for unreferenced objects, enabling the memory they consume to be
reused again when new objects are allocated. Because the memory can be reused,
“memory recycling” might be a better name than “garbage collection.”

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 410

date:

410
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

8.2.4 Testing for Equality

Testing two objects for equality is a bit tricky. Suppose you have the situation shown in
Figure 8-12a.

1990

10

1

year:

month:

DateTime
annasBD (figure 8-12) annasBD

Testing to determine if

Anna and Luke have the

same birthday lukesBD lukesBD
DateTime

year: 1990

month: 10

date: 1

1990

10

1

year:

month:

date:

DateTime

a. annasBD == lukesBD returns false b. annasBD == lukesBD returns true

If you want to check whether Anna and Luke were born on the same day, you might
write the following statement:

ifƒ(annasBDƒ==ƒlukesBD)

{ƒƒ// what to do if they have the same birthday

This is, after all, what you would write to compare two integer variables. For example,
if annasAge and lukesAge are two integer variables containing the ages of Anna and
Luke, then the following code tests whether both variables contain the same value.

ifƒ(annasAgeƒ==ƒlukesAge)

{ƒƒ// what to do if they are the same age

If they both contain 18, for example, the == operator returns true.

The statement ifƒ(annasBDƒ==ƒlukesBD) also tests whether both variables contain
the same value. In this case, however, the values being compared are object references,
not the objects themselves. In other words, the test will be true if annasBD and
lukesBD both contain the same address in memory and thus refer to exactly the same
object. A situation where this is true is shown in Figure 8-12b.

Sometimes this behavior is exactly what is needed. For example, in Chapter 10, we will
search lists of objects. We may want to know if a specific object is in the list or not, and
a test containing == is the tool to use. This approach to equality is called object identity.

A Method to Test Equivalence

In the case of comparing birth dates, what we really need is object equality, or equivalence.
We want to compare two date objects and determine if they have the same meaning. In the

KEY IDEA

Comparing object
references with ==
returns true if they
refer to exactly the
same object.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 411

411

Equivalence Test

KEY IDEA

Code in a given class
can use the private

instance variables of
any instance of

that class.

LOOKING AHEAD

equals is discussed
again in

Section 12.4.2.

case of DateTime objects, they are equivalent if both objects have the same values for year,
month, and day.

Testing for equivalence is done with a method such as the following in the
DateTime class:

publicƒbooleanƒisEquivalent(DateTimeƒother)

{ƒreturnƒotherƒ!=ƒnullƒ&&ƒƒƒ// Make sure other actually refers to an object!

ƒƒƒƒƒƒƒƒƒthis.yearƒ==ƒother.getYear()ƒ&&ƒ

ƒƒƒƒƒƒƒƒƒthis.monthƒ==ƒother.getMonth()ƒ&&

ƒƒƒƒƒƒƒƒƒthis.dayƒ==ƒother.getDay();

}

The test for null protects against a NullPointerException occurring later in the
method.

After the test for null comes a series of tests to ensure that all the relevant fields in the
two objects are equivalent. If the relevant fields are primitive types, as shown here, use
== for the test. If they are reference fields, use either an isEquivalent method that
you’ve written or equals for provided classes.

This method could be used to test whether annasBD and lukesBD refer to objects with
equivalent dates by writing one of the following statements:

ifƒ(annasBD.isEquivalent(lukesBD))ƒ...

or

ifƒ(lukesBD.isEquivalent(annasBD))ƒ...

This version of isEquivalent is more verbose than necessary. So far we have only
accessed private instance variables using this. However, Java allows us to access the
private members of any object belonging to the same class. That is, inside the
DateTime class, we can also access the instance variables for other—the DateTime
object passed as an argument. Using this fact, the method can be rewritten as follows:

publicƒbooleanƒisEquivalent(DateTimeƒother)

{ƒreturnƒotherƒ!=ƒnullƒ&&ƒƒƒ// make sure other actually refers to an object!

ƒƒƒƒƒƒƒƒƒthis.yearƒ==ƒother.yearƒ&&ƒ

ƒƒƒƒƒƒƒƒƒthis.monthƒ==ƒother.monthƒ&&

ƒƒƒƒƒƒƒƒƒthis.dayƒ==ƒother.day;

}

Overriding equals

The Object class has a method named equals that is meant to test for equivalence.
Most classes should provide a method named equals that overrides the one in
Object. Unfortunately, technicalities in doing so are difficult to explain without
knowing about polymorphism, the topic of Chapter 12.

8.2
R

EFEREN
CE V

ARIABLES

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 412

412

8.3 Case Study: An Alarm Clock

CH
AP

TE
R

8
| C

O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Suppose you are one of those people who lose all track of time when you’re working at
your computer. What you need is a computer-based alarm clock that rings an alarm to
remind you when it’s time to take a break, call a friend, attend a meeting, or quit for
the day. You set the alarms for the day when you begin work and let the program run.
When one of the alarms is due, it will print a message on the console and play a sound
to get your attention. Our first version will be limited to four alarms.

Now that our problems are getting more complex and will often involve several
classes, it may not be obvious which classes we need and how they work together. A
design methodology is helpful. The methodology shown in Figure 8-13 is a set of steps
to help us get started.

1. Read the description of what the program is supposed to do, highlighting the nouns
and noun phrases. These are the objects your program must declare. If there are any
objects that cannot be directly represented using existing types, define classes to
represent such objects.

2. Highlight the verbs and verb phrases in the description. These are the services. If a
service is not predefined:
a. Define a method to perform the service.
b. Place it in the class responsible for providing the service.

3. Apply the services from Step 2 to the objects from Step 1 in a way that solves
the problem.

KEY IDEA

A design
methodology can
help us figure out
how to get started on
a complex problem.

(figure 8-13)

Object-based design

methodology

Program design is as much art as science. The methodology leaves room for interpreta
tion, and programming experience helps with recognizing and implementing common
design patterns. Nevertheless, these basic steps have proven helpful to object-oriented
programmers of all experience levels and on all sizes of projects. In fact, the larger the
project, the more help these steps are in getting started.

The opening paragraph of Section 8.3 is our description of what the program is sup
posed to do.

8.3.1 Step 1: Identifying Objects and Classes

The first step in the methodology is to use nouns and noun phrases to identify the rel
evant classes to solve the problem. A noun is a person, a place, a thing, or an idea. The
most important nouns in the description are alarm clock, alarm, and time. Other
nouns include program, message, console, and sound.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 413

413

KEY IDEA

Nouns in the
specification often

identify classes
needed in the

program.

KEY IDEA

Sometimes a noun
represents an

attribute, not a class.

KEY IDEA

A solid arrow in a
class diagram

indicates an instance
variable. A dotted line
indicates a temporary
variable or parameter.

Some of these can be represented with objects from existing classes. For example, time can
be represented with the DateTime class, and a message with the String class; the console
is where strings are printed by System.out.println. Exploring the online Java Tutorial2

reveals the AudioClip class as one way to work with sound.

This leaves only the nouns alarm clock and alarm to develop into classes. We’ll call
them, appropriately, AlarmClock and Alarm.

Class Relationships

Sometimes the less important nouns go with another noun. For example, message and
sound go with Alarm (“when an alarm is due, it will print a message…and play a
sound”). They will appear as instance variables in the Alarm class. The “has-a” test
from Section 8.1.3 also applies here: “An Alarm has-a message to display” and “an
Alarm has-a sound to play.”

The noun time applies in two ways. First, time is linked to Alarm in the statement
“rings an alarm…when it’s time,” and “when one of the alarms is due” implies time.
The “has-a” test makes sense, too: “An Alarm has-a time when it rings.”

Second, time is used by the AlarmClock class to keep track of the current time. The
instance of DateTime will be a temporary variable, not an instance variable.

In addition, the alarm clock has up to four alarms. Again, the appearance of the word
has indicates the presence of instance variables in the AlarmClock class.

Putting these observations together results in the classes, attributes, and class relation
ships shown in Figure 8-14. The class diagram also includes a class holding the main
method where execution begins.

8.3
C

ASE S
TU

D
Y: A

N
 A

LARM
 C

LO
CK

(figure 8-14)

First class diagram of the

alarm clock program

AlarmClock

AlarmClockMain

-Alarm alarm1
-Alarm alarm2
-Alarm alarm3
-Alarm alarm4

+AlarmClock()
+void run()
+void setAlarm(int hr, int min,

String aMessage)

-DateTime when
-String message
-AudioClip sound

+Alarm(int hr, int min,
String aMessage)

+void ring()

Alarm

DateTime

+void main(String[] args)

0..4

2 See http://java.sun.com/docs/books/tutorial/sound/index.html

http://java.sun.com/docs/books/tutorial/sound/index.html

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 414

414
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

8.3.2 Step 2: Identifying Services

Step 2 in the object-based design methodology is to identify the services required in the
classes by analyzing the verbs and verb phrases. Verbs are action words such as ring, run,
set, and print. Verbs are used in the program description as “ring an alarm,” “remind you
when,” “set the alarm,” “run (the program),” “print a message,” and “play a sound.”

Some of these verbs are different descriptions of the same thing. For example, an alarm
rings to remind you of something. It does so by displaying a message and playing a
sound to get your attention. All of that could be collapsed into a single ring service in
the Alarm class.

That still leaves setting the alarms, which sounds like it might be a service of the
AlarmClock class, and running the program. This phrase is often a generic way of
saying we should execute the program. In this case, however, we actually need a
method that keeps the time for the clock. We’ll name it run.

These services and the classes to which they are assigned are also shown in Figure 8-14.

Implementing Methods in Alarm

Now let’s turn to implementing these methods, beginning with the Alarm class. We
will defer the sound until later; our first version will “ring” the alarm by only printing
a message.

The constructor is passed the hour and minute that the alarm should ring and the mes
sage that should print. We’ll use a DateTime object internally to represent the time the
alarm should ring. The time and message must be remembered until they are needed by
the ring method and are therefore saved in instance variables.

publicƒclassƒAlarmƒextendsƒObject
{
ƒƒprivateƒDateTimeƒwhen;
ƒƒprivateƒbooleanƒhasRungƒ=ƒfalse;
ƒƒprivateƒStringƒmsgƒ=ƒ"";

ƒƒ/** Construct a new Alarm for today at the given time.

ƒƒ* @param hr the hour the alarm should "ring"

ƒƒ* @param min the minute of the hour that the alarm should "ring"

ƒƒ* @param msg the message the alarm gives */

ƒƒpublicƒAlarm(intƒhr,ƒintƒmin,ƒStringƒmsg)

ƒƒ{ƒsuper();

ƒƒƒƒthis.whenƒ=ƒnewƒDateTime();

ƒƒƒƒthis.when.setTime(hr,ƒmin,ƒ0);

ƒƒƒƒthis.msgƒ=ƒmsg;

ƒƒ}

}

KEY IDEA

Verbs in the
specification often
identify services in
the program’s
classes.

KEY IDEA

Defer nonessential
features until after the
core features are
working.

Has-a (Composition)

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 415

415

KEY IDEA

Asking and answering
questions is a useful

technique, even if you
are programming by

yourself.

The ring method is shown in the following code. It prints the time and the alarm’s
message on the console, using the format method in line 5 to format the alarm’s time
as a String. Two method calls at lines 3 and 4 determine how much information is
presented.

1 ƒƒ/** Alert the user. */
2 ƒƒpublicƒvoidƒring()
3 ƒƒ{ƒthis.when.setFormatInclude(DateTime.TIME_ONLY);
4 ƒƒƒƒthis.when.setFormatLength(DateTime.SHORT);
5 ƒƒƒƒStringƒtimeƒ=ƒthis.when.format();
6 ƒƒƒƒSystem.out.println(timeƒ+ƒ": "ƒ+ƒthis.msg);
7 ƒƒ}

Implementing Methods in AlarmClock

The AlarmClock class has three fundamental things to do: keep the current time, ring
the alarms at the correct times, and provide a way to set the alarms. We’ll start with the
run method, which keeps the current time. It will also call a helper method to ring the
alarms, if appropriate. This method is not trivial, so we’ll return to the expert-and
novice format of earlier chapters.

Expert	 What does run method need to do?

Novice	 Keep track of the current time. And if it’s time for one of the alarms to ring, it
needs to ring it.

Expert	 Is this something it does just once?

Novice	 Not really. As time passes, it will need to check again and again whether it is
time to ring an alarm.

Expert	 So it sounds like a loop would be appropriate. What needs to be repeated
inside the loop?

Novice	 It needs to figure out the current time and check if the alarms should be rung.

Expert	 So when should that loop stop?

Novice	 When there are no more alarms to ring.

Expert	 What’s the negation of that condition? That tells us whether the loop should
continue.

8.3
C

ASE S
TU

D
Y: A

N
 A

LARM
 C

LO
CK

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 416

416
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Novice	 Hey. It sounds like you’re leading me through the four-step process for build
ing a loop. Step 1 is to identify the actions that must be repeated to solve the
problem; Step 2 is to identify the test that must be true when the loop stops
and to negate it; Step 3 is to assemble the loop; and Step 4 is determining what
comes before or after the loop to complete the solution.

Expert	 You’re absolutely right. Now, what about negating the test in Step 2?

Novice	 The loop continues as long as there is at least one alarm left to ring.

As for Step 3, I’d like to start with pseudocode. It’s easier than thinking in
Java right away. Something like this, perhaps?

whileƒ(number of alarms left > 0)
{ƒget the current time
ƒƒcheckƒalarmsƒandƒringƒifƒit’sƒtheƒrightƒtime
}

Expert	 Excellent. The fourth step was to think through what needs to come before or
after the loop. What do you think?

Novice	 I don’t think we need to do anything after the loop. Before the loop, we’ll need
to initialize some variables or something to control the loop.

Expert	 Yes. We could use an instance variable to count the number of alarms that have
not been rung. When we set an alarm, we’ll increment the counter; when we
ring an alarm, we’ll decrement it. Given that, can you code a solution in Java?

Novice	 I think so. I’m going to assume a helper method to check and ring the alarms
for me. That will keep this method simpler.

publicƒvoidƒrun()

{ƒDateTimeƒcurrTimeƒ=ƒnewƒDateTime();

ƒƒwhileƒ(this.numAlarmsLeftƒ>ƒ0)

ƒƒ{ƒcurrTimeƒ=ƒnewƒDateTime();

ƒƒƒƒthis.checkAndRingAlarms(currTime);

ƒƒ}

}

Expert	 How would you evaluate your efforts so far?

Novice	 Pretty good. With the help of the four-step process for building loops and the
pseudocode, I’m pretty confident run will do what it is supposed to do.

Expert	 I agree. I do have one suggestion, however. Let’s insert a call to the sleep
method inside the loop. Your loop probably runs thousands of times per sec
ond. We could slow it down with a sleep command, giving the computer

LOOKING BACK

The four-step process
for constructing a
loop is discussed in
Section 5.1.2.

KEY IDEA

Pseudocode helps
you think about the
algorithm without
distracting Java
details.

KEY IDEA

Keep methods short.
Use helper methods
to reduce complexity.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 417

417

more time to do other things. If we insert Utilities.sleep(1000) at the
end of the loop, it will still check about once per second.

KEY IDEA

Think about testing
from the beginning.

Novice Great idea. One thing is bothering me, though. Testing this method is going to
be really hard because it runs in real time. If we set an alarm for 3:30 in the
afternoon and it’s only 10 in the morning now, we’ll have to wait 51⁄2 hours to
see if the program works!

Expert That is a problem. Normally we want to test the same code that makes up the
finished solution. Here, however, we may need to make a slight change to
make testing easier.

Here’s my suggestion: Let’s add an instance variable to indicate whether or
not we are testing. When we’re testing, we’ll calculate the current time slightly
differently to make time pass more quickly. When the run method sleeps for
one second, we’ll add two seconds to the current time. That makes time pass
twice as fast. If we want the virtual time to pass even more quickly, add four
or even more seconds to the current time in each iteration of the loop.

If we’re not testing, we’ll continue to calculate the current time as you sug
gested earlier. Creating a new instance of DateTime will keep the time accu
rate because that constructor actually uses the computer’s clock.

Novice If we use a parameter, the method calling run can decide how fast the time
should pass. Then our new method would look like this:

publicƒvoidƒrun(intƒsecPerSec)
{ƒDateTimeƒcurrTimeƒ=ƒnewƒDateTime();

ƒƒwhileƒ(this.numAlarmsLeftƒ>ƒ0)
ƒƒ{ƒifƒ(this.TESTING)
ƒƒƒƒ{ƒcurrTime.addSeconds(secPerSec);
ƒƒƒƒ}ƒelse
ƒƒƒƒ{ƒcurrTimeƒ=ƒnewƒDateTime();
ƒƒƒƒ}

ƒƒƒƒthis.checkAndRingAlarms(currTime);
ƒƒƒƒUtilities.sleep(1000);ƒ// sleep one second real time
ƒƒ}
}

Expert Good. Now, what does your helper method, checkAndRingAlarms, need to do?

8.3
C

ASE S
TU

D
Y: A

N
 A

LARM
 C

LO
CK

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 418

418
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Novice	 It will check each alarm’s time against the current time. If it’s time for the
alarm to ring, it will call its ring method. Or, in pseudocode (because I know
you’re going to ask):

ifƒ(alarm1’s time matches current time)

{ƒring alarm1

}ƒelseƒifƒ(alarm2’s time matches current time)

{ƒring alarm2

}

We’ll need a couple of more tests for the other alarms. I’m assuming the
alarms are stored in four instance variables. Seems pretty simple to me.

Expert	 Actually, I think I see two problems. The first problem is when there is no
alarm set. How can you check whether its time matches? If you tried, I think
you would get a NullPointerException.

The second problem is that you are assuming that only one alarm becomes
due at any given time. Remember the Cascading-if pattern? It says that only
one of the groups of statements will be executed. If two alarms happen to be
set for the same time, only the first will ring.

Novice	 So we could have four separate groups of statements, each one like this:

ifƒ(alarm is not null)

{ƒifƒ(alarm’s time matches current time)

ƒƒ{ƒring the alarm

ƒƒƒƒdecrement the number of alarms left to ring

ƒƒ}

}

Expert	 Can you improve this? Is the nested if statement really necessary? Do you
really need to repeat almost the same code four times?

Novice	 Aha. We can use short-circuit evaluation. If the first part of the “and” is
false, Java won’t even bother to check the second part. And we can put the
whole thing in a method to avoid the code duplication. Like this:

privateƒvoidƒcheckOneAlarm(Alarmƒalarm,ƒDateTimeƒcurrTime)

{ƒifƒ(alarm !ƒ=ƒnullƒ&&ƒalarm.isTimeToRing(currTime))

ƒƒ{ƒalarm.ring();

ƒƒƒƒthis.numAlarmsLeftƒ-=ƒ1;

ƒƒ}

}

Expert	 Good. I see you’ll need to add a method, isTimeToRing, to the Alarm class.
I like the way you’re asking that class to figure out the answer for you. It’s the
one with the needed data. Asking Alarm for the answer seems better than ask
ing it for its time and then doing the computation yourself.

LOOKING BACK

The Cascading-if
pattern was
discussed in
Section 5.3.3.

LOOKING BACK

Short-circuit
evaluation was
discussed in
Section 5.4.3.

KEY IDEA

Put methods in the
same class as the
data they use.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 419

419

With this helper method, the checkAndRingAlarms helper method becomes:

privateƒvoidƒcheckAndRingAlarms(DateTimeƒcurrTime)

{ƒthis.checkOneAlarm(this.alarm1,ƒcurrTime);

ƒƒthis.checkOneAlarm(this.alarm2,ƒcurrTime);

ƒƒthis.checkOneAlarm(this.alarm3,ƒcurrTime);

ƒƒthis.checkOneAlarm(this.alarm4,ƒcurrTime);

}

The last big step is to set the alarms. Ideas?

Novice	 We already know we’ll have four instance variables. I think we need to just
check each one in turn to see if it’s null. If it is, we can save the alarm in that
variable. A cascading-if should work. Of course, we also need to construct
the Alarm itself.

publicƒvoidƒsetAlarm(intƒhr,ƒintƒmin,ƒStringƒmsg)

{ƒAlarmƒtheAlarmƒ=ƒnewƒAlarm(hr,ƒmin,ƒmsg);

ƒƒifƒ(this.alarm1ƒ==ƒnull)

ƒƒ{ƒthis.alarm1ƒ=ƒtheAlarm;

ƒƒ}ƒelseƒifƒ(this.alarm2ƒ==ƒnull)

ƒƒ{ƒthis.alarm2ƒ=ƒtheAlarm;

ƒƒ}ƒelseƒifƒ(this.alarm3ƒ==ƒnull)

ƒƒ{ƒthis.alarm3ƒ=ƒtheAlarm;

ƒƒ}ƒelseƒifƒ(this.alarm4ƒ==ƒnull)

ƒƒ{ƒthis.alarm4ƒ=ƒtheAlarm;

ƒƒ}ƒ

}

Expert	 Looks good. But aren’t you forgetting something? We made an assumption
earlier that we had a count of the number of alarms yet to ring. This seems
like the place to include it.

Novice	 Oops. Add the following to the end of the method:

this.numAlarmsLeft++;

Expert	 One more detail to consider for setAlarm. What happens if we try to set five
alarms?

Novice	 Right now, absolutely nothing happens. The cascading-if statement doesn’t
have any tests that match and there is no else clause. I think the user should
know about the error, so I’ll add a warning in an else clause, as follows:

ƒƒ...

ƒƒ}ƒelseƒifƒ(this.alarm4ƒ==ƒnull)

ƒƒ{ƒthis.alarm4ƒ=ƒtheAlarm;

ƒƒ}ƒelse

ƒƒ{ƒSystem.out.println("Too many alarms.");

ƒƒ}

8.3
C

ASE S
TU

D
Y: A

N
 A

LARM
 C

LO
CK

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 420

420
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Expert	 This is a fine solution for now, but throwing an exception would be better. I’m
sure you’ll learn how soon.

Excellent job. I think we’re about done!

All these ideas come together in Listing 8-6 and Listing 8-7.

The isTimeToRing method in the Alarm class is mentioned in the dialogue but not
discussed thoroughly. In this application, we dare not compare two times for equality to
see if the alarm should ring because it’s possible that the time might be skipped over—
particularly given the time acceleration that we built into the run method. Instead, we
need to check if the time for the alarm has passed and the alarm has not yet been rung.
This requires an extra instance variable at line 10 in the Alarm class that is checked in
the isTimeToRing method (line 28) and changed in the ring method (line 37).

Listing 8-6: The Alarm class

ch08/alarmClock/
1 importƒbecker.util.DateTime;

2 importƒbecker.util.Utilities;

3

4 /** An Alarm represents a time when someone or something needs to be interrupted.

5 *

6 * @author Byron Weber Becker */

7 publicƒclassƒAlarmƒextendsƒObject

8 {

9 ƒƒprivateƒDateTimeƒwhen;

10 ƒƒprivateƒbooleanƒhasRungƒ=ƒfalse;
11 ƒƒprivateƒStringƒmsgƒ=ƒ“”;

Has-a (Composition)
12
13 ƒƒ/** Construct a new Alarm for today at the given time.
14 ƒƒ* @param hr the hour the alarm should "ring"
15 ƒƒ* @param min the minute of the hour that the alarm should "ring"
16 ƒƒ* @param msg the message the alarm gives */
17 ƒƒpublicƒAlarm(intƒhr,ƒintƒmin,ƒStringƒmsg)
18 ƒƒ{ƒsuper();
19 ƒƒƒƒthis.whenƒ=ƒnewƒDateTime();
20 ƒƒƒƒthis.when.setTime(min,ƒhr,ƒ0);ƒ// Deliberate bug
21 ƒƒƒƒthis.msgƒ=ƒmsg;
22 ƒƒ}
23
24 ƒƒ/** Is it time for this alarm to ring?
25 ƒƒ* @param currTime the current time, as determined by the calling clock
26 ƒƒ* @return true if time for the alarm; false otherwise. */
27 ƒƒpublicƒbooleanƒisTimeToRing(DateTimeƒcurrTime)
28 ƒƒ{ƒreturnƒ!this.hasRungƒ&&ƒthis.when.isBefore(currTime);
29 ƒƒ}

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 421

421
8.3

C
ASE S

TU
D
Y: A

N
 A

LARM
 C

LO
CK

Listing 8-6: The Alarm class (continued)

30
31 ƒƒ/** Alert the user. */
32 ƒƒpublicƒvoidƒring()
33 ƒƒ{ƒthis.when.setFormatInclude(DateTime.TIME_ONLY);
34 ƒƒƒƒthis.when.setFormatLength(DateTime.SHORT);
35 ƒƒƒƒStringƒtimeƒ=ƒthis.when.format();
36 ƒƒƒƒSystem.out.println(timeƒ+ƒ": "ƒ+ƒthis.msg);
37 ƒƒƒƒthis.hasRungƒ=ƒtrue;
38 ƒƒ}
39 }

ch08/alarmClock/

Has-a (Composition)

Listing 8-7: The AlarmClock class

1 importƒbecker.util.DateTime;
2 importƒbecker.util.Utilities;
3
4 /** Maintain a set of up to four alarms. Keep time and ring alarms at the appropriate times.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒAlarmClockƒextendsƒObject
8 {
9 ƒƒ// Allow up to four alarms.

10 ƒƒprivateƒAlarmƒalarm1ƒ=ƒnull;
11 ƒƒprivateƒAlarmƒalarm2ƒ=ƒnull;
12 ƒƒprivateƒAlarmƒalarm3ƒ=ƒnull;
13 ƒƒprivateƒAlarmƒalarm4ƒ=ƒnull;
14 ƒƒ
15 ƒƒ// Count the alarms left to be rung.
16 ƒƒprivateƒintƒnumAlarmsLeftƒ=ƒ0;
17 ƒƒ// Make time pass more quickly when testing.
18 ƒƒprivateƒfinalƒbooleanƒTESTING;
19
20 ƒƒ/** Construct a new alarm clock.
21 ƒƒ* @param test When true, the run method makes time pass more quickly for testing. */
22 ƒƒpublicƒAlarmClock(booleanƒtest)
23 ƒƒ{ƒsuper();
24 ƒƒƒƒthis.TESTINGƒ=ƒtest;
25 ƒƒ}
26
27 ƒƒ/** Run the clock for one day, ringing any alarms at the appropriate times.
28 ƒƒ* @param secPerSec The speed with which the clock should run (for testing purposes).

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 422

422
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Listing 8-7: The AlarmClock class (continued)

29 ƒƒ* Each second of real time advances this clock the given number of seconds. With
30 ƒƒ* a value of 3600 one "day" takes about 24 seconds of elapsed time. */
31 ƒƒpublicƒvoidƒrun(intƒsecPerSec)
32 ƒƒ{ƒDateTimeƒcurrTimeƒ=ƒnewƒDateTime();
33
34 ƒƒƒƒwhileƒ(this.numAlarmsLeftƒ>ƒ0)
35 ƒƒƒƒ{ƒifƒ(this.TESTING)
36 ƒƒƒƒƒƒ{ƒcurrTime.addSeconds(secPerSec);
37 ƒƒƒƒƒƒ}ƒelse
38 ƒƒƒƒƒƒ{ƒcurrTimeƒ=ƒnewƒDateTime();
39 ƒƒƒƒƒƒ}
40
41 ƒƒƒƒƒƒthis.checkAndRingAlarms(currTime);
42 ƒƒƒƒƒƒUtilities.sleep(1000);ƒ// sleep one second real time
43 ƒƒƒƒ}
44 ƒƒ}
45
46 ƒƒ// Check each alarm. Ring it if it's time.
47 ƒƒprivateƒvoidƒcheckAndRingAlarms(DateTimeƒcurrTime)
48 ƒƒ{ƒthis.checkOneAlarm(this.alarm1,ƒcurrTime);
49 ƒƒƒƒthis.checkOneAlarm(this.alarm2,ƒcurrTime);
50 ƒƒƒƒthis.checkOneAlarm(this.alarm3,ƒcurrTime);
51 ƒƒƒƒthis.checkOneAlarm(this.alarm4,ƒcurrTime);
52 ƒƒ}
53
54 ƒƒ// Check one alarm. Ring it if it's time.
55 ƒƒprivateƒvoidƒcheckOneAlarm(Alarmƒalarm,ƒDateTimeƒcurrTime)
56 ƒƒ{ƒifƒ(alarmƒ!=ƒnullƒ&&ƒalarm.isTimeToRing(currTime))
57 ƒƒƒƒ{ƒalarm.ring();
58 ƒƒƒƒƒƒthis.numAlarmsLeft1-=1;
59 ƒƒƒƒ}
60 ƒƒ}
61
62 ƒƒ/** Set an alarm to ring at the given time today. A maximum of four alarms may be set.
63 ƒƒ* @param hr The hour the alarm should ring.
64 ƒƒ* @param min The minute of the hour the alarm should ring.
65 ƒƒ* @param msg Why the alarm is being set */
66 ƒƒpublicƒvoidƒsetAlarm(intƒhr,ƒintƒmin,ƒStringƒmsg)
67 ƒƒ{ƒAlarmƒtheAlarmƒ=ƒnewƒAlarm(hr,ƒmin,ƒmsg);
68 ƒƒƒƒifƒ(this.alarm1ƒ==ƒnull)
69 ƒƒƒƒ{ƒthis.alarm1ƒ=ƒtheAlarm;
70 ƒƒƒƒ}ƒelseƒifƒ(this.alarm2ƒ==ƒnull)
71 ƒƒƒƒ{ƒthis.alarm2ƒ=ƒtheAlarm;

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 423

423
8.3

C
ASE S

TU
D
Y: A

N
 A

LARM
 C

LO
CK

Listing 8-7: The AlarmClock class (continued)

72 ƒƒƒƒ}ƒelseƒifƒ(this.alarm3ƒ==ƒnull)
73 ƒƒƒƒ{ƒthis.alarm3ƒ=ƒtheAlarm;
74 ƒƒƒƒ}ƒelseƒifƒ(this.alarm4ƒ==ƒnull)
75 ƒƒƒƒ{ƒthis.alarm4ƒ=ƒtheAlarm;
76 ƒƒƒƒ}ƒelse
77 ƒƒƒƒ{ƒSystem.out.println("Too many alarms.");
78 ƒƒƒƒ}
79
80 ƒƒƒƒthis.numAlarmsLeft++;
81 ƒƒ}
82
83 ƒƒ// For testing
84 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
85 ƒƒ{ƒAlarmClockƒclockƒ=ƒnewƒAlarmClock(true);
86
87 ƒƒƒƒclock.setAlarm(10,ƒ30,ƒ"Coffee break");
88 ƒƒƒƒclock.setAlarm(11,ƒ00,ƒ"Call Amy");
89 ƒƒƒƒclock.setAlarm(17,ƒ30,ƒ"Turn off the computer and get a life!");
90
91 ƒƒƒƒclock.run(3600);ƒ
92 ƒƒ}
93 }

8.3.3 Step 3: Solving the Problem

The hard part is over. The last step in the methodology is to solve the problem using
the methods we created for the various classes. For the alarm clock problem, we can
use a main method that constructs an AlarmClock object, sets alarms, and then calls
the run method. A sample is shown in Listing 8-8.

Listing 8-8: A main method to run the alarm clock program

1 importƒbecker.util.DateTime;
2
3 /** Run the alarm clock with today's alarms.
4 *
5 * @author Byron Weber Becker */
6 publicƒclassƒAlarmClockMainƒextendsƒObject
7 {
8 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

ch08/alarmClock/

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 424

424
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Listing 8-8: A main method to run the alarm clock program (continued)

9 ƒƒ{ƒAlarmClockƒclockƒ=ƒnewƒAlarmClock(false);
10
11 ƒƒƒƒclock.setAlarm(10,ƒ30,ƒ"Coffee break");
12 ƒƒƒƒclock.setAlarm(11,ƒ00,ƒ"Call Amy");
13 ƒƒƒƒclock.setAlarm(17,ƒ30,ƒ"Turn off the computer and get a life!");
14
15 ƒƒƒƒclock.run(1);
16 ƒƒ}
17 }

8.4 Introducing Exceptions

In writing the setAlarm method in the AlarmClock class (lines 66–81 of Listing 8-7)
we noted an error that could occur. An AlarmClock object can only store four alarms.
If someone tries to add a fifth alarm, he or she should be warned that the maximum
has been exceeded. We added a warning print statement to address this issue; we can
do better.

8.4.1 Throwing Exceptions

Java provides exceptions for handling exceptional circumstances—like adding too
many alarms to an alarm clock. An Exception is an object that, when it is thrown,
interrupts the program’s normal flow of control. Throwing an exception immediately
stops the currently executing method, and if nothing is done to intervene, the program
will stop with an error message displayed on the console.

There are various subclasses of Exception that are more specific about the excep
tional circumstance. For example, adding a fifth alarm when our alarm clock can only
handle four is attempting to put the object into an illegal state. In such a circumstance,
the IllegalStateException is applicable.

The original setAlarm method used a cascading-if statement that concluded with the
following code:

74 ƒƒƒƒ}ƒelseƒifƒ(this.alarm4ƒ==ƒnull)
75 ƒƒƒƒ{ƒthis.alarm4ƒ=ƒtheAlarm;
76 ƒƒƒƒ}ƒelse
77 ƒƒƒƒ{ƒSystem.out.println("Too many alarms.");
78 ƒƒƒƒ}

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 425

425

Replacing the print statement in line 77 with the following line will throw an
IllegalStateException.

throwƒnewƒIllegalStateException("Too many alarms.");

The constructor’s argument is a string describing in more detail what caused the prob
lem. The result of throwing this exception is shown in Figure 8-15.

(figure 8-15)

Exception message

printed after attempting to

add a fifth alarm

8.4
IN

TRO
D
U
CIN

G
 E

XCEPTIO
N
S

One of the most common exceptions to throw is IllegalArgumentException. A
good defensive programming strategy is to check the arguments passed to your meth
ods to ensure that they are appropriate. For example, the setAlarm method is passed
an hour and a minute. The following check, and a similar one for minutes, would be
appropriate:

ifƒ(hrƒ<ƒ0ƒ||ƒhrƒ>ƒ23)
{ƒthrowƒnewƒIllegalArgumentException(
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ"Hour = "ƒ+ƒhrƒ+ƒƒ"; should be 0–23, inclusive.");
}

These checks are especially important in constructors where the arguments are often
used to initialize instance variables.

8.4.2 Reading a Stack Trace

The information printed when an exception is thrown is very useful for debugging. For
example, one run of the alarm clock program produced the exception message shown
in Figure 8-16.

(figure 8-16)

Stack trace printed as part

of an exception message

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 426

426
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

The first item of useful information is the name of the exception,
IllegalArgumentException. The string passed to the exception when it was thrown is
“HOUR_OF_DAY”. Its relevance isn’t known yet.

The nine lines following it, each beginning with “at,” make up a stack trace. A stack
trace follows the execution from the exception back to main, listing all of the methods
that have not yet completed executing. Each line has the following form:

atƒ«packageName».«className».«methodName»(«fileName»:«line»)

The alarm clock program’s classes are not in a package, so that part is blank for the last
three lines.

The last line of the stack trace tells us that the main method in the AlarmClock class
called a method at line 87. The method it called is shown on the line above it,
setAlarm. If we look at line 87 in Listing 8-7, we can verify that main calls the
setAlarm method.

The second-to-last line of the stack trace tells us that setAlarm called a method at line 67
in AlarmClock.java. The third-to-last line tells us that method was Alarm.<init>.
This refers to the initialization that occurs when an instance of Alarm is constructed,
including the initialization of instance variables. In this case, it occurred at line 20 in
Alarm.java. That line calls the setTime method in the DateTime class. The rest of the
method calls shown in the stack trace are for code in libraries we used.

It’s usually most fruitful to debug our code beginning with the line closest to the
exception—that is, Alarm.java at line 20. It reads as follows:

20 ƒƒƒƒthis.when.setTime(min,ƒhr,ƒ0);

The variable this.when is an instance of DateTime. Because the exception was
IllegalArgumentException, we can guess that something was wrong with the
arguments passed to the method. In this case, the order looks wrong and a quick check
of the documentation confirms that the order of min and hr is reversed.

8.4.3 Handling Exceptions

Java has two types of exception—checked and unchecked. Checked exceptions are excep
tions from which the program may be able to recover; in addition, programmers are
required to include code to check for them. Unchecked exceptions should be thrown only
when they result from a program bug. Programmers are not required to check for them.
IllegalArgumentException and IllegalStateException are two examples of
unchecked exceptions. Unchecked exceptions include Error, RuntimeException, and
their subclasses. All other exceptions are checked.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 427

427

LOOKING AHEAD MalformedURLException is an example of a checked exception. It might arise from
We will need to a user typing a Uniform Resource Locator (URL) into the address bar of a Web

construct a URL to browser, as shown in Figure 8-17. In this browser, a dialog box is shown stating that
make Alarm play a “htt is not a registered protocol” (it should be “http” rather “htt”).

sound.

(figure 8-17)

Address bar of a typical

Web browser

In a Java program, such an error would likely be discovered when it constructs a URL
object. The URL constructor takes a string, such as the one typed by the user in the previ
ous figure. If an error is found, the URL constructor throws a MalformedURLException.
This fact is included in the online documentation.

Programmers can check for an exception and handle it with code derived from the fol
lowing template:

try
{ƒ«statementsƒthatƒmayƒthrowƒanƒexception»
}ƒcatchƒ(«ExceptionType1»ƒ«name1»)
{ƒ«statementsƒtoƒhandleƒexceptionsƒofƒtypeƒExceptionType1»
}ƒcatchƒ(«ExceptionType2»ƒ«name2»)
{ƒ«statementsƒtoƒhandleƒexceptionsƒofƒtypeƒExceptionType2»
...
}ƒcatchƒ(«ExceptionTypeN»ƒ«nameN»)
{ƒ«statementsƒtoƒhandleƒexceptionsƒofƒtypeƒExceptionTypeN»
}ƒfinally
{ƒ«statements that are always executed»
}

The try block contains the statements that the program must try to execute and that may
throw an exception. There is a catch block for each exception to handle. The catch
blocks are formatted and executed similar to a cascading-if statement. When an excep
tion is thrown, Java starts with the first catch block and works its way downward. It
executes the statements in the first catch block where «ExceptionType» matches the
exception thrown or is a superclass of the thrown exception.

For example, the mixture of pseudocode and Java in Listing 8-9 shows how to handle
the MalformedURLException thrown by the URL constructor.

8.4
IN

TRO
D
U
CIN

G
 E

XCEPTIO
N
S

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 428

428
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Listing 8-9: A mixture of pseudocode and Java showing how an exception can be caught

1 privateƒvoidƒloadPage()
2 {ƒStringƒurlStringƒ=ƒget the url typed by the user
3 ƒƒtry
4 ƒƒ{ƒURLƒurlƒ=ƒnewƒURL(urlString); // can throw MalformedURLException
5 ƒƒƒƒuseƒurlƒto load the page // can throw IOException
6 ƒƒ}ƒcatchƒ(MalformedURLExceptionƒex)
7 ƒƒ{ display a dialog box describing the error and asking the user to try again
8 ƒƒ}ƒcatchƒ(IOExceptionƒex)
9 ƒƒ{ display a dialog box describing the error

10 ƒƒ}
11 }

If the URL constructor in this example throws an exception, the statements following it
in the try block (using the URL) are not executed. When an exception is thrown, exe
cution resumes with the nearest catch block.

Because malformedURLexception extends IOException, the order of the catch
clauses is important. If IOException is listed first, it will handle both kinds of excep
tions. When listing multiple catch clauses, always list the subclasses (most specific
exceptions) first and the superclasses (most general exceptions) last.

The names in the catch’s parentheses are much like a parameter variable declaration. In
the previous example, ex is a variable that can be used within the catch clause. Recall
that an exception is an object, and ex can be used to access its methods. For example, the
getMessage method returns the string that was passed to the exception’s constructor.
The printStackTrace method prints the stack trace. It is often followed with the state
ment System.exit(1), which causes the program to terminate immediately. Without
the call to exit, the program would resume after the try-catch statement.

The finally clause shown in the template is optional. If included, the code it contains
will always be executed if any of the code in the try block is executed. The finally
clause is executed even if an exception is thrown, whether or not it is handled in a
catch clause. It’s also executed if a return, break, or continue statement is exe
cuted within the try block to end it early.

8.4.4 Propogating Exceptions

Methods often can’t handle the exceptions thrown by the methods they call. They
could catch the exceptions, but can’t do anything constructive to respond to the error.
In these cases, the exceptions should be propogated up the call stack. This is exactly
what happened in Figure 8-16. The computeTime method threw an exception. It’s

KEY IDEA

An exception skips
over code between
the line throwing it
and a matching
catch statement.

KEY IDEA

Code in the finally
clause is always
executed if code in
the try block has
executed.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 429

429

caller, updateTime, couldn’t handle it constructively and so allowed it to propogate to
its caller, getTimeInMillis. Likewise, this method could not handle the exeception
constructively and allowed it to propogate to its caller. This pattern continued a num
ber of times.

When a checked exception is allowed to propogate like this, the method must declare
that fact with the throws keyword. For example, suppose the loadPage method in
Listing 8-9 is not an appropriate place to display a dialog box. The method can be
rewritten as follows:

privateƒvoidƒloadPage()
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒthrowsƒMalformedURLException,ƒIOException
{ƒStringƒurlStringƒ=ƒget the url typed by the user
ƒƒURLƒurlƒ=ƒnewƒURL(urlString); // can throw MalformedURLException
ƒƒuseƒurlƒto load the page // can throw IOException
}

The throws clause alerts everyone who might use this method that it can throw the
listed exceptions. The clause is required for checked exceptions. If it is omitted, the
compiler will issue an error message with the following format:

«className»:«lineNum»:ƒunreportedƒexceptionƒ«exceptionName»;
mustƒbeƒcaughtƒorƒdeclaredƒtoƒbeƒthrown

The reference to “must be caught” means to include the code in a try-catch state
ment. The alternative, “declared to be thrown,” means to change the method signature
to include the keyword throws, as shown earlier.

8.4.5 Enhancing the Alarm Clock with Sound (optional)

We can use our new expertise with exceptions to add sound to the alarm clock pro
gram. One way that Java works with sound is via the AudioClip class. An
AudioClip can be loaded from a file using the .wav, .au, or .midi formats (but not
.mp3, unfortunately). There may be appropriate sound files already on your computer,
or you can create your own with a program such as Audacity, a free sound editor
found at http://audacity.sourceforge.net/.

The location of the sound file is specified with a URL and can be either on the Web or
on your disk.

Listing 8-10 shows the additions to the Alarm class to accommodate sound. Four
changes are required:

➤	 Lines 3 and 4 import the Applet, AudioClip, URL, and
MalformedURLException classes.

➤	 Line 8 declares a class variable, sound. It’s a class variable so that all the
Alarm instances can share the same sound.

8.4
IN

TRO
D
U
CIN

G
 E

XCEPTIO
N
S

http:http://audacity.sourceforge.net

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 430

430
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

➤	 Lines 13–24 load the sound from a location on the Web. A URL is required,
which may throw a MalformedURLException,1 and so a try-catch state
ment is required. If the exception is thrown, lines 21–22 print a stack trace to
aid debugging and exit the program. Because the sound is shared among all
instances of Alarm, it only needs to be loaded once. The if statement at line
14 prevents it from loading more than once.

➤	 Line 31 actually plays the sound. An AudioClip has three methods: play to
play a sound, stop to stop a sound currently playing, and loop to play a
sound repeatedly. Sounds play in their own thread. Line 31 starts that thread,
but then execution of the program continues while the sound plays.

The part of this code most likely to cause a problem is specifying the URL for the
sound file. If the form of the URL is correct but there is no sound file actually at that
location, nothing will notify you; the program just won’t play a sound. The best way to
avoid this problem is to first locate the file using a Web browser. Then cut and paste the
URL from the browser’s address bar to the program.

The sound file may also be loaded from your disk drive using a URL similar to the
following:

URLƒurlƒ=ƒnewƒURL("file:///D:/Robots/examples/ch08/alarmSound/ringin.wav");

Listing 8-10: Modifying the Alarm class to play a sound

1 importƒbecker.util.DateTime;
2 importƒbecker.util.Utilities;
3 importƒjava.applet.*;
4 importƒjava.net.*;
5
6 publicƒclassƒAlarmƒextendsƒObject
7 {ƒ// Same as Listing 8-6.
8 ƒƒprivateƒstaticƒAudioClipƒsoundƒ=ƒnull;
9

10 ƒƒpublicƒAlarm(intƒhr,ƒintƒmin,ƒStringƒmsg)
11 ƒƒ{ // Same as Listing 8-6.
12
13 // Load the sound if it hasn't already been loaded.
14 ƒƒƒƒifƒ(Alarm.soundƒ==ƒnull)
15 ƒƒƒƒ{ƒtryƒ
16 ƒƒƒƒƒƒ{ƒURLƒurlƒ=ƒnewƒURL(
17 ƒƒƒƒƒƒƒƒƒƒƒƒ"http://www.learningwithrobots.com/downloads/WakeupEverybody.wav");
18 ƒƒƒƒƒƒƒƒAlarm.soundƒ=ƒApplet.newAudioClip(url);
19 ƒƒƒƒƒƒ}
20 ƒƒƒƒƒƒcatchƒ(MalformedURLExceptionƒex)ƒ
21 ƒƒƒƒƒƒ{ƒex.printStackTrace();

ch08/alarmSound/

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 431

431
8.5

JAVA’S C
O
LLECTIO

N
 C

LASSES

Listing 8-10: Modifying the Alarm class to play a sound (continued)

22 ƒƒƒƒƒƒƒƒSystem.exit(1);
23 ƒƒƒƒƒƒ}
24 ƒƒƒƒ}
25 ƒƒ}
26
27 ƒƒpublicƒvoidƒring()
28 ƒƒ{ƒ// Same as Listing 8-6.
29
30 ƒƒƒƒ// Play the sound.
31 ƒƒƒƒAlarm.sound.play();
32 ƒƒ}
33 }

8.5 Java’s Collection Classes

Programs often need to have collections of similar objects. The alarm clock program we
developed in the previous section is a prime example. Even with a collection of only four
alarms, code such as setAlarm and checkAndRingAlarms got tedious. Furthermore,
why should there be only four alarms? Why not 40 or 400 or even 4 million?

Four million alarms seems excessive, but other programs could easily have a collection
of 4 million or more objects. Consider an inventory program for a large chain of stores,
for example. When our collections of similar objects grow beyond four or five, we need
better techniques than we used in AlarmClock.

Fortunately, Java provides a set of classes for maintaining collections of objects. These
classes are used when objects in a collection need to be treated in a similar way: a col
lection of Alarm objects that need to be checked and perhaps rung, a collection of
Student objects that need to be enrolled in a course, or a collection of Image objects
that need to display on a computer monitor. The objects maintained by these collec
tions are usually called the elements of the collection.

Java has three kinds of collections:

➤	 A list is an ordered collection of elements, perhaps with duplicates. Because
the list is ordered, you can ask for the element in position 5, for example.

➤	 A set is an unordered collection of unique elements; duplicates are not allowed.

➤	 A map is an unordered collection of associated keys and values. A key is used
to find the associated value in the collection. For example, your student num
ber is a key that is often used to look up an associated value, such as your
address or grades.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 432

432
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Collection objects cannot hold primitive types, only objects. We’ll discuss a way
around that limitation in Section 8.5.4.

These collection classes are sophisticated, and covering all the details would require
several chapters. Therefore, we will focus on constructing the objects; adding and
removing elements, plus a few other useful methods; and processing all the elements
(for example, checking all the Alarm objects to see if one should be rung). We’ll look
at one example of each kind of collection. We’ll look at a list class first in some detail.
We will go faster when we examine sets and maps because much of what we learn with
lists will also apply to them.

The approach taken in this textbook assumes that you are using Java 5.0 or higher.
Previous versions of Java have these classes, but they are more difficult to use without
the advances made in Java 5.0

8.5.1 A List Class: ArrayList

A list is probably the most natural collection class to use for our AlarmClock pro
gram. It can hold any kind of object (sets and maps have some restrictions) and allows
us to easily process all of the elements or to get just one.

There are two distinct ways to write a list class—ArrayList and LinkedList. Both
are in the java.util package, meaning that you’ll need to import from that package
if you want to use the classes. ArrayList is the one we’ll study here. By the end of
Chapter 10, you will be able to write a simple version of ArrayList. By the end of
your second computer science course, you should be able to write your own version of
LinkedList.

Lists such as ArrayList keep its elements in order. It makes sense to speak of the first
element or the last element. Like a String, an individual element is identified by its
index—a number greater than or equal to zero and less than the number of elements in
the list. The number of elements in the list can be obtained with the size query.

Construction

The type of a collection specifies the collection’s class and the class of object it holds.
For example, one type that could hold a collection of Alarm objects is
ArrayList<Alarm>. The type of objects held in the collection is placed between angle
brackets. This type can be used to declare and initialize a variable, as follows:

ArrayList<Alarm>ƒalarmsƒ=ƒnewƒArrayList<Alarm>();

KEY IDEA

Collections hold
objects, not
primitives.

KEY IDEA

This section assumes
you are using Java 5.0
or higher.

KEY IDEA

The size query
returns the number of
elements in the list.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 433

433

KEY IDEA

The type of the
collection includes

the type of objects to
be stored in it.

KEY IDEA

A collection allows
you to access many

objects using only
one variable.

ch08/alarmsWithLists/

A list of Robot objects and a list of Person objects would be created similarly:

ArrayList<Robot>ƒworkersƒ=ƒnewƒArrayList<Robot>();
ArrayList<Person>ƒfriendsƒ=ƒnewƒArrayList<Person>();

Of course, if we’re declaring instance variables, we would include the keyword private
at the beginning of each line.

In the AlarmClock class shown in Listing 8-7, the declaration of the four Alarm
instance variables in lines 10–13 can be replaced with the following line:

privateƒArrayList<Alarm>ƒalarmsƒ=ƒnewƒArrayList<Alarm>();

Furthermore, we are no longer limited to just four alarms.

Adding Elements

The power of using a collection class becomes evident in the setAlarm method. In
Listing 8-7, we devote lines 68–78 to assigning an alarm to one of the four instance
variables—11 lines. Even so, we’re limited to only four alarms. For each additional
alarm, we need to add an instance variable and two more lines in the setAlarm
method.

Using an ArrayList to store the alarms reduces lines 68–78 to a single line:

this.alarms.add(theAlarm);

Furthermore, we can now have an almost unlimited number of alarms.

The add method just shown adds the new alarm to the end of the list. An overloaded
version of add allows you to state the index in the list where the alarm should be
added. Like Strings, an ArrayList numbers the positions in its list starting with 0.
Therefore, the following line adds a new alarm in the third position:

this.alarms.add(2,ƒtheAlarm);

The alarms at indices 0 and 1 come before it. Objects at indices 2 and larger are moved
over by one position to make room for the new object. Figure 8-18 illustrates inserting
a new Alarm for 11:00 at index 2.

8.5
JAVA’S C

O
LLECTIO

N
 C

LASSES

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 434

434
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

alarms

0:

1:

2:

3:

4:

5: null

null ...

ArrayList Alarm: 8:30

Alarm: 9:10

Alarm: 11:30

Alarm: 4:00

Alarm: 5:30

0:

1:

2:

3:

4:

5:

null ...

ArrayList

alarms

Alarm: 8:30

Alarm: 9:10

Alarm: 11:30

Alarm: 11:00

Alarm: 4:00

Alarm: 5:30

(figure 8-18)

Inserting an Alarm into

an ArrayList at index 2

Before inserting an Alarm at index 2 After inserting an Alarm at index 2

The index for add must be in the range 0..size(). Positions can’t be skipped when
adding objects. For example, you can’t add an object at index 2 before there is data at
indices 0 and 1. Doing so results in an IndexOutOfBoundsException.

Getting, Setting, and Removing Elements

A single element of the collection can be accessed using the get method and specifying
the object’s index. For example, to get a reference to the third alarm (which is at index 2
because numbering starts at 0), write the following statements:

AlarmƒanAlarmƒ=ƒthis.alarms.get(2);
anAlarm.ring();ƒƒƒƒƒƒƒƒƒƒ// do something with the alarm

As with any other method that returns a reference, you aren’t required to assign the
reference to a variable before calling a method. We could condense the previous two
statements to a single line:

this.alarms.get(2).ring();

An element can be replaced using the set method. Its parameters are the index of the
element to replace and the object to put there. For example, Figure 8-19 illustrates the
change made by the following code fragment:

AlarmƒoldAlarmƒ=ƒnull;
AlarmƒnewAlarmƒ=ƒnewƒAlarm(11,ƒ15,ƒ"Meeting with Mohamed");
oldAlarmƒ=ƒthis.alarms.set(2,ƒnewAlarm);

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 435

435

(figure 8-19)

Effects of the set method
alarms

0:

1:

2:

3:

4:

5: null

null ...

ArrayList Alarm: 8:30

Alarm: 9:10

Alarm: 11:30

Alarm: 4:00

Alarm: 5:30

Alarm: 11:15

oldAlarm

newAlarm

null

0:

1:

2:

3:

4:

5:

null

null

...

ArrayList

alarms

Alarm: 8:30

Alarm: 9:10

Alarm: 11:30

Alarm: 4:00

Alarm: 5:30

8.5
JAVA’S C

O
LLECTIO

N
 C

LASSES

oldAlarm

newAlarm Alarm: 11:15

Before using the set method After using the set method

Notice that the element at index 2 now refers to the new alarm. The set method
returns a reference to the element that is replaced, which is assigned to oldAlarm.

An element can be removed from the ArrayList with the remove method. Its only argu
ment is the index of the element to remove. After removing the element, any elements in
subsequent positions are moved up to occupy the now open position—the opposite of
what add does. Like set, remove returns a reference to the removed element.

Other Useful Methods

There are many other methods in the ArrayList class and its superclasses. Table 8-1
lists the name and purpose of some of the most useful methods. E represents the type of
elements stored in this particular collection.

The contains and indexOf methods depend on the element’s class overriding the
equals method to test for equivalence. As noted in Section 8.2.4, we don’t have the
tools to do this yet for the classes we write. Provided classes such as String,
DateTime, and others should meet this requirement.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 436

436

Method Purpose (table 8-1)

CH
AP

TE
R

8
| C

O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

boolean add(E elem) Add the specified element to the end of this list.
Return true.

void add(int index, E elem) Insert the specified element at the specified index
in this list. 0ƒ≤ indexƒ< size().

void clear() Remove all of the elements from this list.

boolean contains(Object elem)

E get(int index)

Return true if this list contains the specified element.

Return the element at the specified index. 0ƒ≤
index < size().

int indexOf(Object elem) Search for the first element in this list that is equal
to elem, and return its index or -1 if there is no
such element in this list.

boolean isEmpty() Return true if this list contains no elements.

E remove(int index) Remove and return the element at the given index.
0ƒ≤ index < size().

E set(int index, E elem) Replace the element at the given position in this
list with elem. Return the old element. 0ƒ≤ index <
size().

int size() Return the number of elements in this list.

Some of the most useful

methods in the

ArrayList class. E is

the type of the elements

Processing All Elements

The last detail needed to replace the four Alarm variables with a list is checking each
alarm to see if it’s time to ring it. In Listing 8-7, we did this in lines 47–52. Each line
calls a helper method to check one of the alarms. That means 4 alarms, 4 lines of code;
400 alarms, 400 lines of code.

There are three distinct ways3 to process all of the elements in an ArrayList. We’ve
already seen the basic tools for one of them: the get and size methods. We can use
them in a for loop to get each element in turn:

1 privateƒvoidƒcheckAndRingAlarms(DateTimeƒcurrTime)
2 {ƒforƒ(intƒindexƒ=ƒ0;ƒindexƒ<ƒthis.alarms.size();ƒindex++)
3 ƒƒ{ƒAlarmƒanAlarmƒ=ƒthis.alarms.get(index);

Process All Elements
4 ƒƒƒƒthis.checkOneAlarm(anAlarm,ƒcurrTime);
5 ƒƒ}
6 }

3 The third way uses iterators, a topic we won’t be covering in this textbook.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 437

437

Process All Elements

These six lines of code completely replace checkAndRingAlarms in lines 47–52 of
Listing 8-7. Furthermore, this code will work for almost4 any number of alarms—from
zero on up.

A loop to process all of the elements in a collection is so common that Java 5.0 intro
duced a special version of the for loop just to make these situations easier. It is some
times called a foreach loop—the body of the loop executes once for each element in the
collection.

Using a foreach loop to process each alarm results in the following method:

privateƒvoidƒcheckAndRingAlarms(DateTimeƒcurrTime)
{ƒfor(AlarmƒanAlarmƒ:ƒthis.alarms)
ƒƒ{ƒthis.checkOneAlarm(anAlarm,ƒcurrTime);
ƒƒ}
}

A template for the foreach loop is as follows:

for(«elementType»ƒ«varName»ƒ:ƒ«collection»)
{«statementsƒusingƒvarName»
}

The statement includes the keyword for, but instead of specifying a loop index, the
forƒeach loop declares a variable, «varName», of the same type as the objects con
tained in «collection». The variable name is followed with a colon and the collec
tion that we want to process. «varName» can only be used within the body of the loop.

A version of AlarmClock that uses an ArrayList is shown in Listing 8-11. Note that
changes are shown in bold. Documentation is identical to Listing 8-7, so it is omitted.

8.5
JAVA’S C

O
LLECTIO

N
 C

LASSES

Listing 8-11: The AlarmClock class implemented with an ArrayList

1 importƒbecker.util.DateTime;
2 importƒbecker.util.Utilities;
3 importƒjava.util.ArrayList;
4
5 publicƒclassƒAlarmClockƒextendsƒObject
6 {
7 ƒƒ// A list of alarms.
8 ƒƒprivateƒArrayList<Alarm>ƒalarmsƒ=ƒnewƒArrayList<Alarm>();
9

10 ƒƒprivateƒintƒnumAlarmsLeftƒ=ƒ0;

ch08/alarmsWithLists/

4 We don’t say ArrayList will handle any number because eventually your computer would run out
of memory to store them all.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 438

438
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Listing 8-11: The AlarmClock class implemented with an ArrayList (continued)

11 ƒƒprivateƒfinalƒbooleanƒTESTING;
12
13 ƒƒpublicƒAlarmClock(booleanƒtest)
14 ƒƒ{ƒ// Same asƒListingƒ8-7.
15 ƒƒ}
16
17 ƒƒpublicƒvoidƒrun(intƒsecPerSec)
18 ƒƒ{ƒ// Same as Listing 8-7.
19 ƒƒ}
20 ƒƒ
21 ƒƒprivateƒvoidƒcheckAndRingAlarms(DateTimeƒcurrTime)
22 ƒƒ{ƒfor(AlarmƒanAlarmƒ:ƒthis.alarms)
23 ƒƒƒƒ{ƒthis.checkOneAlarm(anAlarm,ƒcurrTime);
24 ƒƒƒƒ}
25 ƒƒ}
26
27 ƒƒprivateƒvoidƒcheckOneAlarm(Alarmƒalarm,ƒDateTimeƒcurrTime)
28 ƒƒ{ƒ// Same as Listingƒ8-7.
29 ƒƒ}
30
31 ƒƒpublicƒvoidƒsetAlarm(intƒhr,ƒintƒmin,ƒStringƒmsg)
32 ƒƒ{ƒAlarmƒtheAlarmƒ=ƒnewƒAlarm(hr,ƒmin,ƒmsg);
33 ƒƒƒƒthis.alarms.add(theAlarm);
34 ƒƒƒƒthis.numAlarmsLeft++;
35 ƒƒ}
36
37 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
38 ƒƒ{ƒ// Same as Listingƒ8-7.
39 ƒƒ}
40 }

Class Diagrams

Someone drawing a class diagram for AlarmClock, as shown in Listing 8-11, would
probably draw a diagram as shown in Figure 8-20a. However, collection classes like
ArrayList appear so often in Java programs and their function is so well known that
most programmers prefer to draw the abbreviated class diagram shown in Figure 8-20b.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 439

439

(figure 8-20)

Class diagrams
ArrayList

+void add(...)

-ArrayList alarms

+AlarmClock()
+void setAlarm(...)
+void run()

AlarmClock

-String message
-DateTime when

+Alarm(...)
+boolean isTime...
+void ring()

Alarm
*

-ArrayList alarms

+AlarmClock()
+void setAlarm(...)
+void run()

AlarmClock

-String message
-DateTime when

+Alarm(...)
+boolean isTime...
+void ring()

Alarm*

8.5
JAVA’S C

O
LLECTIO

N
 C

LASSES

KEY IDEA

Sets do not allow
duplicates.

LOOKING AHEAD

Processing files is a
major topic of

Chapter 9.

a. Full class diagram	 b. Abbreviated class diagram

8.5.2 A Set Class: HashSet

Like a list, a set also manages a collection of objects. There are two important differences:

➤	 A set does not allow duplicate elements. Sets ignore attempts to add an ele
ment that is already in the set.

➤	 The elements are not ordered. None of the methods in HashSet take an index
as an argument.

These restrictions don’t affect the AlarmClock class—each alarm is unique and indi
vidual alarms are not important; they are all processed as a group. In fact, changing
ArrayList to HashSet in line 8 of Listing 8-11 is all that is needed to convert that
program to use a set.

So how might we exploit the specific properties of a set? We could use it, for example,
to count the number of unique strings in a file. About two dozen lines of code are
enough to discover that William Shakespeare’s play Hamlet contains 7,467 unique
“words.” (Words is quoted because the program doesn’t remove punctuation or num
bers, meaning that “merry” and “merry?” are considered different words.)

Construction

We’ll use an instance of the HashSet class to count the words. An instance of
HashSet is constructed just like ArrayList—specify the type of the elements you
want it to manage in angle brackets. In this case, we’ll store our words as strings.

HashSet<String>ƒwordsƒ=ƒnewƒHashSet<String>();

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 440

440
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Useful Methods

Words can be added to this set with the add method. If the word is already there, it will
be ignored.

To add many words, we should read them from a file—the topic of Section 9.1. Until
then, we can add some words from Hamlet manually:

words.add(“to”);

words.add(“be”);

words.add(“or”);

ch08/collections/words.add(“not”);

words.add(“to”);

words.add(“be”);

The size method returns the number of elements in the set. Given the previous six
calls to add, size would return 4.

The word “not” could be removed with the statement words.remove(“not”). In
general, an object is removed from the set by passing the object to the remove method.

The contains method will return true if the set contains the given object and false
otherwise. Other useful methods are summarized in Table 8-2.

Method Purpose (table 8-2)

booleanƒadd(Eƒelem) Add the specified element to this set. Return true
if the element was already present.

voidƒclear()ƒ Remove all of the elements from this set.

booleanƒcontains(Objectƒelem)ƒ

booleanƒisEmpty()ƒ

Return true if this set contains the specified element.

Return true if this set contains no elements.

booleanƒremove(Objectƒelem)ƒ Remove the specified element from this set, if
present. Return true if the element was present.

intƒsize() Return the number of elements in this set.

Some of the most useful

methods in the HashSet
class (E is the type of the

elements)

Processing All Elements

We can print all of the words in the set using a forƒeach loop, just as we processed all
of the elements in the ArrayList earlier.

forƒ(Stringƒwƒ:ƒwords)

{ƒSystem.out.print(wƒ+ƒ“ƒƒ“);

}

KEY IDEA

A set’s forƒeach
loop works the same
way as for a list.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 441

441

Process All Elements

KEY IDEA

A map associates a
key with a value. Use

the key to look up
the value.

8.5
JAVA’S C

O
LLECTIO

N
 C

LASSES

(figure 8-21)

Key-value pairs

KEY IDEA

The keys in any given
map must be unique.

Executing this loop after adding the first six words of Hamlet’s speech would yield
“to,” “be,” “or,” and “not.” The order in which they are printed is not specified.

Limitations

HashSet uses a technique known as hashing, in which elements are stored in an order
defined by the element’s hashCode method. The hash code is carefully constructed to
make operations such as contains and remove faster than for an ArrayList. When
the elements are printed, however, they appear in an order that seems random.

hashCode is inherited from the Object class. As defined there, no two objects are
considered equal or equivalent. If two elements in your set should be considered equiv
alent (for example, two different date objects both representing the same date), the
equals and hashCode methods must both be overridden. Unfortunately, overriding
hashCode is beyond the scope of this textbook. However, you should have no problem
using HashSet if you either use it with a set of unique objects or use it with provided
classes, such as String or DateTime.

8.5.3 A Map Class: TreeMap

A map is a collection of associated keys and values. A key is used to find the associated
value in the collection. For example, we could associate the names of our friends (the
keys) with their phone numbers (the values), as shown in Figure 8-21.

Key Value

Sue 578-3948

Fazila 886-4957

Jo 1-604-329-1023

Don 578-3948

Rama 886-9521

With these associations between keys and values, we can ask questions such as “What’s
the phone number for Don?” We use the key, “Don,” to look up the associated value,
“578-3948.”

Notice that all the keys are unique; that’s a fundamental requirement of a map. If we
have two friends named “Don” we must distinguish between them, perhaps by adding
initials or last names. However, the associated values do not need to be unique. In this
example, Don and Sue both appear in the mapping even though they have the same
phone number.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 442

442
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Java provides two classes implementing a map, TreeMap and HashMap. Each one has
different advantages and disadvantages. HashMaps have the advantage of being some
what faster but require a correct implementation of the hashCode method. On the
other hand, TreeMaps keep the keys in sorted order but require a way to order the ele
ments. We’ll use a TreeMap to build a simple phone book.

Construction

When declaring and constructing a TreeMap object, the types for both the keys and the
values must be specified. For our simple phone book, we’ll use Strings for both the
keys and the values:

TreeMap<String,ƒString>ƒphoneBookƒ=ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒnewƒTreeMap<String,ƒString>();

Although this example happens to use strings for both keys and values, that need not
be the case. The types of the keys and values are often different and must be a reference
type—not a primitive type like int, double, or char.

How can you figure out that TreeMap needs two types to define it but that ArrayList
and HashSet require only one? Look at the class documentation. Figure 8-22 shows the
beginning of the online documentation for TreeMap, which includes TreeMap<K,ƒV> in
large type. The two capital letters between the angle brackets indicate that two types are
needed when a TreeMap is constructed. Finding out that K stands for the type of the key
and V stands for the type of the value is, unfortunately, not as easy to figure out from the
documentation.

There is one restriction on the type of the key. Because TreeMap keeps the keys in
sorted order, it needs a way to compare them. It relies on the key’s class to implement
the Comparable interface. The keys are then known to have a compareTo method.
String and DateTime both implement the interface and can be used as keys.

You can tell if a class implements Comparable by looking at the “All Implemented
Interfaces” line in the documentation. You can see an example of this line in Figure 8-22.
Also, if you look at the documentation for Comparable, it will list the classes in the Java
library that implement it.

LOOKING AHEAD

Writing your own
classes that
implement the
Comparable
interface will be
discussed in
Section 12.5.1.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 443

443

(figure 8-22)

Part of the online

documentation for

TreeMap

8.5
JAVA’S C

O
LLECTIO

N
 C

LASSES

Useful Methods

Pairs are added to a map with the put method. It takes a key and a value as arguments:

phoneBook.put("Sue", "578-3948");

phoneBook.put("Fazila", "886-4957");

If the key already exists in the map, the value associated with that key will be replaced
by the new value.

A value can be retrieved with the get method. The key of the desired value is passed as
an argument. For example, after executing the following line:

Stringƒnumberƒ=ƒphoneBook.get("Sue");

the variable number will contain “578-3948” (assuming the associations shown in
Figure 8-21). It’s similar to accessing an element in a list except that instead of specify
ing the element’s index, you specify the element’s key.

The remove method takes a key as its only argument and removes both the key and its
associated value.

Like a list and a set, a map has isEmpty, clear, and size methods. Instead of con
tains, it has two methods: containsKey and containsValue, which both return a
Boolean result. These methods are summarized in Table 8-3.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 444

444

Method Purpose (table 8-3)

CH
AP

TE
R

8
| C

O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

voidƒclear()ƒ Remove all of the key-value pairs from this mapping.

booleanƒcontainsKeyƒ
ƒƒƒƒƒƒƒƒ(Objectƒelem)

Return true if this mapping contains the specified key.

booleanƒcontainsValueƒ
ƒƒƒƒƒƒƒƒ(Objectƒelem)

Return true if this mapping contains the specified value.

Vƒget(Objectƒkey) Return the value associated with the specified key.

booleanƒisEmpty() Return true if this mapping contains no elements.

Set<K>ƒkeySet() Return a set containing the keys in this mapping.

Vƒput(Kƒkey,ƒVƒvalue) Associate the specified key with the specified value in this
mapping. Return the value previously associated with the
key or null if there wasn’t one.

Vƒremove(Objectƒkey) Remove and return the value associated with the specified
key, if it exists. Return null if there was no mapping for
the key.

intƒsize() Return the number of key-value pairs in this mapping.

Some of the most useful

methods in the TreeMap
class (K is the type of the

keys; V is the type of the

values)

Processing All Elements

Processing all the elements in a map is more complicated than a list or a set because
each element is a pair of objects rather than just one thing.

One approach is to use the keySet method to get all of the keys in the map as a set.
We can then loop through all of the keys using the forƒeach loop. As part of the pro
cessing, we can also get the associated value, as shown in the following example:

// print the phoneBook
forƒ(Stringƒkeyƒ:ƒphoneBook.keySet())
{ƒSystem.out.println(keyƒ+ƒ" = "ƒ+ƒphoneBook.get(key));

Process All Elements }

Completed Program

The completed telephone book program is shown in Listing 8-12. It uses a Scanner
object in 27 and 30 to obtain a name from the program’s user. Using Scanner effec
tively is one of the primary topics of the next chapter.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 445

445

ch08/collections/

8.5
JAVA’S C

O
LLECTIO

N
 C

LASSES

Listing 8-12: An electronic telephone book

1 importƒjava.util.*;
2
3 /** An electronic telephone book.
4 *
5 * @author Byron Weber Becker */
6 publicƒclassƒMapExampleƒextendsƒObject
7 {
8 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
9 ƒƒ{ƒ// Create the mapping between names and phone numbers.

10 ƒƒƒƒTreeMap<String,ƒString>ƒphoneBookƒ=ƒ
11 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒnewƒTreeMap<String,ƒString>();
12
13 ƒƒƒƒ// Insert the phone numbers.
14 ƒƒƒƒphoneBook.put("Sue", "578-3948");
15 ƒƒƒƒphoneBook.put("Fazila", "886-4957");
16 ƒƒƒƒphoneBook.put("Jo", "1-604-329-1023");
17 ƒƒƒƒphoneBook.put("Don", "578-3948");
18 ƒƒƒƒphoneBook.put("Rama", "886-9521");
19 ƒƒƒƒ
20 ƒƒƒƒ// Print the phonebook.
21 ƒƒƒƒforƒ(Stringƒkƒ:ƒphoneBook.keySet())
22 ƒƒƒƒ{ƒSystem.out.println(kƒ+ƒ" = "ƒ+ƒphoneBook.get(k));
23 ƒƒƒƒ}
24
25 ƒƒƒƒ// Repeatedly ask the user for a name until "done" is entered.
26 ƒƒƒƒ// Scanner is discussed in detail in Chapter 9.
27 ƒƒƒƒScannerƒinƒ=ƒnewƒScanner(System.in);
28 ƒƒƒƒwhileƒ(true)
29 ƒƒƒƒ{ƒSystem.out.print("Enter a name or 'done': ");
30 ƒƒƒƒƒƒStringƒnameƒ=ƒin.next();
31
32 ƒƒƒƒƒƒifƒ(name.equalsIgnoreCase("done"))
33 ƒƒƒƒƒƒ{ƒbreak;ƒƒ// Break out of the loop.
34 ƒƒƒƒƒƒ}
35
36 ƒƒƒƒƒƒSystem.out.println(nameƒ+ƒ": "ƒ+ƒphoneBook.get(name));
37 ƒƒƒƒ}
38 ƒƒ}
39 }

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 446

446
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

8.5.4 Wrapper Classes

What if we want to store integers or characters or some other primitive type in one of
the collection classes? For example, we might need a set of the prime numbers (integers
that can only be divided evenly by 1 and itself). If we write

HashSet<int>ƒprimeNumbersƒ=ƒnewƒHashSet<int>();

the Java compiler will give us a compile-time error, perhaps with the cryptic message
“unexpected type.” The problem is that the compiler is expecting a reference type—the
name of a class—between the angle brackets. int, of course, is a primitive type.

We can get around this by using a wrapper class. It “wraps” a primitive value in a class.
A simplified wrapper class for int is as follows:

publicƒclassƒIntWrapperƒextendsƒObject
{ƒprivateƒintƒvalue;

ƒƒpublicƒIntWrapper(intƒaValue)
ƒƒ{ƒsuper();
ƒƒƒƒthis.valueƒ=ƒaValue;
ƒƒ}

ƒƒpublicƒintƒintValue()
ƒƒ{ƒreturnƒthis.value;
ƒƒ}
}

Fortunately, Java provides a wrapper class for each of the primitive types: Integer,
Double, Boolean, Character, and so on. These are in the java.lang package,
which is automatically imported into every class.

We can use these built-in wrapper classes to construct a set of integers:

HashSet<Integer>ƒprimesƒ=ƒnewƒHashSet<Integer>();

The Java compiler will automatically convert between an int and an instance of
Integer when using primes. For example, consider the program in Listing 8-13. In lines
12–17, the add method takes an int, not an instance of Integer. The contains
method in line 25 is the same. Before Java 5.0 the programmer needed to manually
include code to convert between primitives and wrapper objects.

KEY IDEA

Java 5.0 automatically
converts between
primitive values and
wrapper classes.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 447

447

ch08/collections/

8.6
G
U
IS

AN
D

 C
O
LLABO

RATIN
G
 C

LASSES

Listing 8-13: A program to help classify prime numbers

1 importƒjava.util.*;
2
3 /** Help the user find out if a number is prime.
4 *
5 * @author Byron Weber Becker */
6 publicƒclassƒWrapperExampleƒextendsƒObject
7 {
8 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
9 ƒƒ{ƒHashSet<Integer>ƒprimesƒ=ƒnewƒHashSet<Integer>();

10
11 ƒƒƒƒ// The prime numbers we know.
12 ƒƒƒƒprimes.add(2);
13 ƒƒƒƒprimes.add(3);
14 ƒƒƒƒprimes.add(5);
15 ƒƒƒƒprimes.add(7);
16 ƒƒƒƒprimes.add(11);
17 ƒƒƒƒprimes.add(13);
18
19 ƒƒƒƒ// Help the user classify numbers.
20 ƒƒƒƒ// Scanner is discussed in detail in Chapter 9.
21 ƒƒƒƒScannerƒinƒ=ƒnewƒScanner(System.in);
22 ƒƒƒƒSystem.out.print("Enter a number: ");
23 ƒƒƒƒintƒnumƒ=ƒin.nextInt();
24
25 ƒƒƒƒifƒ(primes.contains(num))
26 ƒƒƒƒ{ƒSystem.out.println(numƒ+ƒ" is prime.");
27 ƒƒƒƒ}ƒelseƒifƒ(numƒ<=ƒ13)
28 ƒƒƒƒ{ƒSystem.out.println(numƒ+ƒ" is not prime.");
29 ƒƒƒƒ}ƒelse
30 ƒƒƒƒ{ƒSystem.out.println(
31 ƒƒƒƒƒƒƒƒƒƒƒnumƒ+ƒ" might be prime; it's too big for me to know.");
32 ƒƒƒƒ}
33 ƒƒ}
34 }

8.6 GUIs and Collaborating Classes

Programs with graphical user interfaces almost always use collaborating classes in two
ways. Collaborating classes makes these programs easier to understand, write, debug,
and maintain.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 448

448
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

8.6.1 Using Libraries of Components

First, GUIs are constructed from a library of components. You’ve already used a number of
these: JFrame, JPanel, JComponent, JButton, and so on. JFrame typically collaborates
with JPanel to organize a number of components to display. JPanel collaborates with
one or more components such as JButton to display information in the right format.

For example, consider the program written in Section 6.7. It displays three tempera
tures using a custom thermometer component. The class diagram in Figure 8-23 shows
that the JFrame has-a JPanel to help organize the components it displays. The
JPanel has-a Thermometer to actually display a temperature. In fact, the JPanel has
a number of Thermometer objects. Finally, the Thermometer class is-a JComponent.
The two classes collaborate to provide a standard set of services with the customized
appearance provided by paintComponent.

-JPanel contentPane

+JFrame()
+void setContentPane(JPanel p)

JFrame JComponent (figure 8-23)

Simplified class diagram

of the thermometer

program from Section 6.7

* Thermometer

-int MIN_TEMP

-int MAX_TEMP

-int temp

-ArrayList components

+JPanel()
+void add(JComponent comp)

JPanel

+Thermometer()
+void paintComponent(Graphics g)
+void setTemperature(int newTemp)

The collaboration between these classes allows each to have a specific focus. Focused
classes are easier to understand, write, debug, and maintain.

8.6.2 Introducing the Model-View-Controller Pattern

Collaborating classes are also used with modern graphical user interfaces via the
Model-View-Controller pattern. This pattern splits a program into three collaborating
classes or groups of classes.

➤	 The model is responsible for modeling the current problem. For example, the
AlarmClock class we wrote earlier models the problem of keeping the current
time and determining when to ring the alarms, but has little to do with dis
playing anything to the user.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 449

449

➤	 The view shows relevant information in the model to the user. In an alarm
clock program, the view is the class (or group of classes) that show the user
what time it is and when the alarms are due to ring. This is information that
the view obtains from the model.

➤	 The controller is responsible for gathering input from the user and using it to
modify the model, for example, by changing the current time or the time when
an alarm is due to ring. When the controller changes the model, the view
should also change to show the new information.

The view and the controller work together closely and are known as the user interface.

The relationships between these three groups of classes are shown in Figure 8-24. The
eye represents the user observing the model via the view. The mouse represents the user
changing the model via the controller. The arrow between the controller and the view
indicates that the controller may call methods in the view, but the view has no need to
interact with the controller. The two arrows from the user interface to the model indi
cate that both the view and the controller will have reason to call methods in the
model. The last arrow is dotted to indicate that the model will call methods in the user
interface, but in a limited and controlled way.

(figure 8-24)

The view and controller

interact with the user and

the model

View

Controller

User Interface

Model

8.7
P

ATTERN
S

The Model-View-Controller pattern will be explored fully in Chapter 13, Graphical
User Interfaces.

8.7 Patterns

8.7.1 The Has-a (Composition) Pattern

Name: Has-a (Composition)

Context: A class is getting overly complex.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 450

450
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

Solution: Identify one or more subsets of methods and instance variables that form a
cohesive concept. Make each subset into a separate helper class that the original class
can use to solve the overall problem. The original class will likely have one or more
instance variables referring to instances of the helper classes. A general pattern is
shown in the following code:

publicƒclassƒ«className»...

{ƒprivateƒ«helperClassName»ƒ«var1»;

ƒƒpublicƒ«className»(...)

ƒƒ{ƒ// initialize the helper class

ƒƒƒƒthis.«var1»ƒ=ƒ...

ƒƒ}

ƒƒ...ƒ«methodName»(...)

ƒƒ{ƒ// use the helper class

ƒƒƒƒ...ƒthis.«var1».«methodName»...

ƒƒ}

}

This pattern results in the class diagram shown in Figure 8-25.

className helperClassName

helperClassName var1

??? methodName(...)

(figure 8-25)

Class diagram resulting

from Has-a (composition)

pattern

Consequences: The individual classes will become smaller and more focused on a par
ticular task, making them easier to write, test, debug, and modify.

Related Pattern: The Has-a pattern is a special case of the Instance Variable pattern,
where the instance variable is an object reference.

8.7.2 The Equivalence Test Pattern

Name: Equivalence Test

Context: A method is required to test whether two objects are equivalent to each other
in value.

Solution: Write a method, isEquivalent, that takes one of the objects as an argu
ment and tests all the relevant fields for equivalence. In general,

publicƒclassƒ«className»ƒ...

{ƒprivateƒ«primitiveType»ƒ«relevantField1»

ƒƒ...

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 451

451

ƒƒprivateƒ«referenceType»ƒ«relevantField2»

ƒƒ...

ƒƒpublicƒbooleanƒisEquivalent(«className»ƒother)

ƒƒ{ƒreturnƒotherƒ!=ƒnullƒ&&

ƒƒƒƒƒƒƒƒthis.«relevantField1»ƒ==ƒother.«relevantField1»ƒ&&

ƒƒƒƒƒƒƒƒ...

ƒƒƒƒƒƒƒƒthis.«relevantField2».isEquivalent(

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒother.«relevantField2»)ƒ&&

ƒƒƒƒƒƒƒƒ...;

ƒƒ}

}

where == is used for primitive fields and either isEquivalent or equals is used for
objects.

Consequences: The method will determine whether two objects are equivalent by test
ing all the relevant fields for equivalence. Using isEquivalent may give unexpected
results with methods such as contains in Java’s collection classes. Those classes
assume that equals has been properly overridden, but that requires concepts first dis
cussed in Chapter 12.

Related Patterns:
➤	 The Equivalence Test pattern is a specialization of the Predicate pattern.

➤	 The Equals pattern (Section 12.7.3) is a better choice than this pattern, once
the details of implementing equals have been mastered.

8.7.3 The Throw an Exception Pattern

Name: Throw an Exception

Context: Your method detects an exceptional event that is most appropriately handled
by the method’s client.

Solution: Create an exception object to report details of the exceptional event and use
Java’s throw statement, as follows:

ifƒ(«testForErrorCondition»)

{ƒthrowƒnewƒ«exceptionName»(«stringDescription»);

}

Consequences: Clients of the called method are informed of the exceptional event and
may be able to recover if the exception is handled. In the case of a checked exception
such as FileNotFoundException, clients must either handle the exception or declare
that they throw it.

Related Pattern: Thrown exceptions may be caught and handled with the Catch an
Exception pattern.

8.7
P

ATTERN
S

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 452

452
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

8.7.4 The Catch an Exception Pattern

Name: Catch an Exception

Context: You are calling a method that can throw an exception. You want to handle
the exception to protect the program’s users from the consequences of the problem.

Solution: Catch the exception using a try-catch statement and the following template:

try

{ƒ«statementsƒthatƒmayƒthrowƒanƒexception»ƒ

}ƒcatchƒ(«exception_1ƒe»)

{ƒ«statementsƒtoƒhandleƒexcepton_1»

}ƒcatchƒ(«exception_2ƒe»)

{ƒ«statementsƒtoƒhandleƒexcepton_2»

}

More catch clauses can also be added.

Consequences: Exceptions that are thrown by statements within the try clause are
handled in the matching catch clause, if one exists. If there is no matching catch
clause, the exception is propagated to the caller. The catch clauses are evaluated in
order, with the result that the most specific exceptions should appear first and the most
general exceptions later.

Related Pattern: Exceptions are thrown with the Throw an Exception pattern.

8.7.5 The Process All Elements Pattern

Name: Process All Elements

Context: The same operation must be performed on all the objects in a collection.

Solution: Store all of the relevant objects in an ArrayList, HashSet, TreeMap, or
similar collection object. Use one of the following forms to retrieve all of the objects
one at a time to perform the required operation.

The exact form of the pattern depends on the type of collection. For a list, the follow
ing code may be used.

forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒ«collection».size();ƒi++)

{ƒ«elementType»ƒelementƒ=ƒ«collection».get(i);

ƒƒ«statementsƒtoƒprocessƒelement»

}

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 453

453

The following form, available in Java 5.0 and later, is applicable to both lists and sets:

forƒ(«elementType»ƒelementƒ:ƒ«collection»)

{ƒ«statementsƒtoƒprocessƒelement»

}

If the collection is an instance of a mapping, such as TreeMap, a slight variant of the
preceding template is required:

forƒ(«keyType»ƒkeyƒ:ƒ«collection».getKeySet())

{ƒ«valueType»ƒvalueƒ=ƒ«collection».get(key);

ƒƒ«statementsƒtoƒprocessƒkeyƒandƒvalue»

}

Consequences: Using a collection to handle multiple objects of the same type can make
lots of code much simpler, especially code that processes each of the elements in turn.

Related Patterns:
➤	 The Process All Elements pattern is related to the Process File pattern

(Section 9.9.3) and will be recast using arrays in Section 10.8.1.

➤	 Processing all the characters in a String is similar to this pattern, although
the forƒeach loop is not applicable in that setting.

8.8 Summary and Concept Map

8.8
S

U
M

M
ARY AN

D
 C

O
N
CEPT M

AP

Structuring programs so that classes work together to solve a problem is a great idea. By
delegating work to other classes, each class can be simpler and more focused on one par
ticular idea. This makes the program easier to understand, write, debug, and maintain.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 454

ca
n

be
 r

is also known as

f
u

ay be

added to

include

include ArrayLists

HashSets

TreeMaps

collections

include

454
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

a helper
class

“Has-a”
composition

extension

el
at

ed
 b

y
ela

te
d

by

factors functionality in
to

is diagrammed with

factors functionality into a superclass

“Is-a”
is also known as

instance
variables

is diagrammed with

ca
n

be
r

two classes

reference
variables

objects

address in
memory

ar
e

ac
ce

sss
ed

via

may
be

al
ia

se
d

by
se

ve
ra

l

may be

may be

mare tested

contain
an

have an

are tested for equivalence with
m

temporary
variables

parameter
variables

may be
ay be
or eq ality wit returned from

a method

==

methods such as
equals or isEquivalent

h

8.9 Problem Set

Written Exercises

8.1	 A book has a title, an author, and a call number. A library patron has a name
and an ID number, and may or may not have a book checked out.

a. Draw a class diagram for Patron where only a single book may be checked
out at any given time. Include the methods necessary to check out a book,
and print which book (if any) the patron has.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 455

455

b. Elaborate the class diagram from part (a) so that a patron may have zero or
more books checked out.

c. Draw a class diagram including a Library object. A library, of course, has
many patrons and many books. Include the methods required to check out a
book to a patron, given the patron’s ID number and the book’s call number.
Also include the methods required to list which books a patron has, given
the patron’s ID number.

8.2	 Consider the class diagram shown in Figure 8-26. It shows one possible relation
ship between a bank’s client and the client’s account. Each client has a personal
identification number (PIN) to use in accessing his account. The methods requir
ing a PIN do nothing if the PIN doesn’t match the one stored for the client.

8.9
P

RO
BLEM

 S
ET

Client

-String name
+Account acct
-int pin

+Client(Account a)
+void deposit(int pin, double amt)
+void withdraw(int pin, double amt)
+double getBalance(int pin)
+Account getAccount()

Account

-double balance

+Account()
+void deposit(double amt)
+void withdraw(double amt)
+void getBalance()

(figure 8-26)

Partial class diagram for

a bank

Suppose you are a programmer working on the Bank class, which contains ref
erences to objects representing all of the bank’s clients. Explain three ways in
which you could transfer money from one client’s account to your account
without knowing the client’s PIN. In each case, explain how this security hole
could be closed.

Assume the programmer who implemented Client and Account knows noth
ing of the dangers of using aliases.

Programming Exercises

8.3	 Consider the program in Listing 8-2. According to the surrounding text, it was
used to find that Luke was 5,009 days old on the day that paragraph was writ
ten. Modify the program to print the date the paragraph was written.

8.4	 Consider a FuelBot class. It extends Robot and uses a FuelTank. Each time
the robot moves, it will use 0.4 liters of fuel from the tank. The tank holds 3
liters of fuel when it is full. If the robot comes to an intersection with a Thing
on it, refill its tank. If the robot ever runs out of fuel, it breaks.

a. Draw a class diagram that includes the Robot, FuelBot, and FuelTank
classes. Include variables and methods.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 456

456
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

b. Implement FuelBot. Write a main method to test your class.

c. Make a simple game by overriding the keyTyped method to allow the user
to control the robot (see Listing 7-5). Scatter gas stations around the city.
Put a Thing with a different color at a random location to serve as the goal.
Can the robot reach it before running out of fuel? Use the robot’s setLabel
command to display the amount of fuel remaining as a percentage.

8.5	 A normal playing card has a rank (one of Ace, 2, 3, 4, …, 10, Jack, Queen, King)
and a suit (one of Diamonds, Clubs, Hearts, or Spades). Players in a card game
usually have a “hand” consisting of several cards. For a game, a player will want
to know the value of his or her hand. The value is calculated by summing the
rank of each card, where Ace is 1, Jack is 11, Queen is 12, and King is 13. The
number cards have their number as their value. There is one exception: the Ace
of the trump suit is valued at 14. The trump suit is specified when the hand is
created.

a. Draw a class diagram of the Hand and Card classes. Assume that a hand
consists of at most four cards.

b. Implement Hand and Card. Write a main method to test the hand’s value
calculation. Assume the hand consists of at most four cards.

c. Draw a class diagram of the Hand and Card classes. Use an ArrayList or
HashSet.

d. Implement Hand and Card. Write a main method to test the hand’s value cal
culation. Don’t make any assumptions about the number of cards in a hand.

8.6	 In a simplified version of the game of Monopoly, a player may have between
0 and 4 properties. Each property has a name, a purchase price, and a rent.
The purchase price is typically between $60 and $400, and the rent is typically
between 10 percent and 15 percent of the purchase price. A player needs to cal
culate the total of the purchase price of its properties, return whether it owns a
specified property, and return the rent for a property. Properties are identified
to these methods by their names.

a. Draw a class diagram showing the Player and Property classes.

b. Implement the classes without using a collection class. Include a main
method in Player to test the class.

c. Implement the classes, removing the restriction of owning no more than
four properties. Include a main method in Player to test the class.

8.7	 The Person class in Listing 8-3 uses a String to store the person’s mother
and father. Why not use an instance of Person? After all, mothers and fathers
are persons.

Revise the class using this idea. Provide a second Person constructor for when
parents aren’t known; it sets mother and father toƒnull. Include a
toString method in Person that returns the person’s name.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 457

457

Write a main method that creates objects for seven people—you, your parents,
and your grandparents. Make up any data you don’t know. Print the results of
the toString method for each of the seven Personƒobjects.

a. Replace toString with a method that prints “[«name»: m = «name» f =
«name»]”, where each «name» is filled in with the appropriate name. If
either the mother or the father is null, print “unknown” for the name.

b. Modify the toString method from part (a). Instead of printing the name of
the mother and father, call that person’s toString method. As before, if the
mother or father is null, print “unknown.”

Programming Projects
LOOKING BACK 8.8	 Implement a program to run at a checkout counter in a store. The main

Dotted lines between method will create the CheckOut object and then give it a number of Items to
classes mean a class check out. The CheckOut object will be able to produce an itemized receipt.

uses another class but
doesn’t hold an (Hint: You can use an ArrayList or a String to build the receipt as items are

instance variable to it. sold.) A partial class diagram is shown in Figure 8-27.
See Section 8.2.2.

(figure 8-27)

Partial class diagram for

checking out items at

a store

CheckOutMain CheckOut

+void main(...)

Item

-String descr
-double price

-double totalSale
-double receipt

+CheckOut(double taxRate)
+void sell(Item anItem)
+double getTotalSale()
+double getTaxes()
+String getReceipt()

8.9
P

RO
BLEM

 S
ET

8.9	 A class diagram for another store’s checkout counter is shown in Figure 8-28.
Write a program where the main method creates a CheckOut object and a
Customer object, complete with a number of Items to buy. Call the checkout
method to generate an itemized receipt. Print the receipt.

8 Chapter C5743 40143.ps 11/30/06 1:31 PM Page 458

458
CH

AP
TE

R
8

| C
O
LL

AB
O
RA

TI
VE

 C
LA

SS
ES

CheckOutMain

+void main(...)

Customer

-ArrayList items

+Customer()
+void addItem(Item i)
+Item getItem(int i)
+int numItems()

CheckOut

+CheckOut(double taxRate)
+String checkout(Customer c)

* Item

-String descr
-double price

(figure 8-28)

Another partial class

diagram for checking out

items at a store

8.10 A checkbook has an opening balance and zero or more checks. Each check has a
check number, the name of the person or company who can cash it, an amount,
and a memo. A checkbook should be able to return information about a check,
given its check number. It should also be able to give the current balance.

a. Would you implement this program using a list, set, or map? Why?

b. Without prejudicing your answer to part (a), draw a class diagram assuming
the program uses a map.

c. Implement the classes as shown in part (b). Include a main method in the
Checkbook class to test it.

8.11 Modify the prime number program in Listing 8-13 to include all the prime
numbers less than 10,000. Obviously, you want the program to calculate these
values. The most straightforward approach is to consider every integer between
2 and 10,000. If the integer is prime, add it to the set. How do you test if the
integer i is prime? Divide i by every number between 2 and i-1. If the remain
der is 0 for any of them, i is not prime. The % operator yields the remainder of
an integer division.

An equivalent test that is more efficient is to only divide by the prime numbers
less than i—that is, the numbers that are already in your set of prime numbers.
Use this more efficient approach to calculate the prime numbers.

8.12 Write a main method that repeatedly asks the user for the URL of a sound file,
downloads it, and plays it. You will need to use the newAudioClip method in
the java.applet.Applet class along with the java.applet.AudioClip
and java.net.URL classes, among others. Unfortunately, these classes won’t
play .mp3 files. There is a .wav file you may test your program with at
www.learningwithrobots.com/downloads/WakeupEverybody.wav. It’s
a large file but only plays for a few seconds.

The sample solution is less than 30 lines of code. You will need to handle at
least one checked exception.

www.learningwithrobots.com/downloads/WakeupEverybody.wav

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 459

Chapter 9 Input and Output

After studying this chapter, you should be able to:

➤	 Use the Scanner class to read information from files and the PrintWriter class
to write information to files

➤	 Locate files using absolute and relative paths

➤	 Use the Scanner class to obtain information from the user

➤	 Prompt users for information and check it for errors

➤	 Give users more control over programs by using command interpreters

➤	 Put commonly used classes in a package

➤	 Use a dialog box to obtain a filename from the user

➤	 Display an image stored in a file

Computers excel at managing large amounts of data. The data might consist of credit
card transactions at your bank, student records at your school, the card catalog at your
local library, or a song on your computer. Such data is stored in a file on a hard drive
or similar device.

In this chapter, we will learn how to work with files: How to open a file, process the
data, and close the file.

These same techniques form the basis for interacting with the program’s user via text.
The program displays text to the user; the user types text to the program. Learning
these basic techniques still has value, even in an age of graphical user interfaces.
Writing a graphical user interface is difficult and, for many programs, simply isn’t
worth the trouble. Text interfaces are often sufficient.

459

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 460

460

9.1 Basic File Input and Output

CH
AP

TE
R

9
| I

N
PU

T
AN

D
 O

U
TP

U
T

Each time you visit a Web page with your browser, the Web server responsible for deliv
ering that page records what it does in a log. On a busy Web server, this log can grow to
include millions of records. On the computer hosting my personal home page, one week
of log entries during a quiet time of year resulted in more than 360,000 records. A record
refers to one entry within the file consisting of several related pieces of information. Each
piece of information in a record is called a field. For example, a typical record1 in the
server’s log contains the information shown in Table 9-1. This particular record shows
that someone at the University of Massachusetts looked at a graphic on my Web page on
August 19, 2005.

KEY IDEA

Files are often
organized using
records.

Field Contents Meaning

128.119.246.74 The IP address, or Internet Protocol address, of the computer
requesting the Web page.

vinci5.cs.umass.edu The host name of the computer requesting the Web page. The
host name and the IP address are largely interchangeable. One
is easier for computers; the other is easier for people.

2005/8/19@11:24:14 The date and time the Web page was served.

GET The command that came from the browser requesting the page.
Other commands include POST (used for pages with forms) and
PUT (used for uploading data).

/~bwbecker/mandel/
Gods_Eye_Heart.GIF

The specific file that was requested. In this case, it isn’t a Web
page at all but a graphic that is part of a Web page. Once you
know the name of the Web server (www.cs.uwaterloo.ca), you
can reconstruct the requested URL and look at it with a browser
(www.cs.uwaterloo.ca/~bwbecker/mandel/Gods_Eye_Heart.GIF).

200 The completion code. A code that begins with 2 indicates that
the request completed normally.

135215 The size of the requested file. If the server encountered an
error, the size is replaced with a dash (-).

(table 9-1)

Information from a

typical record in a Web

server’s log

In this chapter, we will write a series of programs that can be used to explore a Web
server’s log. If you have a personal home page, you may want to obtain a log to see
what you can learn about who is accessing your page and how frequently your page is
requested.

1 The format of the record has been adjusted slightly. The program that does so is included with the
examples for this chapter in the directory formatLog. The changes consist of removing several unin
teresting fields, looking up the IP address to obtain the host name, and reformatting the date.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 461

461

When I used these programs to explore the server log for my personal home page, I
was surprised by how many times my page was accessed—612 times in one week! A
little further investigation revealed that at least 140 of these were generated by search
engines building their databases. I noticed that a professor at my alma mater accessed
my Web page, presumably to find my e-mail address (I received an e-mail from him
later that week). I was also surprised at the number of international hits (including
Finland, South Africa, Australia, Israel, Singapore, Bosnia/Herzegovina, Netherlands,
and Mexico). It was interesting to speculate how these visitors found my home page
and what kind of information they were seeking.

9.1.1 Reading from a File

The program in Listing 9-1 provides a first look at a program that processes a file,
which involves three important steps:

➤	 Lines 13–21 locate the file on the disk drive and construct a Scanner object to
obtain the information it contains. This process is called opening a file.

➤	 Lines 24–29 process the file one record at a time, printing selected records. It
uses two methods in the Scanner class, hasNextLine and nextLine.
Obtaining data from a file is called reading a file. The information obtained
from the file is called the program’s input.

➤	 Line 32 closes the file when it is no longer being used.

These three steps will be explored in detail in the following sections.

9.1
B

ASIC F
ILE IN

PU
T AN

D
 O

U
TPU

T

ch09/processLines/

Open File for Input

Listing 9-1: A program to read a Web server’s log and print records containing a given string

1 importƒjava.io.File;
2 importƒjava.io.FileNotFoundException;
3 importƒjava.util.Scanner;
4
5 /** Read a Web server's log record by record. Print those records that contain the
6 * substring "bwbecker".
7 *
8 * @author Byron Weber Becker */
9 publicƒclassƒReadServerLog

10 {
11 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
12 ƒƒ{ƒ// Open the file.
13 ƒƒƒƒScannerƒinƒ=ƒnull;
14 ƒƒƒƒtryƒ
15 ƒƒƒƒ{ƒFileƒfileƒ=ƒnewƒFile("server_log.txt");
16 ƒƒƒƒƒƒinƒ=ƒnewƒScanner(file);ƒ
17 ƒƒƒƒ}ƒcatchƒ(FileNotFoundExceptionƒex)ƒ

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 462

462
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

Listing 9-1: A program to read a Web server’s log and print records containing a given string

(continued)

18 ƒƒƒƒ{ƒSystem.out.println(ex.getMessage());
19 ƒƒƒƒƒƒSystem.out.println("in "ƒ+ƒSystem.getProperty("user.dir"));
20 ƒƒƒƒƒƒSystem.exit(1);
21 ƒƒƒƒ}
22
23 ƒƒƒƒ// Read and process each record.
24 ƒƒƒƒwhileƒ(in.hasNextLine())
25 ƒƒƒƒ{ƒStringƒrecordƒ=ƒin.nextLine();
26 ƒƒƒƒƒƒifƒ(record.indexOf("bwbecker")ƒ>=ƒ0) // author's Web pages
27 ƒƒƒƒƒƒ{ƒSystem.out.println(record);
28 ƒƒƒƒƒƒ}
29 ƒƒƒƒ}
30
31 ƒƒƒƒ// Close the file.
32 ƒƒƒƒin.close();
33 ƒƒ}
34 }

Process File

Opening a File

Conceptually, opening a file is simple. All we want to do is execute the following two lines:

Fileƒfileƒ=ƒnewƒFile("server_log.txt");
Scannerƒinƒ=ƒnewƒScanner(file);

The first line creates a File object that describes where the program should look for
the file named server_log.txt. The second line creates an object used to access the
file at that location.

If only it were that simple. In reality, things can go wrong. The most common problem,
and the only one that throws a checked exception, is when the file is not at the expected
location. The programmer may have misspelled the name as serverlog.txt, the file
may have been moved, the program may be running in an unexpected location, or the file
may not have been created yet. In any of these cases, the Scanner constructor will throw
a FileNotFoundException. Handling this exception expands the two lines we need to
execute into nine lines in Listing 9-1.

First, we need to introduce a try-catch statement around the Scanner constructor
call to handle the FileNotFoundException. We will need the Scanner object out
side of the try-catch statement, and so it is declared in line 13.

LOOKING BACK

Exceptions were
discussed in
Section 8.4.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 463

463
9.1

B
ASIC F

ILE IN
PU

T AN
D
 O

U
TPU

T

KEY IDEA

The working directory
is useful information

when a file is not
found.

Second, it is wise to handle the exception by giving the user as much information as pos
sible about where the program was looking for the missing file. This is done by getting
and printing the working directory in line 19. The working directory is the directory
(directories are also called folders) from which a program begins looking for a file. The
working directory is set when the program begins execution. The working directory can
be obtained with the query System.getProperty("user.dir").

This code results in a message similar to the one shown in Figure 9-1. The message says
the system started looking for the file with a disk drive labeled D:. That drive has a
directory named Robots. Inside Robots is a directory named examples, which con
tains a directory named ch09. Inside ch09 is processLines. That is the directory
where the program expected to find the file named server_log.txt.

For the time being, we’ll assume that in such circumstances you will simply move the
file to the directory where the system expects to find it. Later, we will learn how to
open files in other locations.

(figure 9-1)

Example of the

message printed when a

file is not found

Processing a File

Lines 24–29 in Listing 9-1 are responsible for processing the data in the file. Many
files, including the server log, are organized as one record per line of text, as shown in
Figure 9-2. The requested filenames are shortened so that each record fits on one line.

(figure 9-2) 131.107.0.106 tide536.microsoft.com 2005/8/19@11:24:13 GET /~zqu/…enu.jpg 301 354
128.119.246.74 vinci5.cs.umass.edu 2005/8/19@11:24:14 GET /~bwb…rt.GIF 200 135215

Four records from the 210.8.90.45 cam1.gw.connect.com.au 2005/8/19@11:24:16 GET /~hza…zed.jpg 200 54297
131.107.0.106 tide536.microsoft.com 2005/8/19@11:24:16 GET /~zqu/…enu.jpg 302 326 server_log.txt file

The nextLine method, used in line 25 of Listing 9-1, retrieves one line from the file.
With each repetition of the loop, it obtains the next line. This continues as long as
hasNextLine returns true. When the last line has been read, hasNextLine will
return false and the loop will stop.

Finally, the if statement contained within the loop prints out only those lines that con
tain the string bwbecker—that is, it prints out the log records pertaining to the
author’s Web pages.

http:tide536.microsoft.com
http:210.8.90.45
http:vinci5.cs.umass.edu
http:128.119.246.74
http:tide536.microsoft.com

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 464

464
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

Closing a File

Files use significant resources. Closing the file with the close method (line 32) allows
the system to free up those resources for other uses.

9.1.2 Writing to a File

The previous program simply displays selected records in the console window. If a KEY IDEA

large number of records are selected, the first records will scroll out of view long before Writing a file is the

the last records are displayed. An alternative is for the program to copy the selected opposite of reading it.

records to their own file. The process of creating a file and placing records in it is called
writing a file. The information written is called the program’s output. The terms input
and output are often used together and abbreviated as I/O.

The program in Listing 9-2 is the same as the previous program except that it writes
the selected records to a file named bwbecker.txt instead of printing them on the
console. As with reading, there are three steps to writing the file:

➤	 The file is opened at line 18 by constructing an instance of PrintWriter.

This object opens the file and provides methods for writing data to it. Like

opening a file to read it, a FileNotFoundException can be thrown.

Therefore, the constructor call is placed inside the try-catch statement but

the variable, out, is declared earlier, in line 15.

➤	 The selected records are written to the file, one record at a time, in line 29. The

PrintWriter class provides the same methods as System.out, including

print, println, and printf.

➤	 Finally, the file is closed at line 36.

These changes are shown in bold.

Listing 9-2: A program that writes matching records to a file

1 importƒjava.io.File;
2 importƒjava.io.FileNotFoundException;
3 importƒjava.io.PrintWriter;
4 importƒjava.util.Scanner;
5
6 /** Read a Web server's access log record by record. Write those records that contain the
7 * substring "bwbecker" to a file.
8 *
9 * @author Byron Weber Becker */

10 publicƒclassƒWriteMatchingLines
11 {
12 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

ch09/processLines/

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 465

465
9.1

B
ASIC F

ILE IN
PU

T AN
D
 O

U
TPU

T

Listing 9-2: A program that writes matching records to a file (continued)

13 ƒƒ{ƒ// Open the files.
14 ƒƒƒƒScannerƒinƒ=ƒnull;
15 ƒƒƒƒPrintWriterƒoutƒ=ƒnull;
16 ƒƒƒƒtryƒ
17 ƒƒƒƒ{ƒinƒ=ƒnewƒScanner(newƒFile("server_log.txt"));ƒ
18 ƒƒƒƒƒƒoutƒ=ƒnewƒPrintWriter("bwbecker.txt");ƒ
19 ƒƒƒƒ}ƒcatchƒ(FileNotFoundExceptionƒex)ƒ
20 ƒƒƒƒ{ƒSystem.out.println(ex.getMessage());
21 ƒƒƒƒƒƒSystem.out.println("in "ƒ+ƒSystem.getProperty("user.dir"));
22 ƒƒƒƒƒƒSystem.exit(1);
23 ƒƒƒƒ}
24
25 ƒƒƒƒ// Read and process each record.
26 ƒƒƒƒwhileƒ(in.hasNextLine())
27 ƒƒƒƒ{ƒStringƒrecordƒ=ƒin.nextLine();
28 ƒƒƒƒƒƒifƒ(record.indexOf("bwbecker")ƒ>ƒ0)
29 ƒƒƒƒƒƒ{ƒout.println(record);
30 ƒƒƒƒƒƒ}
31
32 ƒƒƒƒ}
33
34 ƒƒƒƒ// Close the files.
35 ƒƒƒƒin.close();
36 ƒƒƒƒout.close();
37 ƒƒ}
38 }

Open File for Input
Open File for Output

Process File

KEY IDEA

Ensure that all data is
written by calling
close before the

program ends.

Java does not always write information to the file immediately. By collecting informa
tion from several calls to print and println and writing them all at once, substantial
gains in efficiency can be realized. This process is called buffering. Some information
may not be written to the file at all if the program ends at the wrong time. To prevent
this, you should always call the close method after you are done writing to the file. It
is an error to call a print method after close has been called.

What happens if the preceding code is executed again and the file bwbecker.txt
already exists? The existing file and all the information within it will be deleted, as a
new file with the same name is created.

Sometimes you would rather append new data to the end of an existing file. In that
case, an extra step is required. Replace line 18 with the following two lines:

FileWriterƒfwƒ=ƒnewƒFileWriter("bwbecker.txt",ƒtrue);
outƒ=ƒnewƒPrintWriter(fw);

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 466

466
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

The first line constructs an object that opens the file so that new data will be appended
to it. However, the FileWriter’s methods only write individual characters; we still
want to be able to use the print methods in PrintWriter. Fortunately, the two
classes can work together to provide this capability.

If your program uses these two lines but the specified file does not exist, a new file will
be created.

9.1.3 The Structure of Files

Consider the following records from the inventory file of a computer store. The four
fields are quantity on hand, part identifier, description, and price.

10ƒ002D9249ƒComputer 1595.99
5ƒ293E993CƒKeyboard 24.99
12ƒ0003922MƒMonitor 349.99

The two programs examined in this chapter so far read such files as lines of text. In
fact, text has a richer structure.

A file is a sequence of characters. The characters that are displayed visibly on the
screen include letters, numbers, and punctuation, such as y, M, 8, and ?. Each of these
is represented in the computer using a unique value.

Some characters are less obvious, such as spaces. They are represented on the screen as
empty space. In the computer, however, they are represented by a value, just as M and y
are represented by a value. For clarity, we will often show a space as a single dot in the
middle of the line (.). Most word processors have a similar feature to help users
understand how a document is formatted.

Another less obvious character is the tab character. Like the space character, a tab is
also displayed by blank space. The length of that blank space, however, depends on a
number of factors. But no matter how long the space is, it is represented in the com
puter as a single value. For clarity, we will show a tab character with a small arrow: →.

Finally, the end of a line is also represented by a character. The exact value used
depends on the computer’s operating system, and some use a sequence of two charac
ters. Fortunately, the Scanner and PrintWriter classes allow us to ignore this detail
most of the time. We will refer to this character as the newline character. It is displayed
on the screen by moving the insertion point—the point where the next character is dis
played—to the left side of the screen and down one line. For clarity, we will show the
newline character as a down and left arrow: ↵.

The space, tab, and newline characters are collectively known as whitespace because
they appear as white space when printed on a white sheet of paper.

LOOKING AHEAD

Java’s I/O classes are
designed to work
together. More details
in Section 9.7.

KEY IDEA

Every character, even
spaces, corresponds
to a value.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 467

467
9.1

B
ASIC F

ILE IN
PU

T AN
D
 O

U
TPU

T

KEY IDEA

Lines are divided into
tokens separated by

delimiters.

Finally, we will represent the end of the file2 with h.

With these conventions, the three inventory records are shown as follows:

10.002D9249.Computer→1595.99↵
5.293E993C.Keyboard→24.99↵
12.0003922M.Monitor→349.99↵
u

Lines of text are often divided into groups of characters called tokens. The characters
that divide one token from the next are called delimiters. The most common delimiters
are white space characters. Using white space as delimiters, the previous lines each con
tain four tokens. Dividing the line into tokens enables us to obtain the information it
contains more flexibly.

Data Acquisition Methods

The Scanner class provides methods to read a file token by token as well as line by
line. The next method will read the next token, returning it as a String. Calling
the next method on the inventory records will return, in order, the strings 10,
002D9249, Computer, and so on.

Another method, nextInt, will attempt to read the next token and convert it to an
integer before returning it. If the next token can’t be converted to an integer, nextInt
will throw an InputMismatchException. A third method, nextDouble, behaves
similarly except that it attempts to convert the next token to a double value. These
methods can be described as data acquisition methods because they are used to acquire
data from the file.

A program fragment that reads the inventory records and prints a simple report is
shown in Listing 9-3. It assumes a Scanner object named in has already been created.

ch09/inventoryReport/

Listing 9-3: A program fragment that reads the tokens in an inventory record

1 // Open the file.
2 whileƒ(in.hasNextLine())
3 {ƒintƒquantityƒ=ƒin.nextInt();
4 ƒƒStringƒpartIDƒ=ƒin.next();
5 ƒƒStringƒdescriptionƒ=ƒin.next();
6 ƒƒdoubleƒcostƒ=ƒin.nextDouble();
7 ƒƒin.nextLine();
8

2 Actually, the end of the file is not a character in the same way that a space or newline is a character.
Nevertheless, showing it as a character is a useful fiction.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 468

468
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

Listing 9-3: A program fragment that reads the tokens in an inventory record (continued)

9 ƒƒ// Print in a different order, including a calculated value.
10 ƒƒSystem.out.printf("%-15s%5d%8.2f%10.2f%n",ƒdescription,
11 ƒƒƒƒƒƒƒƒƒƒƒƒƒquantity,ƒcost,ƒquantityƒ*ƒcost);
12 }

LOOKING BACK

The printf method
was discussed in
Section 7.2.4.

As this program reads the file, the Scanner object maintains a cursor that marks its
position. The cursor divides the file into two parts: the part that has already been read,
and the part that has not. The cursor is positioned just before the first character when
the file is opened.

Table 9-2 traces part of the execution of the previous program. It shows the position of
the cursor with a diamond (♦) in the column labeled “Input.”

Statement Input quantity partID descr

(table 9-2)

Tracing the partial

execution of the

program fragment in

Listing 9-3

cost

♦10.002D9249.Computer→1595.99↵

2ƒwhileƒ(in.hasNextLine())ƒ

♦10.002D9249.Computer→1595.99↵

3ƒ{ƒintƒquantityƒ=ƒin.nextInt();ƒƒƒƒƒƒ

10♦.002D9249.Computer→1595.99↵ƒ 10ƒ

4ƒƒƒStringƒpartNumƒ=ƒin.next();ƒ

10.002D9249♦.Computer→1595.99↵ƒ 10 002D9249

5ƒƒƒStringƒdescriptionƒ=ƒin.next();

10.002D9249.Computer♦→1595.99↵ƒ 10 002D9249 Computer

6ƒƒƒdoubleƒcostƒ=ƒin.nextDouble();

10.002D9249.Computer→1595.99♦↵ƒ 10 002D9249 Computer 1595.99

7ƒƒƒin.nextLine();ƒƒƒƒƒƒƒ

10.002D9249.Computer→1595.99↵ 10 002D9249 Computer 1595.99
♦5.293E993C.Keyboard→24.99↵ƒƒƒƒƒƒ

10ƒƒSystem.out.printf...
2ƒwhileƒ(in.hasNextLine())ƒƒƒƒƒƒƒ

10.002D9249.Computer→1595.99↵ 10 002D9249 Computer 1595.99
♦5.293E993C.Keyboard→24.99↵

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 469

469

Statement Input quantity partID descr cost

3ƒ{ƒintƒquantityƒ=ƒin.nextInt();ƒƒƒƒƒƒƒ

10.002D9249.Computer1→1595.99↵
5♦.293E993C.Keyboard→24.99↵ƒ

5 002D9249 Computer 1595.99

(table 9-2) continued

Tracing the partial

execution of the

program fragment in

Listing 9-3

KEY IDEA

nextLine does not
skip leading white
space. Other next

methods do.

Beginning at the top of Table 9-2, the while statement calls hasNextLine to deter
mine whether additional text comes after the cursor. hasNextLine does not move the
cursor.

When the nextInt method executes, it begins at the cursor and looks ahead at the fol
lowing characters. It skips any leading delimiters such as spaces, and then examines the
characters until the next delimiter character is found. In this example, these characters
are 10, which can be interpreted as an integer. The cursor is therefore moved just past
the token, and the integer 10 is returned. If the characters cannot be interpreted as an
integer, an exception is thrown and the cursor does not move.

The Scanner class contains methods to read and interpret the next token for many
types. They all behave essentially the same as nextInt:

➤	 Skip delimiting characters.

➤	 Examine the characters up to the next delimiter.

➤	 If the examined characters can be interpreted as the specified type, move the cur
sor beyond them and return the token as the specified type. If the characters can
not be interpreted as the specified type, throw a InputMismatchException
and leave the cursor’s position unchanged.

The exception is the nextLine method. It does not skip leading white space and
returns the rest of the line rather than a token.

The most commonly used data acquisition methods in the Scanner class are shown in
Table 9-3. In this table, each method is followed by a description and examples.

9.1
B

ASIC F
ILE IN

PU
T AN

D
 O

U
TPU

T

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 470

470
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

(table 9-3)

Data acquisition

methods in the

Method Description and Examples
Scanner class

intƒnextInt()
ƒƒ

Examines the next token in the input, skipping any leading delimiters. If the token can be
interpreted as an int, the cursor is moved past the token and the int value is returned.
Otherwise, an InputMismatchException is thrown and the cursor is not moved. Examples:

Initial Situation Returns Final Situation

ABC♦..10.DEF↵
ABC♦.-15↵
ABC♦.ten.DEF↵
ABC♦.↵10.DEF

10
-15

Exception
10

ABC..10♦.DEF↵
ABC.-15♦↵
ABC♦.ten.DEF↵
ABC.↵10♦.DEF

Please note that the last example contains a newline character ↵ in the middle of the line. A text
editor would show this as two lines.

doubleƒnextDouble()
ƒƒ

Like nextInt, but attempts to interpret the token as a double. Examples:

Initial Situation Returns Final Situation

ABC♦..10.5.DEF↵
ABC♦.-1.5E3.DEF↵
ABC♦.10.DEF↵
ABC♦.ten.DEF↵

10.5
-1500.0
10.0

Exception

ABC..10.5♦.DEF↵
ABC.-1.5E3♦.DEF↵
ABC.10♦.DEF↵
ABC♦.ten.DEF↵

booleanƒnextBoolean()
ƒƒ

Like nextInt, but attempts to interpret the token as a boolean. Examples:

Initial Situation Returns Final Situation

ABC♦..true.DEF↵
ABC♦.FALSE↵
ABC♦.truest.DEF↵

true
false

Exception

ABC..true♦.DEF↵
ABC.FALSE♦↵
ABC♦.truest.DEF↵

Stringƒnext()
ƒƒ

Reads the next token and returns it as a String. Examples:

Initial Situation Returns Final Situation

ABC♦..xyz.DEF↵
ABC♦.FALSE↵
ABC♦.10.DEF↵
ABC♦u
ABC♦↵..xyz.DEF

“xyz”
“FALSE”

“10”
Exception

“xyz”

ABC..xyz♦.DEF↵
ABC.FALSE♦↵
ABC.10♦.DEF↵
ABC♦u
ABC↵..xyz♦.DEF

StringƒnextLine()
ƒƒ

Reads and returns as a String all the characters from the cursor up to the next newline
character or the end of the file, whichever comes first. Moves the cursor past the characters that
were read and the following newline, if there is one. nextLine does not skip leading delimiters.
Examples:

Initial Situation Returns Final Situation

ABC♦..xyz.DEF↵
ABC♦..xyz.DEFu
ABC♦u

“ ..xyz.DEF”
“ ..xyz.DEF”
Exception

ABC..xyz.DEF↵♦
ABC..xyz.DEF♦u
ABC♦u

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 471

471

KEY IDEA

Choose a method
based on the desired

return type.

KEY IDEA

hasNextInt is used
to determine if calling

nextInt will
succeed.

Many tokens may be read with more than one method. For example, the token 10 can
be read with nextInt, nextDouble, and next. It can also be read with nextLine,
which may also include additional tokens. The difference is in the type returned.
nextInt returns the token as an int, ready to be assigned to an integer variable.
next, on the other hand, returns it as a String, which can be assigned to a variable of
type String but not a variable of type int.

Data Availability Methods

In addition to the data access methods shown in Table 9-3, the Scanner class has data
availability methods. hasNextLine is one of these methods. Data availability methods
are used to determine whether data of a given type is available. Each of the data acqui
sition methods have a corresponding data availability method that can be used to
determine if calling the data acquisition method will succeed.

These methods include hasNext, hasNextInt, hasNextDouble, hasNextBoolean,
and hasNextLine. They all return boolean values.

For an example of using a data availability method, consider again the Web server log.
Normally, the last token of the record is an integer specifying the size of the data
served. However, if the server encounters an error and cannot serve the requested data,
the log will contain a dash (-). If nextInt is called on such a record, an exception will
be thrown.

Instead, use hasNextInt to determine if an integer is available. If it is, call nextInt
to acquire it. If hasNextInt returns false, we can read the information another way.
This is shown in Listing 9-4 in lines 10–15.

9.1
B

ASIC F
ILE IN

PU
T AN

D
 O

U
TPU

T

Listing 9-4: A code fragment to read individual tokens in a Web server’s log, accounting for either

an integer size or a dash (-) in the last token

1 ƒƒwhile(in.hasNextLine())
2 ƒƒ{ƒStringƒipAddressƒ=ƒin.next();
3 ƒƒƒƒStringƒhostNameƒ=ƒin.next();
4 ƒƒƒƒStringƒwhenƒ=ƒin.next();
5 ƒƒƒƒStringƒcmdƒ=ƒin.next();
6 ƒƒƒƒStringƒurlƒ=ƒin.next();
7 ƒƒƒƒintƒcompletionCodeƒ=ƒin.nextInt();
8
9 ƒƒƒƒ// Read the size of the served page. Set size to 0 if there was an error recorded.

10 ƒƒƒƒintƒsizeƒ=ƒ0;
11 ƒƒƒƒifƒ(in.hasNextInt())
12 ƒƒƒƒ{ƒsizeƒ=ƒin.nextInt();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// Read the size.
13 ƒƒƒƒ}ƒelse

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 472

472
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

Listing 9-4: A code fragment to read individual tokens in a Web server’s log, accounting for either

an integer size or a dash (-) in the last token (continued)

14 ƒƒƒƒ{ƒin.next();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// Skip the dash.
15 ƒƒƒƒ}
16 ƒƒƒƒin.nextLine();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// Move cursor to next line.
17
18 ƒƒƒƒ// Process the data.
19 ƒƒ}

9.2 Representing Records as Objects

Reading one record can become complex, as Listing 9-4 indicates. The complexity only
gets worse as the number of fields and the number of exceptions increase as in lines 11–15.
All that code can obscure our understanding of the enclosing loop and the code processing
the records.

An excellent way to address these issues is to write helper methods. An even better
solution is to write a new class so that each record can be represented as an object. The
helper methods go in that class.

9.2.1 Reading Records as Objects

For an example of representing a record as an object, consider the ServerRecord
class shown in Listing 9-5. The helper method to read the file is actually the construc
tor. It takes a Scanner object as a parameter and uses it to read the information for
one server log record. The code opening the file, the loop reading multiple records, and
the code closing the file are in another class (see Listing 9-6).

Instance variables in ServerRecord correspond to the fields in the record. Each field
is stored in the appropriate variable when it is read.

Note that the date and time from the record is stored as a DateTime object.
Furthermore, the DateTime class has a constructor taking a Scanner object as a para
meter. This allows the ServerRecord constructor to quickly and easily delegate read
ing the date and time to the DateTime class in line 25.

This technique assumes that the constructor is called with the Scanner’s cursor posi
tioned immediately before the record. When the constructor finishes executing, the
cursor must be immediately after the record, ready for the next record to be read.

KEY IDEA

Represent records as
objects.

KEY IDEA

The constructor
begins and ends with
the cursor at the
beginning of a record.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 473

473

ServerRecord should also provide methods required to process the record. Examples
might include methods to get the size of the served page, to determine if the URL con
tains a specified string, to determine if the hostname contains a specified string, or to
get the date the page was served.

The ServerRecord class also includes a method named write that writes the record to a
file in the same format in which it was read. This allows the program to read its own files.
write takes a PrintWriter object as its parameter. As with the reading of the file, the
responsibility for opening and closing the file rests with the calling code (see Listing 9-6).

9.2
R

EPRESEN
TIN

G
 R

ECO
RD

S AS O
BJECTS

ch09/processRecords/

LOOKING AHEAD

A class like
ServerRecord is an
excellent candidate for

a library. See
Section 9.6.

Construct Record
from File

Listing 9-5: A class representing records in a Web server’s log

1 importƒjava.util.Scanner;
2 importƒjava.io.PrintWriter;
3 importƒbecker.util.DateTime;
4
5 /** Represent one server log record.
6 *
7 * @author Byron Weber Becker */
8 publicƒclassƒServerRecordƒextendsƒObject
9 {

10 ƒƒprivateƒStringƒipAddress;
11 ƒƒprivateƒStringƒhostName;
12 ƒƒprivateƒDateTimeƒwhen;
13 ƒƒprivateƒStringƒcmd;
14 ƒƒprivateƒStringƒurl;
15 ƒƒprivateƒintƒcompletionCode;
16 ƒƒprivateƒintƒsizeƒ=ƒ0;
17 ƒƒprivateƒbooleanƒerrorƒ=ƒtrue;ƒƒƒ// Assume an error until proven otherwise.
18
19 ƒƒ/** Construct an object representing one server record using information read from a file.
20 ƒƒ* @param in An open file, positioned at the beginning of the next record. */
21 ƒƒpublicƒServerRecord(Scannerƒin)
22 ƒƒ{ƒsuper();
23 ƒƒƒƒthis.ipAddressƒ=ƒin.next();
24 ƒƒƒƒthis.hostNameƒ=ƒin.next();
25 ƒƒƒƒthis.whenƒ=ƒnewƒDateTime(in);
26 ƒƒƒƒthis.cmdƒ=ƒin.next();
27 ƒƒƒƒthis.urlƒ=ƒin.next();
28 ƒƒƒƒthis.completionCodeƒ=ƒin.nextInt();
29 ƒƒƒƒifƒ(in.hasNextInt())
30 ƒƒƒƒ{ƒthis.sizeƒ=ƒin.nextInt();
31 ƒƒƒƒƒƒthis.errorƒ=ƒfalse;
32 ƒƒƒƒ}ƒ
33

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 474

474
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

Listing 9-5: A class representing records in a Web server’s log (continued)

34 ƒƒƒƒ// Get ready to read the next record
35 ƒƒƒƒin.nextLine();
36 ƒƒ}
37
38 ƒƒ/** Write the record to a file in the same format it was read.
39 ƒƒ * @param out An open output file. */
40 ƒƒpublicƒvoidƒwrite(PrintWriterƒout)
41 ƒƒ{ƒout.print(this.ipAddressƒ+ƒ" "ƒ+ƒthis.hostNameƒ+ƒ"ƒ");
42 ƒƒƒƒout.print(this.when.toString()ƒ+ƒ" "ƒ+ƒthis.cmdƒ+ƒ"ƒ");
43 ƒƒƒƒout.print(this.urlƒ+ƒ" "ƒ+ƒthis.completionCodeƒ+ƒ"ƒ");
44 ƒƒƒƒifƒ(this.error)
45 ƒƒƒƒ{ƒout.print("-");
46 ƒƒƒƒ}ƒelse
47 ƒƒƒƒ{ƒout.print(this.size);
48 ƒƒƒƒ}
49 ƒƒƒƒout.println();
50 ƒƒ}
51
52 ƒƒ// Some methods have been omitted.
53 }

Listing 9-6: Client code to read server records and write selected records to a file

ch09/processRecords/
1 importƒjava.io.*;

2 importƒjava.net.*;

3 importƒjava.util.Scanner;

4

5 /** Read a Web server's access log. Write selected records to a file.

6 *

7 * @author Byron Weber Becker */

8 publicƒclassƒReadServerRecords

9 {

10 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

11 ƒƒ{ƒ// Open the files.

12 ƒƒƒƒScannerƒinƒ=ƒnull;

13 ƒƒƒƒPrintWriterƒoutƒ=ƒnull;

14 ƒƒƒƒtryƒ

Open File for Input
15 ƒƒƒƒ{ƒinƒ=ƒnewƒScanner(newƒFile("server_log.txt"));ƒ Open File for Output
16 ƒƒƒƒƒƒoutƒ=ƒnewƒPrintWriter("largeFiles.txt");
17 ƒƒƒƒ}ƒcatchƒ(FileNotFoundExceptionƒex)ƒ

http:import�java.net
http:import�java.io

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 475

475
9.2

R
EPRESEN

TIN
G
 R

ECO
RD

S AS O
BJECTS

Listing 9-6: Client code to read server records and write selected records to a file (continued)

18 ƒƒƒƒ{ƒSystem.out.println(ex.getMessage());
19 ƒƒƒƒƒƒSystem.out.println("in "ƒ+ƒSystem.getProperty("user.dir"));
20 ƒƒƒƒƒƒSystem.exit(1);
21 ƒƒƒƒ}
22
23 ƒƒƒƒ// Read and process each record.
24 ƒƒƒƒwhileƒ(in.hasNextLine())
25 ƒƒƒƒ{ƒServerRecordƒsrƒ=ƒnewƒServerRecord(in);
26 ƒƒƒƒƒƒifƒ(sr.getSize()ƒ>=ƒ25000)
27 ƒƒƒƒƒƒ{ƒsr.write(out);
28 ƒƒƒƒƒƒ}
29 ƒƒƒƒ}
30
31 ƒƒƒƒ// Close the files.
32 ƒƒƒƒin.close();
33 ƒƒƒƒout.close();
34 ƒƒ}
35 }

Process File

KEY IDEA

Every program using
a file must agree on

the file’s format.

ch09/fileFormat/

Construct Record
from File

9.2.2 File Formats

Many files are used by more than one program. For example, the Web server writes the
log file while various reporting programs read it. These programs need to agree on how
the file is organized: the order of the fields within the record, which delimiters are used
to separate tokens, and so on. The organization of the file is known as the file format.

To better appreciate the effect the file format has on the program, let’s consider again
the simple file format for the computer store inventory file. Recall that it had four
fields, as shown in the following example records:

10ƒ002D9249ƒComputer 1595.99

5ƒ293E993CƒKeyboard 24.99

12ƒ0003922MƒMonitor 349.99

A constructor to read these records is quite simple:

publicƒInventory1(Scannerƒin)

{ƒsuper();

ƒƒthis.quantityƒ=ƒin.nextInt();

ƒƒthis.partIDƒ=ƒin.next();

ƒƒthis.descriptionƒ=ƒin.next();

ƒƒthis.priceƒ=ƒin.nextDouble();

ƒƒin.nextLine();

}

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 476

476
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

However, this code assumes that each field consists of a single token. If the description were
LCDƒMonitor instead of simply Monitor, this would not work because in.next()
would read LCD. The call to nextDouble() would attempt to turn the string Monitor
into a double, and fail.

The simplest way to handle this change is to change the file format. By putting single
token fields such as quantity, price, and part identifier first, and putting the multiple
token field (description) last, the description can be read using nextLine; in other
words, order the record as shown in the following example:

12ƒ0003922Mƒ349.99ƒLCDƒMonitor

Code to read this file format can be found in ch09/fileFormat/Inventory2.java.

However, suppose that there is a second multiple token field, such as the name of the
supplier. If we simply add it on to the end of the record, we have no reliable way of
knowing where one field ends and the next begins unless we use a different delimiter that
does not appear in either field, such as a colon (:). This is shown in the following record:

12ƒ0003922Mƒ349.99ƒLCDƒMonitorƒ:ƒACMEƒComputerƒDistributors

Such a record could be read with code such as the following. It reads the description a
token at a time, building up the description until the delimiter is found. It then reads the
last multiple token field with nextLine, trimming off any leading or trailing blanks.

publicƒInventory3(Scannerƒin)
{ƒ// Code to read quantity, part identifier, and price is omitted
ƒƒthis.descriptionƒ=ƒ"";
ƒƒStringƒtokenƒ=ƒin.next();
ƒƒwhileƒ(!token.equals(":"))
ƒƒ{ƒthis.descriptionƒ+=ƒ"ƒ"ƒ+ƒtoken;
ƒƒƒƒtokenƒ=ƒin.next();
ƒƒ}
ƒƒthis.distributorƒ=ƒin.nextLine().trim();
}

The Scanner class takes this idea one step further by allowing us to specify the delim
iters it uses. If we replace each white space delimiter with a colon, for example, then
even multiword phrases are treated as a single token. Consider the following record:

12:M0003922:349.99:LCDƒMonitor:ACMEƒComputerƒDistributors:

KEY IDEA

Simple changes to the
file format can make a
big difference in the
code that reads it.

ch09/fileFormat/

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 477

477
9.3

U
SIN

G
 TH

E F
ILE C

LASS

ch09/fileFormat/

KEY IDEA

Design the file format
to make your code

easy to read, write,
and understand.

This record can be read by calling in.useDelimiter(“:”) immediately after open
ing the file. The ServerRecord constructor can now read each of the tokens with a
single call, as follows:

publicƒInventory4(Scannerƒin)
{ƒthis.quantityƒ=ƒin.nextInt();
ƒƒthis.partIDƒ=ƒin.next();
ƒƒthis.priceƒ=ƒin.nextDouble();
ƒƒthis.descriptionƒ=ƒin.next();
ƒƒthis.distributorƒ=ƒin.next();
ƒƒin.nextLine();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// Move to the next line of the file.
}

Because newline characters are no longer delimiters, the colon at the end of the record
and the call to nextLine are required.

There is one more file format variation that bears mentioning: Simply place each mul
tiple token field like description and distributor on its own line. No law
requires a record to use only one line. This simple idea of placing each multiple token
field on its own line helps keep both the file and the code easy to read, write, and
understand. To make the file easier to read, you may want to place a blank line
between each pair of records.

9.3 Using the File Class

To open a file, a File object must be constructed and given the name of the file, such
as server_log.txt. The resulting object can be passed to a Scanner constructor,
but it can also be useful by itself. The sections that follow investigate valid filenames,
explain how to specify file locations, and discuss the methods this class provides.

9.3.1 Filenames

You can’t name a file anything you want because some characters are not allowed. The
Windows operating system, for example, does not allow a filename to contain any of
the following characters: \ / : * ? " < > |.

Filenames often have an extension, such as .txt. An extension is whatever follows the
last period in the name, and is often used to identify the kind of information stored in
the file. For example, a file with an extension of .html contains a Web page, whereas
a file with an extension of .jpg means it contains a graphic.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 478

478
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

9.3.2 Specifying File Locations

Modern computers use a hierarchical system for locating directories and files. The hier
archy is depicted as an upside-down tree with branches, as shown in Figure 9-3.
Directories can contain either files (white) or other directories (green). For example,
the directory cs101 contains two other directories, A09 and A10. The directory A09
contains four files, including ServerRecord.java. AO9 also includes a directory,
logs, which includes three additional files.

(figure 9-3)

Hierarchical file system in

which folder icons

represent directories and

boxes represent files

D:

Comm... cs101 cs241

A09 A10

logsMain.java

ServerRecord.java

Report.java

log_01.txt

log_02.txt

log_03.txt

Main.java

Explorer.java

test_log.txt

explorer.ini

An absolute path begins with the root of the tree (D:) and specifies all of the directories
between it and the desired file. For example, the hierarchy shown in Figure 9-3 con
tains two files named Main.java. The following statement uses an absolute path to
specify one of them:

Fileƒfƒ=ƒnewƒFile("D:/cs101/A09/Main.java");

The directories in the path are separated with a special character, typically / (Unix and
Macintosh) or \ (Windows). Java will accept either, but / is easier because \ is Java’s
escape character for strings.

Files can also be specified with a relative path from the program’s working directory.
Suppose the current working directory is A09. A name without a prefix specifies a file
in that directory—for example, test_log.txt. You can also name a file in a subdi
rectory of the working directory—for example, logs/log_01.txt. The special name
.. specifies the parent directory. The following statement uses a relative path to spec
ify the initialization file in A10:

Fileƒinitƒ=ƒnewƒFile("../A10/explorer.ini");

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 479

479

Relative paths are most useful when the program’s location and the file’s location are
related. If the program moves to a new location (such as submitting it electronically to
be marked), the file should also move. Absolute paths are more useful when the loca
tion of the file is independent of the location of the program using it.

Knowing your program’s working directory is a key to using relative paths effectively.
You can find it with the following statement:

System.out.println(System.getProperty("user.dir"));

The System class maintains a map of keys and properties for the running program.
The string “user.dir” is the key for the working directory property. Other keys
include “user.name” (the user’s account name); “os.name” (the computer’s operat
ing system); and “line.separator” (the character or sequence of characters separat
ing lines in a file, represented earlier with ↵).

9.3.3 Manipulating Files

The File constructor can have either an absolute or a relative path as its argument.
The resulting object represents a path to a file or a directory. The file or directory may
or may not exist.

A File object can both answer a number of useful questions about the path it repre
sents and perform a number of operations on the file system. Some of these operations
are summarized in Table 9-4. Technically, a directory is a special kind of file. The
online documentation often uses “file” to refer to either; Table 9-4 does the same.

9.3
U

SIN
G
 TH

E F
ILE C

LASS

(table 9-4)

Summary of methods in

the File class

Method Description

booleanƒcanRead() Determines whether this program has permission to read
from the file.

boolean canWrite() Determines whether this program has permission to write
to the file.

boolean delete() Deletes the file or directory. Directories must be empty
before they can be deleted. Returns true if successful.

boolean exists() Determines whether the file exists.

StringƒgetAbsolutePath() Gets the absolute path for this file.

File getParentFile() Gets a File object representing this file’s parent directory.
Returns null if this file doesn’t have a parent.

boolean isFile() Determines whether the path specifies a file.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 480

480
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

Method Description

booleanƒ
ƒƒisDirectory()

Determines whether the path specifies a directory.

longƒlength() Gets the number of characters in the file.

booleanƒmkDir() Makes the directory represented by this File. Returns
true if successful.

(table 9-4) continued

Summary of methods in

the File class

9.4 Interacting with Users

Without input from users, most programs are not worth writing. A word processor that
always typed the same essay, regardless of what the user wanted to say, would be worth
less. A game program that didn’t react to the game player’s decisions would be boring.

This section and the next will discuss how to interact with the user of your program to
modify how the program behaves. As an example, we will modify the program in
Listing 9-6, which currently processes a server log, printing only those records result
ing from serving a file larger than or equal to 25,000 bytes. Our new program will ask
the user which log file to process and the minimum served file size to report. In partic
ular, we want to implement the following pseudocode:

StringƒfileNameƒ=ƒask the user for the log file to open
intƒminSizeƒ=ƒask the user for the minimum served file size
open the log file named in fileName
whileƒ(log file has another line)
{ƒServerRecordƒsrƒ=ƒnewƒServerRecord(log file);
ƒƒifƒ(sr.getSize()ƒ>=ƒminSize)
ƒƒ{ƒprint the record
ƒƒ}
}
close the log file

9.4.1 Reading from the Console

Fortunately, the techniques we learned to read from a file can also be used to read
information from the console. We still use the Scanner class, but we construct the
Scanner object slightly differently, as follows:

Scannerƒcinƒ=ƒnewƒScanner(System.in);

System.in is an object similar to System.out. Scanner uses it to read from the con
sole. Unlike opening a file, we are not required to catch any exceptions.

http:Scanner�cin�=�new�Scanner(System.in

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 481

481

Before we implement the pseudocode discussed earlier, consider the sample program
shown in Listing 9-7. It illustrates the important elements of reading from the console.
The result of running this program is shown in Figure 9-4.

ch09/readConsole/

Listing 9-7: A short program demonstrating reading from the console

1 importƒjava.util.Scanner;
2
3 publicƒclassƒReadConsole
4 {
5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
6 ƒƒ{ƒScannerƒcinƒ=ƒnewƒScanner(System.in);
7
8 ƒƒƒƒSystem.out.print("Enter an integer: ");
9 ƒƒƒƒintƒaƒ=ƒcin.nextInt();

10 ƒƒƒƒSystem.out.print("Enter an integer: ");
11 ƒƒƒƒintƒbƒ=ƒcin.nextInt();
12
13 ƒƒƒƒSystem.out.println(aƒ+ƒ" * "ƒ+ƒbƒ+ƒ"ƒ=ƒ"ƒ+ƒaƒ*ƒb);
14 ƒƒ}
15 }

9.4
IN

TERACTIN
G
 W

ITH
 U

SERS

The program begins by creating a new Scanner object used to read from the console.
It’s named cin, short for “console input.”

KEY IDEA At lines 8 and 10, the program prints a prompt for the user. The prompt informs the
Prompt the user when user that input is expected. In Figure 9-4, the user responded to the first prompt with

input is expected. 3↵. That is, the user entered the digit 3 and the Enter key. The Enter key is the user’s
cue to the program that it should read the input and process it. The program waits to
read the input until Enter is pressed. The online documentation uses the term block,
which means to wait for input.

(figure 9-4)

Result of running the

program shown in

Listing 9-7

9.4.2 Checking Input for Errors

Unfortunately, if the user misreads the prompt and enters three↵, the program will
throw an exception, as shown in Figure 9-5.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 482

482
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

(figure 9-5)

Result of entering data

with an inappropriate type

The program can be protected from such errors with the code shown in Listing 9-8.
The loop in lines 9–19 verifies that the next token is an integer. If it is not, the program
reads it and displays a helpful message. This action gives the user the opportunity to try
again. When an integer is entered, it is read in line 12, and the loop ends with the
break in line 14.

Listing 9-8: Rewriting Listing 9-7 to check for input errors

1 importƒjava.util.Scanner;
2
3 publicƒclassƒReadConsoleChecked
4 {
5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
6 ƒƒ{ƒScannerƒcinƒ=ƒnewƒScanner(System.in);
7
8 ƒƒƒƒintƒaƒ=ƒ0;
9 ƒƒƒƒwhileƒ(true)

10 ƒƒƒƒ{ƒSystem.out.print("Enter an integer: ");
11 ƒƒƒƒƒƒifƒ(cin.hasNextInt())
12 ƒƒƒƒƒƒ{ƒaƒ=ƒcin.nextInt();
13 ƒƒƒƒƒƒƒƒcin.nextLine();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// consume remaining input
14 ƒƒƒƒƒƒƒƒbreak;
15 ƒƒƒƒƒƒ}ƒelse
16 ƒƒƒƒƒƒ{ƒStringƒnextƒ=ƒcin.nextLine();ƒƒƒ// consume the error
17 ƒƒƒƒƒƒƒƒSystem.out.println(nextƒ+ƒ" is not an integer such as 10 or -3.");
18 ƒƒƒƒƒƒ}
19 ƒƒƒƒ}
20 ƒƒƒƒ// Repeat lines 8–19, but read the data entered into variable b.
33
34 ƒƒƒƒSystem.out.println(aƒ+ƒ"ƒ*ƒ"ƒ+ƒbƒ+ƒ"ƒ=ƒ"ƒ+ƒaƒ*ƒb);
35 ƒƒ}
36 }

ch09/readConsole/

Error-Checked Input

LOOKING BACK
The need to repeat essentially identical code to read the second integer suggests that a

Class methods
method should be written. Such a method does not rely on any instance variables and were discussed in
can therefore be a class method. In fact, a whole set of similar methods will be needed. Section 7.5.2

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 483

483
9.4

IN
TERACTIN

G
 W

ITH
 U

SERS

KEY IDEA

The Prompt class
must be used for all of
the console input—or

none of it.

LOOKING AHEAD

The problem set will
ask you to add to this

library.

We can place them in a class named Prompt and call them as shown in the following
example:

intƒaƒ=ƒPrompt.forInt("Enter an integer: ");

Listing 9-9 shows the beginning of the class. Notice that line 9 declares a static
(class) variable used to read from the console. One consequence of this decision is that
all input from the console must be obtained with the methods in this class. Using more than
one Scanner object to read from the same source (that is, System.in) will not work reli
ably.

Listing 9-9 also includes the methods forInputFile and forInputScanner. The
first method uses the File class to verify that a string entered by the user specifies a file
that exists and can be read by this program. The second method uses the first to open
the specified file using Scanner. Putting this code in its own class has the following
advantages:

➤	 We can avoid writing it anew for each program that asks the user for a file or
integer to process.

➤	 We can put the try-catch statement here, rather than cluttering the main
program with it.

➤	 If the methods need enhancing or debugging, there is only one place that
requires attention.

ch09/userIO/

Error-Checked Input

Listing 9-9: A class providing error-checked reading of an integer and a filename

1 importƒjava.util.Scanner;
2 importƒjava.io.*;
3
4 /** A set of useful static methods for interacting with a user via the console.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒPromptƒextendsƒObject
8 {
9 ƒƒprivateƒstaticƒfinalƒScannerƒinƒ=ƒnewƒScanner(System.in);

10
11 ƒƒ/** Prompt the user to enter an integer.
12 ƒƒ* @param prompt The prompting message for the user.
13 ƒƒ* @return The integer entered by the user. */
14 ƒƒpublicƒstaticƒintƒforInt(Stringƒprompt)
15 ƒƒ{ƒwhileƒ(true)
16 ƒƒƒƒ{ƒSystem.out.print(prompt);
17 ƒƒƒƒƒƒifƒ(Prompt.in.hasNextInt())
18 ƒƒƒƒƒƒ{ƒintƒanswerƒ=ƒPrompt.in.nextInt();
19 ƒƒƒƒƒƒƒƒPrompt.in.nextLine();ƒ// consume remaining input

http:System.in

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 484

484
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

Listing 9-9: A class providing error-checked reading of an integer and a filename (continued)

20 ƒƒƒƒƒƒƒƒreturnƒanswer;
21 ƒƒƒƒƒƒ}ƒelse
22 ƒƒƒƒƒƒ{ƒStringƒinputƒ=ƒPrompt.in.nextLine();
23 ƒƒƒƒƒƒƒƒSystem.out.println("Error: "ƒ+ƒinput
24 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ+ƒ" not recognized as an integer such as '10' or '-3'.");
25 ƒƒƒƒƒƒ}
26 ƒƒƒƒ}
27 ƒƒ}
28
29 ƒƒ/** Prompt the user for a file to use as input.
30 ƒƒ* @param prompt The prompting message for the user.
31 ƒƒ* @return A File object representing a file that exists and is readable. */
32 ƒƒpublicƒstaticƒFileƒforInputFile(Stringƒprompt)
33 ƒƒ{ƒwhileƒ(true)
34 ƒƒƒƒ{ƒSystem.out.print(prompt);
35 ƒƒƒƒƒƒStringƒnameƒ=ƒin.nextLine().trim();
36 ƒƒƒƒƒƒFileƒfƒ=ƒnewƒFile(name);
37 ƒƒƒƒƒƒifƒ(!f.exists())
38 ƒƒƒƒƒƒ{ƒSystem.out.println("Error: "ƒ+ƒnameƒ+ƒ" does not exist.");
39 ƒƒƒƒƒƒ}ƒelseƒifƒ(f.isDirectory())
40 ƒƒƒƒƒƒ{ƒSystem.out.println("Error: "ƒ+ƒnameƒ+ƒ" is a directory.");
41 ƒƒƒƒƒƒ}ƒelseƒifƒ(!f.canRead())
42 ƒƒƒƒƒƒ{ƒSystem.out.println("Error: "ƒ+ƒnameƒ+ƒ" is not readable.");
43 ƒƒƒƒƒƒ}ƒelse
44 ƒƒƒƒƒƒ{ƒreturnƒf;
45 ƒƒƒƒƒƒ}
46 ƒƒƒƒ}
47 ƒƒ}
48 ƒƒ
49 ƒƒ/** Prompt the user for a file to use as input.
50 ƒƒ* @param prompt The prompting message for the user.
51 ƒƒ* @return A Scanner object ready to read the file specified by the user. */
52 ƒƒpublicƒstaticƒScannerƒforInputScanner(Stringƒprompt)
53 ƒƒ{ƒtryƒ
54 ƒƒƒƒ{ƒreturnƒnewƒScanner(Prompt.forInputFile(prompt));
55 ƒƒƒƒ}ƒcatchƒ(FileNotFoundExceptionƒex)ƒ
56 ƒƒƒƒ{ƒ// Shouldn't happen, given the work we do in forInputFile.
57 ƒƒƒƒƒƒSystem.out.println(ex.getMessage());
58 ƒƒƒƒƒƒSystem.exit(1);
59 ƒƒƒƒ}
60 ƒƒƒƒreturnƒnull;ƒ// for the compiler
61 ƒƒ}
62 }

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 485

485
9.4

IN
TERACTIN

G
 W

ITH
 U

SERS

Using Prompt

The completed program for interacting with the user to ask for a specific Web server
log file to process and the minimum size of returned page to print in a report is shown
in Listing 9-10. Notice that it uses the Prompt class in lines 11 and 14.

Listing 9-10: A program that processes a Web server log based on user input

1 importƒjava.util.Scanner;
2
3 /** List files in a user-specified Web server log that meet a minimum size criteria.
4 * Report the number of files that are printed.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒListFilesBySizeƒ
8 {
9 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

10 ƒƒ{ƒ// Prompt for the file to process.
11 ƒƒƒƒScannerƒinƒ=ƒPrompt.forInputScanner("Web server log name: ");
12
13 ƒƒƒƒ// Get the minimum size from the user.
14 ƒƒƒƒintƒminSizeƒ=ƒPrompt.forInt("Minimum served file size: ");
15
16 ƒƒƒƒ// Process the files.
17 ƒƒƒƒintƒcountƒ=ƒ0;
18 ƒƒƒƒwhileƒ(in.hasNextLine())
19 ƒƒƒƒ{ƒServerRecordƒsrƒ=ƒnewƒServerRecord(in);
20 ƒƒƒƒƒƒifƒ(sr.getSize()ƒ>=ƒminSize)
21 ƒƒƒƒƒƒ{ƒSystem.out.println(sr.toString());
22 ƒƒƒƒƒƒƒƒcount++;
23 ƒƒƒƒƒƒ}
24 ƒƒƒƒ}
25
26 ƒƒƒƒ// Close the input file and report the count.
27 ƒƒƒƒin.close();
28 ƒƒƒƒSystem.out.println(countƒ+ƒ" files served were at least "ƒ
29 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ+ƒminSizeƒ+ƒ" bytes.");
30 ƒƒ}
31 }

ch09/userIO/

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 486

486

9.5 Command Interpreters

CH
AP

TE
R

9
| I

N
PU

T
AN

D
 O

U
TP

U
T

The techniques for interacting with users shown in the previous section are adequate if
the user must always enter the same information in the same order each time the pro
gram is run. There are many programs, however, for which more flexibility is desired.
One way to achieve more flexibility (without the work of implementing a graphical
user interface) is to write a command interpreter. A command interpreter repeatedly
waits for the user to enter a command, and then it executes the command.

9.5.1 Using a Command Interpreter

To illustrate the principles involved, we will write a program called LogExplorer,
which will process a Web server log, selecting records that meet criteria set by the user.
The user interface will allow the user to:

➤ Specify a string to find in the client host name field.

➤ Specify a minimum served file size.

➤ Specify whether each matching record is shown.

➤ Specify whether the number of matching records is shown.

➤ Display a help message.

➤ Process a specified file with the current settings.

Furthermore, the structure of the program will make it easy to add functionality. An
example of running the program is shown in Figure 9-6. The prompt for a command is >.
Information required by the command is entered on the same line. As you can see, com
mands are usually terse.

(figure 9-6)

Running a program that

uses a command

interpreter

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 487

487

LOOKING AHEAD

A graphical user
interface uses a

similar loop, called an
“event loop.”

Command Interpreter

KEY IDEA

The Scanner class
can also process

strings.

9.5.2 Implementing a Command Interpreter

The pseudocode for a command interpreter is as follows:

whileƒ(the quit command has not been received)

{ƒget a command

ƒƒexecute the command

}

We get the command by prompting the user to enter a command and reading it from
the console. Executing the command is done with a cascading-if statement, often in a
separate method.

Unfortunately, a pair of commands like host and host <string> complicates matters.
The problem lies with determining whether the user has entered a string following the
host command. It would seem that calling hasNext() would easily resolve that ques
tion, but it doesn’t—Scanner will keep looking up to the end of the “file” to see if
there is a token present. But when scanning System.in (the console), there is no end
of file. Scanner waits for whatever the user types in next (ignoring white space,
including Enter). When the user does type something, Scanner returns true.
hasNextLine has similar issues.

We can solve this problem by reading the input a line at a time—but then we have to
find out what is on the line, as indicated by the following pseudocode:

whileƒ(the quit command has not been received)

{ƒSystem.out.print(">ƒ");ƒƒƒƒƒƒƒƒƒƒƒƒ// Prompt for a command.

ƒƒStringƒlineƒ=ƒin.nextLine();

ƒƒget the command and argument (if there is one) out of the line

ƒƒexecute the command

}

Now there is the problem of extracting the information on the line to find the com
mand (such as host, min, or p) and the argument (such as googlebot.com or 1500000),
if there is one. Fortunately, Scanner can scan strings in addition to files. For example,
the following code will print “hostƒtrueƒgooglebot.com”.

Scannerƒsƒ=ƒnewƒScanner("hostƒgooglebot.com");

System.out.print(s.next());

System.out.print(s.hasNext());

System.out.print(s.next());

The following code fragment will print “hostƒfalse”.

Scannerƒsƒ=ƒnewƒScanner("host");

System.out.print(s.next());

System.out.print(s.hasNext());

9.5
C

O
M

M
AN

D
 IN

TERPRETERS

http:Scanner�s�=�new�Scanner("host�googlebot.com
http:host�true�googlebot.com
http:googlebot.com
http:System.in

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 488

488
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

By creating a Scanner for each line we read, we can determine exactly what is on it.
With this insight, we can structure the command interpreter as follows:

Scannerƒcinƒ=ƒnewƒScanner(System.in);

whileƒ(the quit command has not been received)

{ƒSystem.out.print(">ƒ");

ƒƒStringƒlineƒ=ƒcin.nextLine();

ƒƒScannerƒlineScannerƒ=ƒnewƒScanner(line);

ƒƒStringƒcmdƒ=ƒlineScanner.next();

ƒƒifƒ(cmd is "host" and line has another token)

ƒƒ{ƒremember given hostname for next searchƒ

ƒƒ}ƒelseƒifƒ(cmd is "host")

ƒƒ{ƒnext search will be for all hosts

ƒƒ}ƒelseƒifƒ(cmd is "min" and line has an integer)

ƒƒ{ƒremember given minimum size for the next search

ƒƒ}ƒelseƒifƒ(cmd is "p" and line has another token)

ƒƒ{ƒprocess the given file with the settings given by previous commands

ƒƒ...

ƒƒ}ƒelse

ƒƒ{ƒerror message

ƒƒ}

}

These ideas are implemented in the class shown in Listing 9-11. The command inter
preter is at lines 23–31; it delegates the task of executing the commands to executeCmd,
lines 35–59.

The heart of the actual application is the processFile method. It’s overloaded, with
one method taking a String parameter (the filename) and another taking a Scanner
object. The first one handles the messy details of opening the file and then calls the sec
ond one, which actually does the work. It reads each record in the log, printing and
counting those that match the criteria. The task of deciding which records match is del
egated to includeRecord.

LogExplorer works as shown, but the design could be improved by separating the
user interface from the rest of the program. Section 9.5.3 explains how.

Listing 9-11: The LogExplorer program with an integrated command interpreter

1 importƒjava.io.*;
2 importƒjava.util.Scanner;
3
4 /** Explore a Web server log by displaying/counting records meeting user-specified criteria.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒLogExplorerƒextendsƒObject
8 {

ch09/logExplorer/

http:Scanner�cin�=�new�Scanner(System.in

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 489

10

20

30

40

50

489

Command Interpreter

9.5
C

O
M

M
AN

D
 IN

TERPRETERS

Listing 9-11: The LogExplorer program with an integrated command interpreter (continued)

9 ƒƒ// Search criteria
ƒƒprivateƒStringƒsearchHostƒ=ƒ""; // String to find in hostname.

11 ƒƒprivateƒintƒminSizeƒ=ƒ0; // Minimum size of returned page.
12
13 ƒƒprivateƒbooleanƒdoneƒ=ƒfalse; // Received quit command yet?
14 ƒƒprivateƒbooleanƒdisplayNumƒ=ƒtrue; // Display # of matching records?
15 ƒƒprivateƒbooleanƒdisplayRecƒ=ƒtrue; // Display each matching record?
16
17 ƒƒ/** Create a new explorer object; displays all log records by default. */
18 ƒƒpublicƒLogExplorer()
19 ƒƒ{ƒsuper();

ƒƒ}
21
22 ƒƒ/** Interpret the commands entered by the user. */
23 ƒƒpublicƒvoidƒcmdInterpreter()
24 ƒƒ{ƒthis.displayHelp();
25 ƒƒƒƒScannerƒcinƒ=ƒnewƒScanner(System.in);
26 ƒƒƒƒwhileƒ(!this.done)
27 ƒƒƒƒ{ƒSystem.out.print("> ");
28 ƒƒƒƒƒƒStringƒlineƒ=ƒcin.nextLine();
29 ƒƒƒƒƒƒthis.executeCmd(line);

ƒƒƒƒ}
31 ƒƒ}
32
33 ƒƒ/** Execute one line entered by the user.
34 ƒƒ* @param cmdLine The one line of command and optional arguments to execute. */
35 ƒƒprivateƒvoidƒexecuteCmd(StringƒcmdLine)
36 ƒƒ{ƒScannerƒlineƒ=ƒnewƒScanner(cmdLine);
37 ƒƒƒƒifƒ(line.hasNext())
38 ƒƒƒƒ{ƒStringƒcmdƒ=ƒline.next();
39 ƒƒƒƒƒƒifƒ(cmd.equals("host")ƒ&&ƒline.hasNext())

ƒƒƒƒƒƒ{ƒthis.searchHostƒ=ƒline.next();
41 ƒƒƒƒƒƒ}ƒelseƒifƒ(cmd.equals("host"))
42 ƒƒƒƒƒƒ{ƒthis.searchHostƒ=ƒ"";
43 ƒƒƒƒƒƒ}ƒelseƒifƒ(cmd.equals("min")ƒ&&ƒline.hasNextInt())
44 ƒƒƒƒƒƒ{ƒthis.minSizeƒ=ƒline.nextInt();
45 ƒƒƒƒƒƒ}ƒelseƒifƒ(cmd.equals("p")ƒ&&ƒline.hasNext())
46 ƒƒƒƒƒƒ{ƒthis.processFile(line.next());
47 ƒƒƒƒƒƒ}ƒelseƒifƒ(cmd.equals("q"))
48 ƒƒƒƒƒƒ{ƒthis.doneƒ=ƒtrue;
49 ƒƒƒƒƒƒ}ƒelseƒifƒ(cmd.equals("help"))

ƒƒƒƒƒƒ{ƒthis.displayHelp();
51 ƒƒƒƒƒƒ}ƒelseƒifƒ(cmd.equals("dr")ƒ&&ƒline.hasNextBoolean())

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 490

490
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

Listing 9-11: The LogExplorer program with an integrated command interpreter (continued)

52 ƒƒƒƒƒƒ{ƒthis.displayRecƒ=ƒline.nextBoolean();
53 ƒƒƒƒƒƒ}ƒelseƒifƒ(cmd.equals("dn")ƒ&&ƒline.hasNextBoolean())
54 ƒƒƒƒƒƒ{ƒthis.displayNumƒ=ƒline.nextBoolean();
55 ƒƒƒƒƒƒ}ƒelse
56 ƒƒƒƒƒƒ{ƒSystem.out.println("Command '"ƒ+ƒlineƒ+ƒ"' not recognized.");
57 ƒƒƒƒƒƒ}
58 ƒƒƒƒ}
59 ƒƒ}
60
61 ƒƒ/** Process a log file via the specified Scanner object. Display and count each record that
62 ƒƒ* matches the criteria set previously.
63 ƒƒ* @param in A scanner for the input file to process. */
64 ƒƒprivateƒvoidƒprocessFile(Scannerƒin)
65 ƒƒ{ƒintƒcountƒ=ƒ0;
66 ƒƒƒƒwhileƒ(in.hasNextLine())
67 ƒƒƒƒ{ƒServerRecordƒsrƒ=ƒnewƒServerRecord(in);
68 ƒƒƒƒƒƒifƒ(this.includeRecord(sr))
69 ƒƒƒƒƒƒ{ƒifƒ(this.displayRec)
70 ƒƒƒƒƒƒƒƒ{ƒthis.displayRecord(sr);
71 ƒƒƒƒƒƒƒƒ}
72 ƒƒƒƒƒƒƒƒcount++;
73 ƒƒƒƒƒƒ}
74 ƒƒƒƒ}
75 ƒƒƒƒifƒ(this.displayNum)
76 ƒƒƒƒ{ƒthis.displayCount(count);
77 ƒƒƒƒ}
78 ƒƒ}
79
80 ƒƒ/** Process the specified file.
81 ƒƒ* @param fName The name of the file to process. */
82 ƒƒprivateƒvoidƒprocessFile(StringƒfName)
83 ƒƒ{ƒScannerƒinƒ=ƒnull;
84 ƒƒƒƒtry
85 ƒƒƒƒ{ƒinƒ=ƒnewƒScanner(newƒFile(fName));
86 ƒƒƒƒƒƒthis.processFile(in);
87 ƒƒƒƒƒƒin.close();
88 ƒƒƒƒ}ƒcatchƒ(FileNotFoundExceptionƒex)
89 ƒƒƒƒ{ƒƒSystem.err.println("Can't find file "ƒ+ƒ
90 ƒƒƒƒƒƒƒƒƒƒSystem.getProperty("user.dir")ƒ+ƒ"/"ƒ+ƒfNameƒ+ƒ".");
91 ƒƒƒƒ}
92 ƒƒ}
93
94 ƒƒ/** Determine whether a record should be included in the report. Include records that meet

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 491

491
9.5

C
O
M

M
AN

D
 IN

TERPRETERS

Listing 9-11: The LogExplorer program with an integrated command interpreter (continued)

95 ƒƒ* ALL the specified criteria. If a criterion wasn't set (for example, no client host name was
96 ƒƒ* specified), we need a way to ignore it, typically with an "or" condition. */
97 ƒƒprivateƒbooleanƒincludeRecord(ServerRecordƒsr)
98 ƒƒ{ƒreturnƒ(this.searchHost.length()ƒ==ƒ0ƒ||ƒƒ
99 ƒƒƒƒƒƒƒƒƒƒƒƒsr.hostnameContains(this.searchHost))ƒ
100 ƒƒƒƒƒƒƒƒƒƒƒƒ&&ƒsr.getSize()ƒ>=ƒthis.minSize;
101 ƒƒ}
102
103 ƒƒ/** Display one record to the user.
104 ƒƒ* @param sr The record to display. */
105 ƒƒprivateƒvoidƒdisplayRecord(ServerRecordƒsr)
106 ƒƒ{ƒSystem.out.printf("%-15s %s%n",ƒ
107 ƒƒƒƒƒƒƒƒƒƒsr.getIPAddress(),ƒsr.getClientHostname());
108 ƒƒƒƒSystem.out.printf(" %5d%10d%5s %s%n",ƒ
109 ƒƒƒƒƒƒƒƒƒƒsr.getCompletionCode(),ƒsr.getSize(),
110 ƒƒƒƒƒƒƒƒƒƒsr.getCommand(),ƒsr.getURL());
111 ƒƒ}
112
113 ƒƒ/** Display the number of matching records.
114 ƒƒ* @param count The number of matching records to display. */
115 ƒƒprivateƒvoidƒdisplayCount(intƒcount)
116 ƒƒ{ƒSystem.out.println();
117 ƒƒƒƒSystem.out.println(countƒ+ƒ" records met the search criteria.");
118 ƒƒ}ƒ
119
120 ƒƒ/** Display a help message. */
121 ƒƒprivateƒvoidƒdisplayHelp()
122 ƒƒ{ƒfinalƒStringƒhelpFmtƒ=ƒ" %-14s %s%n";
123 ƒƒƒƒfinalƒPrintStreamƒoutƒ=ƒSystem.out;
124 ƒƒƒƒout.println("General Commands:");
125 ƒƒƒƒout.printf(helpFmt,ƒ"q",ƒ"Quit");
126 ƒƒƒƒout.printf(helpFmt,ƒ"help",ƒ"Display this help message");
127 ƒƒƒƒout.printf(helpFmt,ƒ"p <string>",ƒ"Process specified file");
128 ƒƒƒƒout.println();
129 ƒƒƒƒout.println("Commands that affect which records are included:");
130 ƒƒƒƒout.printf(helpFmt,ƒ"host <string>",ƒ"Hostnames including...");
131 ƒƒƒƒout.printf(helpFmt,ƒ"host",ƒ"All client hostnames");
132 ƒƒƒƒout.printf(helpFmt,ƒ"url <string>",ƒ"Requested URLs including...");
133 ƒƒƒƒout.printf(helpFmt,ƒ"url",ƒ"All URLs");
134 ƒƒƒƒout.printf(helpFmt,ƒ"min <int>",ƒ"Served pages with a minimum size");
135 ƒƒƒƒout.println();
136 ƒƒƒƒout.println("Commands that affect how records are displayed:");
137 ƒƒƒƒout.printf(helpFmt,ƒ"dn <boolean>",ƒ"Display number of records");

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 492

492
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

Listing 9-11: The LogExplorer program with an integrated command interpreter (continued)

138 ƒƒƒƒout.printf(helpFmt,ƒ"dr <boolean>",ƒ"Display records");

139 ƒƒƒƒout.println();

140 ƒƒ}

141 }

9.5.3 Separating the User Interface from the Model

The LogExplorer program shown in Listing 9-10 combines the code that solves the
problem (the model) with the code that interacts with the user (the user interface, com
posed of a view and controller). By correctly separating these two aspects of the pro
gram, we can achieve the following benefits:

➤	 Separating these aspects makes the program easier to understand. In all but the
simplest programs, it is easier to understand a program when each class has a
specific focus. In this case, the model should focus on determining which records
to display, and the user interface should focus on interacting with the user.

➤	 Separating these aspects enables attaching different user interfaces to the
model without changing the model. For example, an experienced user may use
the program with a terse command interpreter that allows him to work
quickly. An inexperienced user may use the program with a command inter
preter that reads a command and then prompts for additional information.
When a graphical user interface becomes available, the command interpreter
can be replaced by it without changing the model.

Identifying Parts That Belong to the User Interface

We can begin by reviewing Listing 9-11 and identifying the parts that have to do with
communicating with the user. They include the following:

➤	 The cmdInterpreter method in lines 22–31

➤	 The executeCmd method in lines 33–59

➤	 The displayRecord method in lines 103–111

➤	 The displayCount method in lines 113–118

➤	 The displayHelp method in lines 120–140

➤	 The processFile method’s error message at lines 89–91

➤	 The other processFile method’s two if statements that determine whether
each record or the total number of records is displayed to the user (lines 69
and 75)

LOOKING BACK

Models, views, and
controllers were
discussed in
Section 8.6.2.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 493

LogExplorerView

+void displayRecord(ServerRecord sr)
+void displayCount(int matches)

493
9.5

C
O
M

M
AN

D
 IN

TERPRETERS

(figure 9-7)

Structuring the

LogExplorer program

LOOKING BACK

Interfaces were
discussed in
Section 7.6.

(figure 9-8)

Structuring the

LogExplorer program

with a Java interface

➤	 Three instance variables—done, displayNum, and displayRec—that con
trol user interface functions (lines 13–15)

All of these elements will be moving to a new class named CmdInterpreter. With
these parts gone, there won’t be much left to the model (LogExplorer).

Setting Up Relationships between Classes

For these two classes to work together, LogExplorer will need to call the
displayRecord and displayCount methods in CmdInterpreter. Similarly, the
CmdInterpreter class will need to call methods such as processFile in the
LogExplorer class. This implies that we need to set the classes up as shown in Figure 9-7.

LogExplorer CmdInterpreter

-CmdInterpreter ui -LogExplorer model

+LogExplorer()
+void addView(CmdInterpreter aUI)
+void processFile(Scanner in)
...

+CmdInterpreter(LogExplorer aModel)
+void displayRecord(ServerRecord sr)
+void displayCount(int matches)
...

However, implementing this class diagram will not allow us to change user interfaces,
as we claimed earlier. With this implementation, the only user interface that can be
used with LogExplorer is a class named CmdInterpreter. To fix this, we will define
a Java interface declaring the methods displayRecord and displayCount. If
LogExplorer uses this interface, then any user interface that implements it can be
used with LogExplorer. Therefore, the high-level class diagram for the program will
be the one shown in Figure 9-8.

LogExplorer CmdInterpreter

-Log ExplorerView ui -LogExplorer model

+LogExplorer()

+void addView(LogExplorerView v)

+void processFile(Scanner in)

...

+CmdInterpreter(LogExplorer aModel)

+void displayRecord(ServerRecord sr)

+void displayCount(int matches)

...

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 494

494
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

The program can be set up with these relationships using the following code fragments.
The main method has the responsibility to create both the LogExplorer and the
CmdInterpreter objects, as follows:

1 publicƒstaticƒvoidƒmain(String[]ƒargs)

2 {ƒLogExplorerƒexplorerƒ=ƒnewƒLogExplorer();

3 ƒƒCmdInterpreterƒcmdƒ=ƒnewƒCmdInterpreter(explorer);

4

5 ƒƒcmd.cmdInterpreter();ƒƒƒƒƒƒƒƒ// Run the command interpreter.

6 }

Notice that a reference to the LogExplorer object is passed to the CmdInterpreter
constructor. This is used to set up the “CmdInterpreter has-a LogExplorer” rela
tionship shown in Figure 9-8.

The “LogExplorer has-a LogExplorerView” relationship is set up when the
CmdInterpreter constructor calls LogExplorer’s addView method with itself as the
parameter, as follows:

1 publicƒclassƒCmdInterpreterƒextendsƒObjectƒ

2 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒLogExplorerView

3 {

4 ƒƒprivateƒLogExplorerƒmodel;

5

6 ƒƒpublicƒCmdInterpreter(LogExplorerƒaModel)

7 ƒƒ{ƒsuper();

8 ƒƒƒƒthis.modelƒ=ƒaModel;

9 ƒƒƒƒthis.model.addView(this);

10 ƒƒ}
11 }

The CmdInterpreter class implements the LogExplorerView interface in line 2, as
expected by the LogExplorer class.

Finishing Up

Just a little bit of cleanup remains to complete the reorganization of the LogExplorer
program.

First, the original user interface simply set the searchHost and minSize instance
variables directly. Now that these variables and the code that sets them are in different
classes, we’ll need to add some methods to LogExplorer to give appropriate access to
the variables. The methods, of course, are called from the user interface.

Second, the processFile method cannot remain private. The user interface will
need to call it at the appropriate times.

LOOKING AHEAD

Programming Project
9.10 asks you to
complete the
implementation.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 495

495

Third, the original program determined inside the processFile method whether to
display each matching record and whether to display the count of matching records.
This, however, is more appropriately a function of the user interface. One way to han
dle this is for processFile to always call displayRecord and displayCount.
These methods, in the user interface, can each include an if statement to determine
whether they do anything.

9.6 Constructing a Library

9.6
C

O
N
STRU

CTIN
G
 A L

IBRARY

KEY IDEA

Most programming
languages have a way

to make a library of
reusable code. In

Java, it’s done with
packages.

In this chapter, the ServerRecord and Prompt classes have been used in several dif
ferent programs. So far, this has been handled by simply making a copy of the class for
each program that uses it. This, however, is not a good idea. Suppose the class needs to
change because a bug is found, an enhancement is needed, or the file format is
changed. In each of these cases, multiple copies of the class must be changed—an error-
prone process that is a waste of time and energy.

A better solution is to place reusable code—such as ServerRecord and Prompt—into
a library. A library is a collection of resources that are meant to be used in many dif
ferent programs. The concept of a library is implemented in Java with packages. A
package is a collection of related classes that may contain subpackages. The classes in
becker.robots constitute a library, as do the classes in becker.util and
java.awt. A program accesses the classes in a package with the import statement.

Understanding how programs are compiled and run is important background for
understanding how to use packages. Integrated development environments often hide
these details, so we begin with a brief tour of compiling and running programs using a
command line.

9.6.1 Compiling without an IDE

Most computers have a way to run programs from a command line. A simple program
(one that uses only imports from the java and javax packages or no imports at all)
can be compiled and run, as shown in Figure 9-9. The example is ListFilesBySize,
taken from Listing 9-10 with two minor changes. First, the ServerRecord class has
been modified to use a String instead of the DateTime class (to simplify the first
example; it will be put back afterwards). Second, the program itself has been modified
to print only the number of matching records to reduce the amount of output.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 496

496
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

(figure 9-9)

Compiling a program with

no import statements

The five commands shown perform the following actions:

➤	 cd changes into a new directory specified by the path D:/cs101/ch09/userIO/.

➤	 ls lists the contents of the directory, showing the data file and the three .java
files that make up the program.

➤	 javac runs the Java compiler to translate the .java files into a form more
easily understood by the computer. It puts the translation of each file into a file
with the same name but replaces .java with .class. The *.java means any
file in the working directory that ends with .java.

➤	 ls lists the contents of the directory again. It shows the same files as before
plus the newly created .class files.

➤	 java runs the compiled program. It is told where to search for the program’s
.class files with –classpathƒD:/cs101/ch09/userIO/. The first part,
-classpath, tells Java that the following path is the directory to search. The fol
lowing three lines are the result of running the program.

A single dot (.) is an abbreviation for the current working directory. Therefore, a more
succinct replacement for –classpath D:/cs101/ch09/userIO/ is –classpath..

With this background, we are now ready to return to understanding how to easily
reuse classes by placing them in packages.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 497

497

9.6.2 Creating and Using a Package

The package statement places a class into a named package. For example, the Robot
class begins with the following statement:

packageƒbecker.robots;

Classes in the becker.robots package can be used by including the familiar state
ment importƒbecker.robots.*;.

The package name should be unique. The recommended way to make it unique is to
reverse your e-mail address. The author could use the reverse of bwbecker@
learningwithrobots.com, as shown in the following package statement:

packageƒcom.learningwithrobots.bwbecker;

The package statement must be the first statement in the class, before any import
statements or the class statement. However, comments may come before the
package statement.

The package statement places constraints on the location of the file containing the
source code. With the above package statement, the ServerRecord class must be
located in the file com/learningwithrobots/bwbecker/ServerRecord.java.
Notice that this path and name has three parts:

➤	 The package name, but with the dots replaced with the directory separator
character /

➤	 The name of the class, ServerRecord

➤	 The extension, .java

This is shown in Figure 9-10. Notice that the path beginning with com/learn… is not
the entire path. We will need to tell the compiler about the first part, D:/cs101/.

9.6
C

O
N
STRU

CTIN
G
 A L

IBRARY

The filename corresponds
to the class name.

This part of the directory
hierarchy corresponds to
the package name.

This directory
is used by
the compiler
to search
for the files
it needs.

(figure 9-10)

File locations for a

package named

com.learningwith
robots.bwbecker

http:learningwithrobots.com

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 498

498
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

In summary, compared to the program compiled in Figure 9-9, we need to make the
following changes:

➤	 Add a package statement to ServerRecord.java and a similar one to
Prompt.java.

➤	 Move ServerRecord.java and Prompt.java to the locations specified by
their new package statements. The location of ServerRecord.java is
shown in Figure 9-10.

➤	 Modify ListFilesBySize.java to import the classes in the new package.

We can compile the revised program as shown in Figure 9-11.

(figure 9-11)

Compiling the

ListFilesBySize
program using packages

The five commands shown perform the following actions:

➤	 cd changes to the directory containing our program.

➤	 ls shows that the directory now contains only ListFilesBySize. The other
files have been moved to the library to facilitate easy reuse by many programs.

➤	 javac runs the Java compiler. The compiler is told where to search for the pack
ages it needs with –sourcepathƒD:/cs101/. When the compiler attempts to
import com.learningwithrobots.bwbecker.ServerRecord, it looks in
D:/cs101/com/learningwithrobots/bwbecker/.

➤	 ls shows that only the .class file for ListFilesBySize has been added to
the current directory. The other files were also compiled, but their .class
files were left with the corresponding .java files.

➤	 java runs the program. Now, because our class files are in several different
places, the –classpath option is more complex. It lists two paths, separated
by a semicolon (;). The second path is the current working directory, abbrevi
ated with “.”. Because of the semicolon, the entire list must be placed in dou
ble quotes. The first path specifies where to start the search for classes in the
bwbecker package. The second path specifies where to find
ListFilesBySize.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 499

499

The preceding explanation may seem complex, but it’s worth it because we can now write
many programs that use the ServerRecord and Prompt classes. No matter how many
programs use them, we have only one copy of the .java files—that is, only one copy to
enhance or debug. Furthermore, we can use them simply by specifying a source path and
a class path to the compiler. For commonly used classes, these are big advantages.

9.6.3 Using .jar Files

You may remember that we simplified ServerRecord somewhat to avoid using the
DateTime class. To address that issue, assume that ServerRecord once again
imports and uses becker.util.DateTime.

The complication is that we don’t have the source code to DateTime like we have for
ServerRecord. The .class files for DateTime, the robot classes, and many others
are all stored in a single file named becker.jar. Storing them all in a .jar file makes
them easier to distribute to other people. The .jar extension means Java Archive.

The javac command will need those .class files to compile the program. We tell it
where to look for them by adding the –classpath option. Likewise, the java com
mand will need the classes to run the program. Therefore, we must add the .jar file to
its classpath as well. All this is shown in Figure 9-12. The .jar file is in the directory
D:/cs101/.

9.6
C

O
N
STRU

CTIN
G
 A L

IBRARY

(figure 9-12)

Compiling with classes in

a .jar file

We may also want to put our own classes into a .jar file to make them easier to man
age. This is done with a command named jar, as shown in Figure 9-13.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 500

500
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

(figure 9-13)

Creating and using a

.jar file

The crucial differences from what we’ve done before are as follows:

➤	 cd changes to the directory we’ve been using for the source and class path for
our package, D:/cs101.

➤	 jar creates a new .jar file named cs101Lib.jar. The .class files to put
into it are specified with the last part of the command, *.class. The asterisk
(*) means to include every file ending in .class. In this situation, that would
be ServerRecord.class and Prompt.class.

➤	 javac and java now use class paths that include the new .jar file instead of
D:/cs101/.

Fortunately, integrated development environments, which you probably use, know
about source paths and class paths. Look for these terms among the IDE’s settings; the
documentation should explain how to include the path or .jar file for your personal
library.

9.7 Streams (advanced)

Java’s input and output library is based on the concept of streams. A stream is an ordered
collection of information that moves from a source to a destination, or sink. It is similar to
a stream of water flowing from a source (a spring or a lake) to a sink (the ocean).

Streams can be categorized using three questions:

➤	 Is it an input stream, which carries information from a source to the program,
or an output stream, which carries information from the program to a sink?

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 501

501

➤	 Is it a character stream, which carries information in the form of 16-bit
Unicode characters (usually human readable), or a byte stream, which carries
binary information such as images or sounds in 8-bit bytes?

➤	 Is it a provider stream that provides information from a source or to a sink, or
is it a processing stream that processes or transforms information as it flows
between a source and a sink?

Take Scanner as an example. Scanner is an input stream because the program uses it
to get input from a source. It reads information as characters, either from a user or a
file, and is thus a character stream. Finally, Scanner is a processing stream because it
processes consecutive characters in the stream into higher-level constructs, such as an
entire string or an integer. To do this, it makes use of an underlying provider stream.
When we use Scanner to read from the console, for example, the provider stream is
System.in.

PrintWriter is categorized much like Scanner except that it is an output stream that
writes characters rather than bytes. It, too, is a processing stream because it processes
higher-level constructs into the individual characters it writes out. Like Scanner, it uses
an underlying provider stream to do the actual writing.

The philosophy of the Java I/O (input/output) library is that each class should do one
thing well, and that each class should combine easily with other classes to obtain the
strengths of both. Covering all the possibilities is beyond the scope of this textbook.
Instead, we will provide an orientation and direct interested readers to other sources,
such as the online Java Tutorial at http://java.sun.com/docs/books/tutorial/index.html.

9.7.1 Character Input Streams

The core class for character input is Reader. It’s core method is read, which reads one
or more characters from the source. Reader is extended to form four provider streams,
corresponding to four different kinds of sources:

➤	 FileReader: reads characters from a file

➤	 StringReader: reads characters from a String; ultimately, this allows you
to use next, nextInt, and similar methods in Scanner to read information
from a String as easily as you can from a file.

➤	 CharArrayReader: similar to StringReader

➤	 PipedReader: reads characters that are produced by another thread in the
program

Using these provider streams directly is not very easy. All they really provide is the abil
ity to read a sequence of characters. A number of processing streams are provided to
help form those characters into useful information. To use a processing stream, you
must first construct a provider stream for it to use. Then, pass the provider stream to

9.7
S

TREAM
S (A

D
VAN

CED)

http://java.sun.com/docs/books/tutorial/index.html
http:System.in

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 502

502
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

the processing stream’s constructor. For example, BufferedReader is a processing
stream that has a method to read an entire line of characters at once. It could be used
like this:

// Construct a buffered reader that processes input from a file
FileReaderƒfileInƒ=ƒnewƒFileReader("phoneBook.txt");
BufferedReaderƒbuffInƒ=ƒnewƒBufferedReader(fileIn);

// Read and process each line of characters in the file.
Stringƒlineƒ=ƒbuffIn.readLine();
whileƒ(lineƒ!=ƒnull)
{ƒ// process the line here
ƒƒlineƒ=ƒbuffIn.readLine();
}
buffIn.close();

The processing streams that work with character input streams include:

➤	 BufferedReader: reads an entire line of characters at once

➤	 LineNumberReader: reads an entire line at once and provides a count of the
lines read so far

➤	 PushbackReader: allows a program to read some characters, examine them,
and then push them back on the stream to be read again at a later time

➤	 Scanner: divides the input stream into tokens and provides conversion of
each token into appropriate types, such as int

Scanner is the most sophisticated of the processing streams. As we have already seen,
it provides many methods to convert the raw stream of characters into useful informa
tion. It also has some convenience constructors to make it easier to use. For example,
one constructor takes a string as an argument and automatically uses it to construct a
StringReader to use as the source. Another constructor takes a File object as an
argument and automatically constructs a FileReader to use as the source.

9.7.2 Character Output Streams

There are many similarities between character input streams and character output
streams. Just as Reader is the core class for input, Writer is the core class for output,
providing a write method to write one or more characters to the sink. It is extended
four times, each class corresponding to four different kinds of sinks. The four sub
classes are FileWriter, StringWriter, CharArrayWriter, and PipedWriter. A
FileWriter writes characters to a file, of course. A StringWriter appends the char
acters to a string.

Only two interesting processing streams are associated with character output streams.
One is BufferedWriter, which collects a large number of characters and then writes
them all at once using its provider stream. BufferedWriter is typically combined

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 503

503

with a FileWriter because writing only one character at a time to a file is tremen
dously inefficient.

The other interesting processing stream is PrintWriter, which has already been dis
cussed. It adds methods such as print, println, and printf to convert types such as
int and double into individual characters.

9.7.3 Byte Streams

The structure of the byte input streams is similar to character input streams. A core
class, InputStream, is extended four times to provide bytes from files, string buffers,
byte arrays, and pipes. A similar set of classes provide processing streams to buffer the
stream, count the lines, and push back information previously read.

Similarly, the byte output streams mirror the character output streams. The core class,
OutputStream, is extended to write bytes to files, byte arrays, and pipes.
BufferedOutputStream and PrintStream are analogous to BufferedWriter and
PrintWriter.

9.8 GUI: File Choosers and Images

9.8
G
U
I: F

ILE C
H
O
O
SERS AN

D
 IM

AG
ES

Files are used with graphical user interfaces in a number of ways. One is to ask the user
for a filename with an easy-to-use dialog box, as shown in Figure 9-14. Another is to
read an image from a file and paint it on the screen. The image could have been created
with a separate editor or taken with a camera.

(figure 9-14)

Dialog box displayed by

JFileChooser to

choose a file

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 504

504
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

9.8.1 Using JFileChooser

Using a professional dialog box to obtain a filename from a user is easy, thanks to the
libraries that come with Java. The test program in Listing 9-12 displays a dialog box
like the one shown in Figure 9-14.

In lines 13–14, the dialog box is created and shown to the user. The method
showOpenDialog is meant for opening existing files. Another method, showSaveDialog,
is for saving a file. The difference is the text placed on the buttons and the title bar.

The user’s action is returned as an integer from showOpenDialog, and could be
APPROVE_OPTION (the user chose a file), CANCEL_OPTION (the user cancelled the dia
log without choosing a file), or ERROR_OPTION (an error occurred). If the user chooses
a file, the full path and filename can be obtained with the code shown in line 19. Of
course, your program should open and use the file instead of only printing the name on
the console.

Listing 9-12: A program demonstrating the use of JFileChooser

1 importƒjavax.swing.JFileChooser;
2 importƒjava.io.File;
3
4 /** A program testing the operation of JFileChooser.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒMainƒextendsƒObject
8 {
9 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

10 ƒƒ{ƒSystem.out.println("Ready to get a filename.");
11
12 ƒƒƒƒ// construct the dialog and show it to the user
13 ƒƒƒƒJFileChooserƒchooserƒ=ƒnewƒJFileChooser();
14 ƒƒƒƒintƒresultƒ=ƒchooser.showOpenDialog(null);
15
16 ƒƒƒƒifƒ(resultƒ==ƒJFileChooser.APPROVE_OPTION)
17 ƒƒƒƒ{ƒ// Open the file and use it
18 ƒƒƒƒƒƒSystem.out.println("You chose '"ƒ+
19 ƒƒƒƒƒƒƒƒƒƒƒƒƒchooser.getSelectedFile().getPath());
20 ƒƒƒƒ}ƒ
21 ƒƒ}
22 }

ch09/fileChooser/

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 505

505
9.8

G
U
I: F

ILE C
H
O
O
SERS AN

D
 IM

AG
ES

Typically your program will be interested only certain kinds of files. For example, the
next section shows how to display certain kinds of images on the screen. These images
are normally stored in files that end with an extension of either .gif or .jpg. With the
help of the FileExtensionFilter class, shown in Listing 9-13, JFileChooser will
show only the relevant classes. Use it by adding the following lines between lines 13 and
14 in Listing 9-12:

chooser.addChoosableFileFilter(
ƒƒƒƒƒƒƒƒƒƒnewƒFileExtensionFilter(".jpg",ƒ"jpg Graphics Files"));
chooser.addChoosableFileFilter(
ƒƒƒƒƒƒƒƒƒƒnewƒFileExtensionFilter(".gif",ƒ"gif Graphics Files"));

FileExtensionFilter works by overriding the accept method in its superclass.
JFileChooser calls this method once for each file or directory in the current direc
tory. If accept returns true, the file or directory is displayed so the user can choose it.

Listing 9-13: A filter used by JFileChooser to show only files with the specified extension

1 importƒjavax.swing.filechooser.FileFilter;
2 importƒjava.io.File;
3
4 /** A class used to filter out some files so that JFileChooser only shows files with a
5 * specified extension.
6 *
7 * @author Byron Weber Becker */
8 publicƒclassƒFileExtensionFilterƒextendsƒFileFilter
9 {

10 ƒƒprivateƒStringƒext;
11 ƒƒprivateƒStringƒdescr;
12
13 ƒƒ/** Accept files ending with the given extension.
14 ƒƒ* @param extension The extension to accept (e.g., ".jpg")
15 ƒƒ* @param description A description of the file accepted */
16 ƒƒpublicƒFileExtensionFilter(Stringƒextension,ƒ
17 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒStringƒdescription)
18 ƒƒ{ƒsuper();
19 ƒƒƒƒthis.extƒ=ƒextension.toLowerCase();
20 ƒƒƒƒthis.descrƒ=ƒdescription;
21 ƒƒ}
22
23 ƒƒ/** Decide whether or not the given file should be displayed. In our case, include
24 ƒƒ* directories as well as files with a name ending in the specified extension.
25 ƒƒ* @param f A description of one file.
26 ƒƒ* @return True if the file should be displayed to the user; false otherwise. */

ch09/fileChooser/

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 506

506
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

Listing 9-13: A filter used by JFileChooser to show only files with the specified extension
(continued)

27 ƒƒpublicƒbooleanƒaccept(Fileƒf)
28 ƒƒ{ƒreturnƒf.isDirectory()ƒ||ƒ
29 ƒƒƒƒƒƒƒƒƒƒƒf.getName().toLowerCase().endsWith(this.ext);
30 ƒƒ}
31
32 ƒƒ/** Return the description of the files accepted.
33 ƒƒ* @return A description of the files this filter accepts.*/
34 ƒƒpublicƒStringƒgetDescription()
35 ƒƒ{ƒreturnƒthis.descr;
36 ƒƒ}
37 }

9.8.2 Displaying Images from a File

The program in Listing 9-12 can be easily modified to display an image from a file. The
program currently prints the name of the file selected by the user (see lines 18–19). The
new program will replace lines 18–19 with the following code to create a component
that displays an image it reads from a file, and then shows that component in a frame.
Notice that the filename is obtained from the chooser and passed to ImageComponent’s
constructor.

// Create a component to display an image
ImageComponentƒimageCompƒ=ƒnewƒ
ƒƒƒƒImageComponent(chooser.getSelectedFile().getPath());
ƒƒƒƒ
// Display the image component in a frame
JFrameƒfƒ=ƒnewƒJFrame("Image");

f.setContentPane(imageComp);

f.setSize(500,ƒ500);

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

f.setVisible(true);

The source code for ImageComponent is more interesting and is shown in Listing 9-14.
It is passed the name of the image file via the parameter in the constructor. A class from
the Java library, ImageIcon, is used to read the image from the file. Supported types of
images include .gif, .jpg, and .png. Once the image is loaded, the preferred size for
the component is set to the image’s size. If the preferred size is not set, the JFrame will
make it so small that it can’t be seen.

As with previous extensions of JComponent, the paintComponent method is over
ridden to do the painting. In the past, the Graphics parameter, g, has been used to call
such methods as drawRect and fillOval. Here, it is used in line 24 to paint the

LOOKING BACK

This code uses
the Display a
Frame pattern.
See Section 1.7.5.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 507

507

image read from the file. The second and third parameters give the desired location of
the upper-left corner of the image. The zero values shown here put the image in the
upper-left corner of the component.

drawImage is overloaded. Another version includes two more parameters to specify
the painted image’s width and height. This is useful if you want to scale the image. It is
also possible to use drawImage to draw a background image and then add details on
top with calls to drawRect and similar methods.

9.8
G
U
I: F

ILE C
H
O
O
SERS AN

D
 IM

AG
ES

ch09/displayImage/

Listing 9-14: A new kind of component that displays an image from a file

1 importƒjava.awt.*;
2 importƒjavax.swing.*;
3
4 /** A component that paints an image stored in a file.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒImageComponentƒextendsƒJComponent
8 {
9 ƒƒprivateƒImageIconƒimage;

10
11 ƒƒ/** Construct the new component.
12 ƒƒ* @param fileName The file where the image is stored. */
13 ƒƒpublicƒImageComponent(StringƒfileName)
14 ƒƒ{ƒsuper();
15 ƒƒƒƒthis.imageƒ=ƒnewƒImageIcon(fileName);
16 ƒƒƒƒthis.setPreferredSize(newƒDimension(
17 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis.image.getIconWidth(),ƒ
18 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis.image.getIconHeight()));
19 ƒƒ}
20
21 ƒƒ/** Paint this component, including its image. */
22 ƒƒpublicƒvoidƒpaintComponent(Graphicsƒg)
23 ƒƒ{ƒsuper.paintComponent(g);
24 ƒƒƒƒg.drawImage(this.image.getImage(),ƒ0,ƒ0,ƒnull);
25 ƒƒ}
26 }

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 508

508

9.9 Patterns

CH
AP

TE
R

9
| I

N
PU

T
AN

D
 O

U
TP

U
T

9.9.1 The Open File for Input Pattern

Name: Open File for Input

Context: You need to read information stored in a file.

Solution: Open the file and use Scanner to obtain the individual tokens within the file.
The following template applies:

Scannerƒ«in»ƒ=ƒnull;

try

{ƒ«in»ƒ=ƒnewƒScanner(newƒFile(«fileName»));

}ƒcatchƒ(FileNotFoundExceptionƒex)

{ƒSystem.out.println(ex.getMessage());

ƒƒSystem.out.println("in "ƒ+ƒSystem.getProperty("user.dir"));

ƒƒSystem.exit(-1);

}

«statementsƒtoƒreadƒfile»

«in».close();

Consequences: The file is opened for reading. If the file does not exist, an exception is
thrown and the program stops.

Related Patterns:
➤ The Open File for Output pattern is used to write information to a file.

➤ The Process File pattern depends on this pattern to open the file.

9.9.2 The Open File for Output Pattern

This pattern is almost identical to Open File for Input.

9.9.3 The Process File Pattern

Name: Process File

Context: You need to process all of the records in a data file, one after another.

Solution: Use an instance of Scanner to provide the records, one at a time. A while loop
that tests for the end of the file controls the processing.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 509

509

LOOKING AHEAD

A factory method is
simply a static

method that creates
and returns an object.
Listing 12-11 contains

an example.

Scannerƒinƒ=ƒthis.openFile(«fileName»);

whileƒ(in.hasNextLine())

{ƒ«readƒoneƒrecord»

ƒƒ«processƒoneƒrecord»

}

in.close();

A record is often represented by an instance of a class. Reading it is often best done in
a constructor or factory method belonging to that class.

Consequences: The file is read from beginning to end. If it must be processed again, the
file must be reopened to reset the file cursor back to the beginning of the file.

Related Patterns:
➤	 This pattern uses the Open File for Input pattern to open the file. In the above

template, the pattern would be implemented in the openFile method.

➤	 The action of reading one record is often delegated using the Construct
Record from File pattern.

9.9.4 The Construct Record from File Pattern

Writing this pattern is an exercise for the student in Written Exercise 9.2.

9.9.5 The Error-Checked Input Pattern

Name: Error-Checked Input

Context: Input from the user is required. Because the user may enter erroneous data, error
checking is appropriate.

Solution: The pattern to use depends on the amount of error checking required. If only the
correct type of data (integer, double, and so on) matters, then a simpler pattern will suffice.
In the following, «hasNext» is a method such as hasNextInt or hasNextDouble in
the Scanner class, and «next» is the corresponding method to get the next value, such as
nextInt or nextDouble.

Scannerƒinƒ=ƒnewƒScanner(System.in);

...

System.out.print(«initialPrompt»);

whileƒ(!in.«hasNext»()) // type might be Int or Double or …

{ƒin.nextLine(); // skip offending input

ƒƒSystem.out.print(«errorPrompt»);

}

«type»ƒ«varName»ƒ=ƒin.«next»();

9.9
P

ATTERN
S

http:Scanner�in�=�new�Scanner(System.in

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 510

510

If the value entered matters as well, then a more complex pattern is appropriate:

CH
AP

TE
R

9
| I

N
PU

T
AN

D
 O

U
TP

U
T

Scannerƒinƒ=ƒnewƒScanner(System.in);

...

«type»ƒanswerƒ=ƒ«initialValue»;ƒƒ// will contain the answer

booleanƒokƒ=ƒfalse;

System.out.print(«prompt»);ƒ

whileƒ(!ok)

{ƒifƒ(in.«hasNext»())

ƒƒ{ƒanswerƒ=ƒin.«next»();

ƒƒƒƒifƒ(«testForCorrectValues»)

ƒƒƒƒ{ƒokƒ=ƒtrue;

ƒƒƒƒ}ƒelse

ƒƒƒƒ{ƒSystem.out.print(«incorrectValueErrorPrompt»);

ƒƒƒƒ}

ƒƒ}ƒelse

ƒƒ{ƒSystem.out.print(«incorrectTypeErrorPrompt»);

ƒƒƒƒin.nextLine();

ƒ}

}

Consequences: The user will be repeatedly prompted until a correct value is input. There
is no provision for the user to cancel the operation or otherwise break out of the loop. Due
to the amount of code, this pattern is best contained in a method.

Related Pattern: This pattern may be used by the Command Interpreter pattern.

9.9.6 The Command Interpreter Pattern

Name: Command Interpreter

Context: You are writing a program in which the user can give commands from a prompt.
You need to interpret the commands and execute code corresponding to each one.

Solution: Implement a command interpreter with the following pseudocode.

show initial instructions

whileƒ(the user is not done)

{ƒdisplay current program state or prompt

ƒƒget a command from the user

ƒƒinterpret and execute the command

}

Getting the command from the user is often as simple as getting one word or token
using Scanner. The step to interpret and execute the command is usually performed
with a cascading-if statement. A helper method should be used if more than one or
two lines of code are needed to execute the command.

http:Scanner�in�=�new�Scanner(System.in

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 511

511

Consequences: By using a cascading-if statement, the task of interpreting and executing
the commands is given a regular structure. This makes it easier to understand the program
and to extend it with new commands.

Related Pattern: The Error-Checked Input pattern is an important part of making the
command interpreter respond appropriately to user errors.

9.10 Summary and Concept Map

9.10
S

U
M

M
ARY AN

D
 C

O
N
CEPT M

AP

Programs may read information from either the user (via the console) or a file. Reading
is typically done with an instance of Scanner, which has a variety of methods to
acquire data and convert it to an appropriate type. Another set of methods can deter
mine if data of a specified type is available.

Programs may also write information to either the console, using System.out, or a
file, using PrintWriter. The location of a file is specified by a path and filename.
Paths may be either relative to the current working directory or absolute.

It is usually appropriate to represent a record in a file with a class, delegating the input
and output to methods in the class. If several programs use the same file, it is appro
priate to put the class into a package to make reuse easy.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 512

512
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

can be
read w

ith

is
 c

om
po

se
d

of

has

has

such as

such as

can
 be

 us
ed

 in
 a

read
s fro

m thecan be read from theca
n

be
 w

rit
te

n
wi

th

specify the
location of a

can get a

can be written to the

can
be written to a

text or data

Scanner

data acquisition
methods

data availability
queries

hasNextInt,
hasNextLine

nextInt,
nextLine

command
interpreter

console

lines of text

file

PrintWriter or
System.out

path and
filename

JFileChooser

can be read from a

can be placed in a

such as

reusable
code

personal library
or package

specialized
I/O classes

Problem Set

Written Exercises

9.1	 Review Listing 9-4. Explain why the else-clause in lines 13–15 could be

removed with no change in the function of the program.

9.2	 Write the Construct Record from File pattern. See Section 9.2.1 for back
ground and examples.

9.3	 Describe how to modify the command interpreter in Listing 9-11 to allow the
user to enter either a word or a single character for each command. For example,
to set the minimum file size, the user can enter m, M, min, or even MiN followed
by the desired size.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 513

513
P

RO
BLEM

 S
ET

9.4	 Consider writing a simple telephone book program, which will keep names and
telephone numbers of friends and businesses you call frequently in a file. The
program itself should repeatedly prompt for a name, displaying all of the
matching names and their associated telephone numbers.

a. Develop two different file formats for your program. Describe both, indicat
ing which one you consider the better design and why.

b. Write pseudocode for the program. Include prompting, opening and closing
files, and the search algorithm.

c. Suppose the specification is modified so that the program prints only the
first name it finds, if it finds one at all. Consider the following pseudocode
and describe the bug(s) in each algorithm.

ƒwhileƒ(true)	 whileƒ(not at end of file)
ƒ{ƒread the next record {ƒread the next record
ƒƒƒifƒ(at the end of the file) ƒƒifƒ(found the name)
ƒƒƒ{ƒprint message ƒƒ{ƒprint message

exit the loop	 exit the loop
ƒƒƒ} ƒƒ}

ƒƒƒifƒ(found the name) }

ƒƒƒ{ƒprint message ifƒ(at end of file)

ƒƒƒ exit the loop {ƒprint not found message

ƒƒƒ} }

ƒ}

Programming Exercises

9.5	 The package becker.xtras.hangman includes classes implementing the
game of Hangman. Figure 7-13 has an image of the user interface. Extend
SampleHangman and override the newGame() method to open a file, choose a
random phrase, and then call the other newGame method with the chosen
phrase. Create a file with the phrases. Create a main method, as shown in the
package overview, to run your program.

9.6	 Write a program that reads a text file and writes it to a new file, performing
one of the following transformations. (Note: Other than the described transfor
mation, the two files should be identical.)

a. Write the new file entirely in uppercase letters.

b. Double space the new file.

c. Make an identical copy of the file except for a statement at the end telling
how many characters, words (tokens), and lines it contains. For the purpose
of counting characters, ignore newline characters.

d. Reverse the characters in each line of the file. If the first line of input is “It
was a dark and stormy night.” the first line of output should be “.thgin
ymrots dna krad a saw tI”.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 514

514
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

e. Put a prefix such as > at the beginning of each line of output.

f. Output only those lines that contain a given string.

g. Output the first n lines of the input file.

Programming Projects

9.7	 Write a calculator that accepts input like the one shown in Figure 9-15. The
program has a variable that stores the calculation as performed so far. When a
line begins with a number, that number goes in to the variable. An operation
such as + or * is remembered so that the next number can be combined appro
priately with the number currently stored in the variable. An equal sign causes
the current value of the variable to be printed. A line that starts with an opera
tor such as / continues to use the number in the variable from previous opera
tions. In addition to the operators shown, implement subtraction.

(figure 9-15)

Calculator program

9.8	 Write your own version of the Prompt class (see Listing 9-9).

a. Implement the forInt, forInputFile, and forInputScanner shown in
Listing 9-9.

b. Implement forBoolean, forDouble, and forToken. Each take a prompt
as a parameter and return a boolean, double, or single String token,
respectively.

c. Implement forInt with three parameters: a prompt, a minimum value,
and a maximum value. The method returns an integer value between
the minimum and the maximum, inclusive. The method invocation
forInt(“Enterƒyourƒchoice”,ƒ1,ƒ5) should produce the prompt
“Enterƒyourƒchoiceƒ[1..5]:ƒ”. Entering text that is outside of this
range or is not an integer should produce a prompt explaining the error.

d. Implement forInt with two parameters: a prompt and a default value. The
method returns the integer value entered by the user, or the default value if
the user only hits Enter. Of course, if the user enters something else, an
appropriate error message is displayed and the user is given another oppor
tunity. The method invocation forInt(“Enterƒyourƒchoice”,ƒ0)
should produce the prompt “Enterƒyourƒchoiceƒ(0):ƒ”. (Hint: To
detect only Enter, you will need to read the response using nextLine,

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 515

515
P

RO
BLEM

 S
ET

removing leading and trailing blanks with the trim method in String. If
the result is not empty, you will need to determine if it contains an integer.
Check the constructors in Scanner for ideas.)

e. Implement forString with two parameters: a prompt and a list of valid
values. The method returns the entered string, but only if the response
appears in the list of valid values. If it does not, print the list of valid values
and ask the user to try again. (Hint: The list of valid values could be either a
string with appropriate delimiters—such as “|exit|stop|go|”—or one of
the collection classes discussed in Section 8.5.)

f. Put the Prompt class in an appropriately named package for easy reuse. In a
different directory, create a simple program that uses at least one of the
methods from your package. Run it.

9.9	 Write a class named HangmanTextUI that can be used to play a text-based version
of Hangman. Your program will have a similar structure to the LogExplorer
program described in Section 9.5. You may use the SampleHangman class in
becker.xtras.hangman to implement the actual game.

9.10 Complete the reorganization of the model and user interface for the
LogExplorer program as described in Section 9.5.3.

a. Complete the class diagram shown in Figure 9-8.

b. If necessary, download the files for /ch09/logExplorer2/ and complete
the program it contains. It includes the original LogExplorer class plus the
LogExplorerView Java interface and a graphical user interface. The main
method will ask you which interface you would like to use.

Modifying the program as described will allow you to choose between the
command interpreter and the graphical user interface when the program
runs. The graphical user interface does not require any changes as long as
the methods named setSearchHost and setMinSize are provided in
LogExplorer.

9.11 Implement all the parts of Programming Exercise 9.6, providing a command
interpreter to specify which transformation should be performed. Commands
to the command interpreter should be of the following form:

reverseƒ<in>ƒ[<out>]
prefixƒ<str>ƒ<in>ƒ[<out>]
firstƒ<int>ƒ<in>ƒ[<out>]

<in> is the name of an input file. <out> is the name of an output file. Placing
<out> in square brackets means that entering an output file is optional, in
which case output is displayed on the screen. <str> and <int> indicate that a
string or an integer is expected, respectively.

9.12 Write a program to display a slide show on the computer’s display by combining
the programs in Section 9.8. Modify the ImageComponent class shown in
Listing 9-14 to include the method setImage(StringƒfileName). When

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 516

516
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

called, the component should read the image from the named file and display it.
Recall the function of repaint, as discussed in Section 6.7.2. Set the preferred
size of the component to 500 x 500 instead of basing it on a specific image.

a. Use JFileChooser to obtain a file named by the user. Each record in the
file will contain an image filename and the number of seconds to display the
image. The image files are assumed to be in the same directory as the file
listing them (which may be different from the program’s working directory).

b. Use JFileChooser to obtain the list of images to show. JFileChooser
can allow the user to select several files at the same time by holding down
the Shift or Control keys while selecting files. To enable this behavior, the
programmer must call the chooser’s setMultiSelectionEnabled method
before the chooser is shown. The list of files chosen can be retrieved with
the following statement:

List<File>ƒfNamesƒ=ƒArrays.asList(
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒchooser.getSelectedFiles());

Use a foreach loop, as discussed in Section 8.5.1, to access each file. Use
Thread.sleep to pause for two seconds between each image.

9.13 A cipher transforms text to conceal its meaning. One of the simplest ciphers is
the Caesar cipher, which replaces each letter in the message with the letter n
positions away in the alphabet, where n remains constant. For example, when
n = 3, A is replaced with D, B with E, C with F, and so on. Letters at the end of
the alphabet will wrap around to be replaced with letters at the beginning of
the alphabet. See Figure 9-16.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
(figure 9-16)

Caesar cipher

Using n = 3 to encode the message MEETƒATƒDAWN results in the encoded mes
sage PHHWƒDWƒGDZQ. One can do this in a program by placing the letters in a
string. For each letter in the message, find its position, p, in the string and write
the letter at (p + n) % 26 to the output file. Any character not in the string is
written as itself. For example, period (.) will appear identically in both the
input and the output.

a. Write a program implementing the Caesar cipher described above except
that the string includes all the letters present on your keyboard. Your pro
gram should ask the user for an offset, an input file, and an output file.
When your program is complete, encode a message with n = 5. You should
be able to decode the message by running the program again with n = -5. Be
careful with the % operator, however. If the first operand is negative, the
answer will be negative as well.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 517

517
P

RO
BLEM

 S
ET

(figure 9-17)

First step of using a key

(figure 9-18)

Second step of using a key

b. The Caesar cipher is easy to break because there are so few combinations to
try. One could easily write a program to simply try each value of n. A better
approach asks the user for a key, for example SMOKESTACK, and a value of
n. Insert the letters in the key into a string, ignoring duplicates. Then add all
the remaining characters to encode in order, skipping any that are already
present. For example, with the key SMOKESTACK, one would have the fol
lowing string: SMOKETACBDFGHIJLNPQRUVWXYZ. Now encode the message
as with the Caesar cipher. Of course, this is more effective if the string con
tains lowercase letters, digits, punctuation, and so on. It is also more effec
tive if the key contains some of these characters as well. Write a program
implementing this encoding scheme. Verify that you can use the same pro
gram to decode the message.

c. The keyed cipher in part (b) is still relatively easy to break using letter fre
quencies. Assuming the coded message is written in English, the characters
that appear most often in the coded message are likely to be the most fre
quently occurring English letters: E, T, A, R, and N.

One way around this is use a key again. Suppose the key is CIPHER and the
message to encode is MEETƒATƒDAWN. The first letter of the message, M, is
encoded as O using an offset of 2 because there are two letters between the
beginning of the alphabet and C, the first letter of the key. See Figure 9-17.

2 2

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Similarly, the second letter of the message, E, is encoded using the second
letter of the key to determine the offset. The offset is 8 because there are 8
letters between the beginning of the alphabet and I. Therefore E is encoded
as M. See Figure 9-18.

8

8

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Notice, however, that the second E in MEET is encoded differently than the
first one. That’s because the third letter of the key is P. Therefore, an offset
of 15 is used instead of an offset of 8, encoding E as T. See Figure 9-19.

9 Chapter C5743 40143.ps 11/30/06 1:35 PM Page 518

518
CH

AP
TE

R
9

| I
N
PU

T
AN

D
 O

U
TP

U
T

(figure 9-19)
15

15
 Using an offset of 15 to

encode E as T
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

When the end of the key is reached, simply wrap around to the beginning to
encode the next letter of the message. Implement this improved algorithm in
the class Cipher3.java.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 519

Chapter 10 Arrays

Chapter Objectives

After studying this chapter, you should be able to:

➤	 Store data in an array, access a single element, process all elements, search for a
particular element, and put the elements in order.

➤	 Declare, allocate, and initialize an array.

➤	 Handle changing numbers of elements in an array, including inserting a new ele
ment and deleting an existing one.

➤	 Enlarge or shrink the size of an array.

➤	 Manipulate data stored in a multi-dimensional array.

We often work with lists in our daily lives: grocery lists, to-do lists, lists of books
needed for a particular course, the invitation list for our next party, and so on. To be
useful, computers must also work with lists: a list of the Thing objects in a City, a list
of concert tickets, or a list of bank accounts, to identify just a few.

There are several ways to implement lists in Java. One of the most fundamental
approaches is with an array, a kind of variable. Once a list is stored in the array we can
do many things: tick off the third item in our to-do list, print the entire list of books for
a course, search our list of invitations to verify that it includes James Gosling, or sort
the list alphabetically.

In Section 8.5, we studied classes in the Java library that are similar to arrays in that
they store a collection of objects. Some of these, such as ArrayList, are thinly dis
guised arrays. Others, such as HashMap, provide more sophisticated ways to find
objects in the collection. But underneath it all, many of these classes use an array.

519

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 520

520

10.1 Using Arrays

CH
AP

TE
R

10
 |

AR
RA

YS

Big Brothers/Big Sisters is a charitable association that matches men and women with
boys and girls between the ages of 6 and 16 who could benefit from an older friend and
role model. In many cases the boys and girls are missing a parent due to death or
divorce and don’t have many positive role models in their lives.

Obviously, an association like Big Brothers/Big Sisters keeps lists. One of the most cru
cial is the list of “bigs” (the adults) and “littles” (the girls and boys) participating in the
association. In this chapter we will consider a computer program that maintains a list
of Person objects (see Figure 10-1) in an array. An array is a kind of variable that can
store many items, such as the items in a list. We will learn how to print the entire list of
people or just the people that meet certain qualifications, such as being a six-year-old
girl. We will learn how to search the list for a specific person and learn to find the per
son that meets a maximum or minimum criterion (such as the oldest or youngest). Of
course, all these techniques will apply to lists of other kinds of objects as well.

Person

-String name
-DateTime birthdate
-Gender gender
-Role role
-String pairName

+Person(String name,
DateTime bDay,
Gender gender, Role role)

+Person(Scanner in)
+int getAge()
+Gender getGender()
+String getName()
+String getPairName()
+Role getRole()
+boolean isPaired()
+void pairWith(Person p)

The simplified version of Person, shown in Figure 10-1, uses two enumerations:
Gender and Role. The first enumeration provides the values MALE and FEMALE; the
Role enumeration provides the values BIG to represent an adult participant and LITTLE
to represent a young person. The pairWith command will pair this person with the per
son, p, specified as a parameter. It does this by setting the pairName appropriately in
both objects.

Throughout this section, we will assume that we have an array named persons con
taining a list of Person objects. In Section 10.2, we will learn how to create such a
variable and fill it with data.

KEY IDEA

See www.bbbsc.ca or
www.bbbsa.org for
more information on
Big Brothers/
Big Sisters.

KEY IDEA

There are many
algorithms that work
with lists of things.

(figure 10-1)

Class diagram for Person

LOOKING BACK

Enumerations are new
in Java 1.5 and are
discussed in
Section 7.3.4.

http:www.bbbsa.org
http:www.bbbsc.ca

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 521

521
10.1

U
SIN

G
 A

RRAYS

10.1.1 Visualizing an Array

LOOKING BACK An object diagram for an array will require showing many Person objects. The
Object diagrams were diagram will become quite large if we use our usual format for each Person object

first discussed in (see Figure 10-2). To avoid this problem, we will abbreviate each person object in
Chapter 1. References the diagram as shown in Figure 10-3.

were discussed in

Section 8.2.

(figure 10-2) aPerson Person
name: Steve

birthdate: 1968/12/24

 gender: MALE

role: BIG

pairName:

Object diagram showing a

variable referring to a

Person object

(figure 10-3)
aPerson

Abbreviated object

diagram

Steve, 1968/12/24, M, B

In both diagrams, the box labeled aPerson is a variable that refers to an object—the
round-cornered box labeled Person.

So, what does an array look like? Figure 10-4 shows a visualization of an array of
Person objects. The reference variable persons refers to an array object. The array
object refers to many Person objects. Each reference, called an element of the array, is
numbered beginning with zero. This number is called the index.

(figure 10-4)

Visualizing an array of

Person objects

Roydyn, 1993/5/25, M, L

Kala, 1992/2/16, F, L

Ali, 1985/7/12, M, B

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, B

Person[]

persons

Zaki, 1980/9/2, F, B

length 8
[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 522

522
CH

AP
TE

R
10

 |
AR

RA
YS

Notice that an array is illustrated almost exactly like other kinds of objects. Similarities
include a variable, such as persons, that refers to the array object just as the variable
karel referred to a Robot object in earlier chapters. An array object contains a public
final instance variable named length, but has no methods. length stores the number
of elements in the array.

The crucial difference between arrays and objects is that the array has instance vari
ables that are accessed with square brackets and a number instead of a name. This is
illustrated in Figure 10-4 with variables named [0], [1], and so on. The numbering
always starts at zero. This language rule often causes beginning programmers grief
because most people naturally begin numbering with one. Furthermore, the indices run
from zero to one less than the number stored in length. For example, in Figure 10-4,
length is 8 but the indices run from 0 to 7.

The fact that the elements in the array are numbered gives them an order. It makes
sense to speak of the first element (the element numbered 0), the second element, and
the last element.

10.1.2 Accessing One Array Element

Accessing a specific element in an array is as easy as accessing a normal variable—
except that the index of the desired element must also be specified. If we had a simple
variable named aPerson we could print the name with the following line of code:

System.out.println(aPerson.getName());

Printing the name of the first person in our array is almost as easy. Instead of only nam
ing the variable, we name the array and the position of the element we want:

System.out.println(persons[0].getName());

The index of the desired element is given by appending square brackets to the name of
the array. The index appears between the brackets. You may use the result in exactly
the same ways that you use a variable of the same type.

Here is another code fragment that shows the persons array in use. In each case,
persons is followed by the index of a specific element in the array.

1 // Check if Kathleen (see Figure 10-4) is a "Big"
2 ifƒ(persons[3].getRole()ƒ==ƒRole.BIG)
3 {ƒSystem.out.println(persons[3].getName()ƒ+ƒ" is a Big.");
ƒ4 }

KEY IDEA

Elements in an array
are numbered
beginning with zero.

KEY IDEA

Each element has an
index giving its
position in the array.

KEY IDEA

Arrays are indexed
with square brackets
and an integer
expression.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 523

523

KEY IDEA

An element in an
array can be assigned

to another variable.

It is also possible to assign a reference from the array to a regular variable. For exam
ple, the previous code fragment could have been written like this:

1 Personƒkathy;

2 // Check if Kathleen (see Figure 10-4) is a "Big"

3 kathyƒ=ƒpersons[3];

4 ifƒ(kathy.getRole()ƒ==ƒRole.BIG)

5 {ƒSystem.out.println(kathy.getName()ƒ+ƒ" is a Big.");

6 }

The effect of the reference assignment in line 3 is just like assigning references between
non-array variables and is traced in Figure 10-5. Assigning a reference from an array to
an appropriately named temporary variable can make code much more understandable.

10.1
U

SIN
G
 A

RRAYS

(figure 10-5) Person kathy;

Tracing a reference

assignment using an array
persons

and a non-array variable Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, BPerson[]
length 4

[0]
[1]
[2]
[3]

kathy

kathy = persons[3];

persons

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, BPerson[]
length 4

[0]
[1]
[2]
[3]

kathy

References stored in an array may also be passed as arguments. For example, Kathleen and
Beth could be paired as Big and Little Sisters with the following sequence of statements:

// Pair Kathleen and Beth
Personƒkathyƒ=ƒpersons[3];

Personƒbethƒ=ƒpersons[2];

kathy.pairWith(beth);

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 524

524
CH

AP
TE

R
10

 |
AR

RA
YS

However, because elements of an array can be used just like a regular variable, we
could also pair Kathleen and Beth this way:

// Pair Kathleen and Beth
persons[3].pairWith(persons[2]);

Finally, we can also assign a reference to an array element. For example, suppose
Kathleen is replaced by her friend Claire. The following code constructs an object to
represent Claire and then replaces the reference to Kathleen’s object with a reference to
Claire’s object.

Personƒcƒ=ƒnewƒPerson("Claire",ƒnewƒDateTime(1981,4,14),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒGender.FEMALE,ƒRole.BIG);
persons[3]ƒ=ƒc;

This code fragment is traced in Figure 10-6.

KEY IDEA

The golden rule for
arrays: Do unto an
array element as you
would do unto a
variable of the
same type.

Person c = new Person(...); (figure 10-6)

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, BPerson[]
length 4

[0]
[1]
[2]
[3]

Claire, 1981/4/14, F, B

persons

c

Tracing the assignment of

a reference into an array

element

persons[3] = c;

persons

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, BPerson[]
length 4

[0]
[1]
[2]
[3]

Claire, 1981/4/14, F, Bc

The object modeling Kathleen will be garbage collected unless another variable is ref
erencing it.

LOOKING BACK

When an object has
no references to it,
the resources it uses
are recycled. See
Section 8.2.3.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 525

525

10.1.3 Swapping Array Elements

We can easily exchange, or swap, two elements in an array. For example, suppose we
wanted to switch the places of Ken and Beth within the array. A temporary variable is
needed to store a reference to one of the elements while the swap is taking place. A
method to perform a swap follows. It takes two arguments, the indices of the two ele
ments to swap. Note that we are now assuming that persons is an instance variable.

classƒBigBroBigSisƒextendsƒObject
{ƒ...ƒpersonsƒ...

ch10/bbbs/
/** Swap the person object at index a with the object at index b. */

ƒƒpublicƒvoidƒswap(intƒa,ƒintƒb)

ƒƒ{ƒPersonƒtempƒ=ƒthis.persons[a];

ƒƒƒƒthis.persons[a]ƒ=ƒthis.persons[b];

ƒƒƒƒthis.persons[b]ƒ=ƒtemp;

ƒƒ}

}

After the swap method finishes executing, the temporary variable temp will cease to
exist. The object it referenced, however, is still referenced by one element in the array
and will not be garbage collected.

Figure 10-7 traces the execution of swap(1,ƒ2).

10.1
U

SIN
G
 A

RRAYS

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 526

526
CH

AP
TE

R
10

 |
AR

RA
YS

 { Person temp = this.persons[a]; (figure 10-7)

temp Tracing swap(1,ƒ2); the

parameter a has the value
persons

Ken, 1997/8/7, M, L

Steve, 1968/12/24, M, BPerson[]
length 4

[0]
[1]
[2]
[3]

1 and b has the value 2

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

this.persons[a] = this.persons[b];

temp

persons Person[]
length 4

[0]
[1]
[2]
[3]

Steve, 1968/12/24, M, B

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

this.persons[b] = temp;

temp

persons

Ken, 1997/8/7, M, L

Steve, 1968/12/24, M, BPerson[]
length 4

[0]
[1]
[2]
[3]

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

// After the swap method finishes

persons Person[]
length 4

[0]
[1]
[2]
[3]

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, B

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 527

527

KEY IDEA

Arrays may be
indexed with

variables.

Process All Elements

KEY IDEA

The number of
elements in an array

can be found with
.length.

KEY IDEA

The last index is one
less than the length

of the array.

10.1.4 Processing All the Elements in an Array

Accessing an element of an array using a number may not seem particularly helpful. We
could, after all, simply declare many variables that just have a number in each name:

Personƒperson00;
Personƒperson01;
Personƒperson02;

But consider printing the name of each person in the list. Without an array, we would
need statements for each named variable:

System.out.println(person00.getName());

System.out.println(person01.getName());

System.out.println(person02.getName());

ƒƒƒ…

If the list contained 1,000 people, the method to print their names would have about
1,000 lines. What a pain!

Fortunately, an array’s index may be a variable—or any other expression that evaluates
to an integer. This is where the power of arrays really becomes apparent. By putting the
println statement inside a loop that increments a variable index, we can print the
entire array with only three lines of code—no matter how many elements are in it.

// Print the the name of every person in the array.
forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++)
{ƒSystem.out.println(this.persons[i].getName());
}

One item of note in this code fragment is the test in the for loop. The length of an
array can always be found with the array’s public final instance variable, length. If
the array is as illustrated in Figure 10-4, this.persons.length will return 8, the
number of elements in the array. The index, i, takes values starting with 0 and ending
with 7, one less than the array’s length. The length of the array is 8 but the index of the
last element is one less, 7. This is surely one of the most confusing aspects of arrays for
beginning programmers.

So far we have encountered three different mechanisms to find the number of elements
in a collection. Arrays use the public instance variable, length. The number of char
acters in a string is found with a method, length(). Finally, Java’s collection classes
such as ArrayList and HashMap also use a method to find the number of elements,
but it has a different name, size().

Another task that uses a loop to access each element in turn is to calculate the average
age of the people in the array. For this task, we will use a variable to accumulate the
ages while we loop through the array. After we have added all the ages, we’ll divide by
the length of the array to find the average age.

10.1
U

SIN
G
 A

RRAYS

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 528

528
CH

AP
TE

R
10

 |
AR

RA
YS

/** Calculate the average age of persons in the array. */
publicƒdoubleƒcalcAverageAge()

{ƒintƒsumAgesƒ=ƒ0;

ƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++)

ƒƒ{ƒPersonƒpƒ=ƒthis.persons[i];

ƒƒƒƒsumAgesƒ=ƒsumAgesƒ+ƒp.getAge();

ƒƒ}

ƒƒreturnƒ(double)sumAges/this.persons.length;

}

The variable sumAges has the role of a gatherer: It gathers all the individual ages
together. That value is then used to find the average age.

The loop controlling the index, i, is exactly the same in calcAverageAge as it was in
the example to print all the names. This looping idiom—starting the index at 0 and
incrementing by one as long as it is less than the length of the array—is extremely com
mon when using arrays. Using it should become an automatic response for every pro
grammer confronted with processing all the elements in an array.

Using the foreach Loop

You may remember that processing each element was also a common activity when
using the collection classes, such as ArrayList and HashSet. In that situation, we
used the foreach loop introduced with Java 1.5. The foreach loop also works with
arrays. The following loop is equivalent to the one used in calcAverageAge, shown
earlier.

forƒ(Personƒpƒ:ƒthis.persons)

{ƒsumAgesƒ=ƒsumAgesƒ+ƒp.getAge();

}

The foreach loop is a generalized loop designed for use with unordered data structures
such as maps and trees, for which asking for element n makes no sense. Hence, a foreach
loop has no index. Instead, one element from the collection is provided for each iteration
of the loop until all of the elements have been processed.

Programmers should be familiar with both looping styles. To emphasize this, we’ll
alternate between the two.

10.1.5 Processing Matching Elements

The method just written, calcAverageAge(), does not seem nearly as useful as a
method to find the average age of only the littles or only the bigs. In the previous exam
ple, we added the age of every element in the array. To find the average age of only the

ch10/bbbs/

Process All Elements

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 529

529

Process Matching
Elements

ch10/bbbs/

LOOKING AHEAD

We’ll learn how to
generalize these

methods with
interfaces and

polymorphism in
Chapter 12.

littles, we want to include the ages only if the person is, in fact, a little. This logic is
shown in the following pseudocode:

forƒeach person in the array

{ƒifƒ(the person is a little)

ƒƒ{ƒinclude this person in the average

ƒƒ}

}

returnƒaverage

By adding the if statement inside the loop, we restrict its effects to only those elements
that match the test. We process the matching elements. Notice that this pattern is very
similar to the Process All Elements pattern.

This pseudocode translates to Java as follows:

/** Find the average age of the "littles". */
publicƒdoubleƒgetAverageLittleAge()

{ƒintƒsumAgesƒ=ƒ0;

ƒƒintƒnumLittlesƒ=ƒ0;

ƒƒforƒ(Personƒpƒ:ƒthis.persons)

ƒƒ{ƒifƒ(p.getRole()ƒ==ƒRole.LITTLE)

ƒƒƒƒ{ƒsumAgesƒ=ƒsumAgesƒ+ƒp.getAge();

ƒƒƒƒƒƒnumLittlesƒ=ƒnumLittlesƒ+ƒ1;

ƒƒƒƒ}

ƒƒ}

ƒƒreturnƒ(double)ƒsumAges/numLittles;

}

Of course, by changing the test in the if statement, we change which objects we
process. By changing the body of the if statement, we change how they are processed.
For example, the following code fragment prints all the “bigs” who have not been
paired with a “little.”

// Print the names of unpaired "bigs"
forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++)

{ƒPersonƒpƒ=ƒthis.persons[i];

ƒƒifƒ(p.getRole()ƒ==ƒPerson.BIGƒ&&ƒ!p.isPaired())

ƒƒ{ƒSystem.out.println(p.getName());

ƒƒ}

}

10.1.6 Searching for a Specified Element

In one of our first examples we paired Beth, the person at index 2, with Kathleen, the
person at index 3. But when we’ve decided to pair Beth and Kathleen, how do we find
their positions in the array? We search for them.

10.1
U

SIN
G
 A

RRAYS

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 530

530
CH

AP
TE

R
10

 |
AR

RA
YS

Searching involves using some identifying information—such as a name, telephone number,
or government identification number—and finding the corresponding object in the array.
The identifying information is often called a key. If each key is unique, then at most one
object in the array will match the key. Government identification numbers usually identify
a unique person. On the other hand, names and telephone numbers may match several dif
ferent people. In that case, a search generally returns the first object that matches.

In most cases we don’t know that our search will be successful. It might be that no
object matches the key. Therefore, we need a way to indicate failure. This is usually
done by returning a special value such as null or –1. We can use null when the
search method returns the object that was found and –1 when the search method
returns the array index where the object was found. We use null and –1 for this role
because null is never a legal reference to an object and –1 is never a legal array index.

The easiest way to write a search method is a variation of the Process Matching
Elements pattern—except that the “processing” is to exit the loop and return the
answer. Suppose we are looking for a person using their name as a key. The logic is
shown in the following pseudocode:

forƒeach person in the array
{ƒifƒ(the person’s name matches the key)
ƒƒ{ƒexit the loop and return the person
ƒƒ}
} Linear Search

returnƒnull

We can exit the loop when we find the right person with the return statement. If we
examine all of the people in the array and do not find one matching the key, the code
will exit the loop at the bottom and return null, indicating the search failed.

In Java, this can be implemented as the method shown in Listing 10-1.

Listing 10-1: Searching an array

ch10/bbbs/
1 /** Search for the first person object matching the given name.

2 * @param name The name of the person to find (the key).

3 * @return The first matching person object; null if there is none. */

4 publicƒPersonƒsearch(Stringƒname)

Linear Search
5 {ƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++)

6 ƒƒ{ƒPersonƒpƒ=ƒthis.persons[i];

7 ƒƒƒƒifƒ(p.getName().equalsIgnoreCase(name))

8 ƒƒƒƒ{ƒreturnƒp;ƒƒƒƒ// Success. Exit the loop and return the person found.

9 ƒƒƒƒ}

10 ƒƒ}
11 ƒƒreturnƒnull;ƒƒƒƒƒ// Failure.
12 }

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 531

531

LOOKING BACK

The Prompt class
was discussed in

Section 9.4.2.

KEY IDEA

Always confirm a
search was successful

before proceeding.

The search method can also be written without the temporary variable p, as follows:

publicƒPersonƒsearch(Stringƒname)

{ƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++)

ƒƒ{ƒifƒ(this.persons[i].getName().equalsIgnoreCase(name))

ƒƒƒƒ{ƒreturnƒthis.persons[i];ƒƒƒƒƒƒƒƒƒƒ// Search succeeded.

ƒƒƒƒ}

ƒƒ}

ƒƒreturnƒnull;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// Search failed.

}

We can use the search method to pair Kathleen and Beth as follows:

StringƒbigNameƒ=ƒPrompt.forString("Big's Name: ");

Personƒbigƒ=ƒthis.search(bigName);

StringƒlittleNameƒ=ƒPrompt.forString("Little's Name: ");

Personƒlittleƒ=ƒthis.search(littleName);

big.pairWith(little);ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// Dangerous code!

The last line is marked as dangerous code because one or both of the searches may
have failed, in which case big or little will contain the value null. Then a
NullPointerException will be generated when the last line executes. The outcome
of a search should always be verified and failure handled. The following is better code
because it checks that the searches were successful.

StringƒbigNameƒ=ƒPrompt.forString("Big's Name: ");

Personƒbigƒ=ƒthis.search(bigName);

whileƒ(bigƒ==ƒnull)

{ƒSystem.out.println(bigNameƒ+ƒ" not found.");

ƒƒbigNameƒ=ƒPrompt.forString("Big's Name: ");

ƒƒbigƒ=ƒthis.search(bigName);

}

// Repeat the above to find the little.

big.pairWith(little);ƒƒ// Safe because both big and little have been found.

Another Approach to Searching

Many people think it is a bad idea to exit a loop early. They think that a line such as
the following is like a contract between the programmer and the reader.

forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++)

The contract says this code will execute one time for every person in the array. Returning
from the middle of the loop, like the search in Listing 10-1, breaks the contract.

10.1
U

SIN
G
 A

RRAYS

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 532

532
CH

AP
TE

R
10

 |
AR

RA
YS

A search algorithm that respects this view uses a while loop, which does not imply
that every element in the array will be visited. The core idea is to repeatedly increment
an index variable so that elements of the array are examined in turn. This is Step 1 of
the Four-Step Process for constructing a while loop. The loop stops (Step 2) when
either the end of the array is reached or the desired element is found, which ever comes
first. Therefore, the loop continues as long as we have not reached the end of the array
and we have not found the desired element. The loop is assembled (Step 3) with the
results of Steps 1 and 2. Finally, after the loop (Step 4), we need to determine the
answer and return it.

The logic is shown in the following pseudocode:

whileƒ(not at the end of the array and matching object not found)
{ƒincrement index to examine the next object
}
ifƒ(at the end of the array)
{ƒthe search failed; return null
}ƒelse
{ƒthe search succeeded; return the object
}

Making this pseudocode concrete to search for a person results in Listing 10-2.

LOOKING BACK

The Four-Step Process
for constructing a
loop is discussed in
Section 5.1.2.

Linear Search

Listing 10-2: Another approach to searching an array

ch10/bbbs/
1 /** Search for the first person object matching the given name.

2 * @param name The name of the person to find (the key). */

3 publicƒPersonƒsearchAlt(Stringƒname)

4 {ƒintƒiƒ=ƒ0;

5 ƒƒwhileƒ(iƒ<ƒthis.persons.lengthƒ&&ƒ

6 ƒƒƒƒƒƒƒƒƒ!this.persons[i].getName().equalsIgnoreCase(name))

7 ƒƒ{ƒi++;

8 ƒƒ}

9

10 ƒƒifƒ(iƒ==ƒthis.persons.length)
11 ƒƒ{ƒreturnƒnull;ƒƒƒƒƒƒƒƒƒƒƒƒƒ// Failure: got to the end without finding it.
12 ƒƒ}ƒelseƒ
13 ƒƒ{ƒreturnƒthis.persons[i];ƒƒ// Success.
14 ƒƒ}
15 }

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 533

533

Find an Extreme

10.1.7 Finding an Extreme Element

An extreme element has the most of something or the least of something. It might be
the person with the most age (oldest person) or the least age (youngest person). In
other contexts, extreme elements might be the employee with the highest salary, the
robot with the most things, the stock with the highest price/earnings ratio, or the name
appearing first in dictionary ordering.

The strategy is to step through the array using the Process All Elements pattern. As we
go, we’ll remember the element that best meets the criteria so far. For each new element
we examine, we’ll ask if it meets the criteria better than the one we’re remembering. If
it does, remember it instead. Expressed in pseudocode, this algorithm is:

remember the first element as the best seen so far
forƒeach remaining element in the array
{ƒifƒ(the current element is better than the best seen so far)
ƒƒ{ƒremember the current element as the best seen so far
ƒƒ}
}
return the best seen so far

Listing 10-3 applies this algorithm to the problem of finding the oldest person in the
array. It begins, in line 3, by remembering the first person in the array (at index 0) as the
oldest we’ve seen so far. This must be true, because we haven’t looked at anyone else.

In line 5, we start looking at the rest of the people in the array. Lines 6–8 check if the
current person matches the criteria better than oldestSoFar. If it does, the old value of
oldestSoFar is replaced with currentPerson. When the loop ends, oldestSoFar

10.1
U

SIN
G
 A

RRAYS

ch10/bbbs/

will contain the oldest person in the entire list.

Listing 10-3: An example of finding an extreme element: the oldest person in the array

1 /** Find oldest person in the list. (Assumes there is at least one person in the array.) */
2 publicƒPersonƒfindOldestPerson()
3 {ƒPersonƒoldestSoFarƒ=ƒthis.persons[0];
4
5 ƒƒforƒ(PersonƒcurrentPersonƒ:ƒthis.persons)
6 ƒƒ{ƒifƒ(currentPerson.getAge()ƒ>ƒoldestSoFar.getAge())
7 ƒƒƒƒ{ƒoldestSoFarƒ=ƒcurrentPerson;
8 ƒƒƒƒ}
9 ƒƒ}

10 ƒƒreturnƒoldestSoFar;

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 534

534
CH

AP
TE

R
10

 |
AR

RA
YS

11	 }

What happens if two elements in the array meet the criteria equally well? What if two
people have the same age? The algorithm given here will return the first one found and
ignore anyone occurring later in the array who happens to be the same age. Changing
the > in line 6 to >= results in finding the oldest person who appears last.

Listing 10-3 returns the extreme element. Sometimes it is desirable to return the index
of that element instead. Implementing such a method requires replacing the foreach
loop with a regular for loop which makes the index explicit.

Java allows an empty array (an array with length zero), as shown in Figure 10-8.

LOOKING AHEAD

Problem 10.4 makes
the algorithm more
accurate. In
Section 10.3, we will
learn how to return
an array of people
who all meet the
same criteria.

(figure 10-8)

Person[]
length 0	

Empty array
persons

The code in Listing 10-3 will fail on such an array with an
ArrayIndexOutOfBoundsException at line 3. Programmers should always be
aware of such a possibility and decide how to handle it. Options include the following:

➤	 Document that calling the method with an empty array is an error. Check for
that situation and throw an exception, if required.

➤	 Document the value the method will return if the array is empty. This would
typically be null if the method returns the extreme element and –1 if it
returns the index of the extreme element. Of course, a check must be made for
empty arrays so the correct value can be returned.

10.1.8 Sorting an Array

Collections of things are often easier to work with if they are sorted. Card players usu
ally sort the collection of playing cards in their hands. A collection of words in a dic
tionary is usually sorted in alphabetical order, as are names in a telephone book. A
collection of banking transactions are sorted by date on the bank statement.

Different algorithms can sort an array. Many of these algorithms have been given
names: Insertion Sort, Selection Sort, QuickSort, HeapSort, ShellSort, MergeSort, and
so on. Selection Sort is one of the easiest sorting algorithms to master. It builds on three
patterns we have already seen: Process All Elements, Find an Extreme, and Swap Two
Elements.

These sorting algorithms vary widely in their efficiency and in their ease of implemen

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 535

535

tation. Insertion Sort and Selection Sort are easy to implement but slow to execute.
QuickSort, HeapSort, ShellSort, and MergeSort are all much, much faster for large
arrays but are more difficult to implement. They are typically included in a second year
Computer Science course.

Understanding Selection Sort

Diagrams help us understand how a sort works. For simplicity, our diagrams will use
an array of letters; when the array is sorted, the letters will be in alphabetical order.

The core idea of Selection Sort is to divide the array into two parts, as shown in
Figure 10-9: the part that is already sorted (shown with a dark background) and the
part that isn’t (shown with a white background). (figure 10-9)

Dividing an array into

two parts 0 1 2 3 4 5 6

10.1
U

SIN
G
 A

RRAYS

A B C G E D F

At each step in the algorithm, we extend the sorted portion of the array by one ele
ment. The next element to add to the sorted portion is the smallest element in the
unsorted portion of the array, D. It goes in the position currently occupied by G. These
two elements are highlighted in Figure 10-10.(figure 10-10)

Extending the array
0 1 2 3 4 5 6
A B C G E D F

The last part of this step is to swap these two elements, thus extending the sorted por
(figure 10-11)

tion of the array by one element. See Figure 10-11.
Swapping the two

elements; extending the
0 1 2 3 4 5 6sorted part of the array
A B C D E G F

These two actions—finding the element that belongs in the next position and swapping
it with the one already there—are performed repeatedly until the entire array is sorted.
The algorithm begins with the sorted portion of the array being empty and the
unsorted portion consuming the entire array. Figure 10-12 shows the entire sorting
operation on a small array.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 536

536

0 1 2 3 4 5 6 (figure 10-12)

CH
AP

TE
R

10
 |

AR
RA

YS

The initial, unsorted array. F E A G B D C

Find the element that belongs at index 0. F E A G B D C

Swap elements at 0 and 2, extending sorted part. A E F G B D C

Find the element that belongs at index 1. A E F G B D C

Swap elements at 1 and 4, extending sorted part. A B F G E D C

Find the element that belongs at index 2. A B F G E D C

Swap elements at 2 and 6, extending sorted part. A B C G E D F

Find the element that belongs at index 3. A B C G E D F

Swap elements at 3 and 5, extending sorted part. A B C D E G F

Find the element that belongs at index 4. A B C D E G F

Swap elements at 4 and 4, extending sorted part. A B C D E G F

Find the element that belongs at index 5. A B C D E G F

Swap elements at 5 and 6, extending sorted part. A B C D E F G

Sorting an array of letters

into alphabetical order

Two points in this example are worth elaboration. First, notice that when the element
in the next to last position (index 5) is swapped into position, the last element (index 6)
is automatically placed correctly as well. A moment’s thought will explain why: When
all the elements but the last are in their correct places, the last one must also be in its
correct place because there is no where else for it to be.

Second, when it was time to look for the element to place at index 4, the element just hap
pened to already be there. In this case, we would not need to perform the swapping step.
We will anyway, however, because the “cure” of testing for this condition for every position
in the array is worse than the “disease” of performing the swap every once in a while.

Coding Selection Sort

Based on this example, we see that two actions are repeated: Find the element that
belongs in the next position and swap it with the one already there. These actions are
performed for each position in the array, in ascending order, except for the last one.
These observations yield the following pseudocode:

forƒeach position in the array except the last
{ƒfind the element that should go in this position
ƒƒswap that element with the element currently there

Selection Sort }

In this case the foreach loop is inappropriate because we will not be examining every
element in the array and because we need the index of the current element.

We can use this algorithm to sort our list of persons, but first we need to decide on the
order we want. Sorted by age? Sorted by name in alphabetical order? Something else?

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 537

537

In the first example, we will sort the array by name. To do so, we’ll use the compareTo
method in the String class. If we have two String variables, s1 and s2, then
s1.compareTo(s2) returns 0 if the two strings are equal, a negative number if s1
comes before s2 in dictionary order, and a positive number if s1 comes after s2.

Listing 10-4 shows the Selection Sort algorithm coded in Java. Let’s look briefly at the
patterns it uses.

First, the sort method uses a very slight variation of the Process All Elements pattern.
The difference is that it processes all the elements except the last one. As noted earlier, by
the time all the other elements are in their place, the last one must be in its place as well.

Second, the helper method uses a variation of the Find an Extreme pattern. It differs
from the pattern in Section 10.1.7 in two ways:

➤	 It finds the extreme in only the unsorted part of the array. We pass the index of
the first element it should consider as an argument.

➤	 We are concerned with the position of the extreme element, not the element itself.
So our most-wanted holder variable in findExtreme, indexBestSoFar, stores
the index of the best Person object seen so far rather than a reference to
the object.

Third, the swap helper method is exactly as we saw before.

10.1
U

SIN
G
 A

RRAYS

ch10/bbbs/

Selection Sort

Listing 10-4: Implementing Selection Sort to sort an array of Person objects by name

1 publicƒclassƒBBBSƒextendsƒObject
2 {ƒ...ƒpersonsƒ...ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// an array of Person objects
3
4 ƒƒ/** Sort the list of persons in alphabetical order by name. */
5 ƒƒpublicƒvoidƒsort()
6 ƒƒ{ƒforƒ(intƒfirstUnsortedƒ=ƒ0;
7 ƒƒƒƒƒƒƒƒƒƒƒƒƒfirstUnsortedƒ<ƒthis.persons.length-1;ƒ
8 ƒƒƒƒƒƒƒƒƒƒƒƒƒfirstUnsorted++)
9 ƒƒƒƒ{ƒintƒextremeIndexƒ=ƒthis.findExtreme(firstUnsorted);

10 ƒƒƒƒƒƒthis.swap(firstUnsorted,ƒextremeIndex);
11 ƒƒƒƒ}
12 ƒƒ}
13
14 ƒƒ/** Find the extreme element in the unsorted portion of the array.
15 ƒƒ * @param indexToStart The smallest index in the unsorted portion of the array.
16 ƒƒ * @return The index of the extreme element. */
17 ƒƒprivateƒintƒfindExtreme(intƒindexToStart)
18 ƒƒ{ƒintƒindexBestSoFarƒ=ƒindexToStart;
19 ƒƒƒƒStringƒnameBestSoFarƒ=ƒ
20 ƒƒƒƒƒƒƒƒƒƒƒƒthis.persons[indexBestSoFar].getName();

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 538

538
CH

AP
TE

R
10

 |
AR

RA
YS

Listing 10-4: Implementing Selection Sort to sort an array of Person objects by name (continued)

21 ƒƒƒƒforƒ(intƒi=indexToStart+1;ƒi<this.persons.length;ƒi++)
22 ƒƒƒƒ{ƒStringƒcurrPersonNameƒ=ƒthis.persons[i].getName();
23 ƒƒƒƒƒƒifƒ(currPersonName.compareTo(nameBestSoFar)ƒ<ƒ0)
24 ƒƒƒƒƒƒ{ƒindexBestSoFarƒ=ƒi;
25 ƒƒƒƒƒƒƒƒnameBestSoFarƒ=ƒthis.persons[i].getName();
26 ƒƒƒƒƒƒ}
27 ƒƒƒƒ}
28 ƒƒƒƒreturnƒindexBestSoFar;
29 ƒƒ}
30

31 ƒƒ/** Swap the elements at indices a and b. */

32 ƒƒprivateƒvoidƒswap(intƒa,ƒintƒb)
33 ƒƒ{ƒPersonƒtempƒ=ƒthis.persons[a];
34 ƒƒƒƒthis.persons[a]ƒ=ƒthis.persons[b];
35 ƒƒƒƒthis.persons[b]ƒ=ƒtemp;
36 ƒƒ}
37 }

Sorting without Helper Methods (optional)

Sorting is performed so frequently that a great deal of effort has been spent to make the
operation as fast as possible. The greatest gains in efficiency have been made by
employing different algorithms. QuickSort and HeapSort are among the best, but are
beyond the scope of this book.

Selection Sort can be made faster by eliminating the helper methods. Normally, eliminat
ing helper methods just to speed up an algorithm is not a good idea. In this case, however,
it may be justified because the algorithm is still relatively understandable. Listing 10-5
implements sortByAge as a single method. The age comparison is somewhat simpler
than comparing names and so some temporary variables have been eliminated as well.

LOOKING AHEAD

This code will be
made more flexible
and reusable in
Listing 12.18 in
Section 12.5.

Listing 10-5: Implementing Selection Sort in a single method to sort an array of Person objects

by age

1 publicƒclassƒBigBroBigSisƒextendsƒObject
2 {ƒ...ƒpersonsƒ...ƒƒƒƒƒƒƒƒƒƒ// An array of Person objects.
3
4 ƒƒ/** Sort the persons array in increasing order by age. */
5 ƒƒpublicƒvoidƒsortByAge()
6 ƒƒ{ƒforƒ(intƒfirstUnsorted=0;ƒ

ch10/bbbs/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 539

539

Selection Sort

10.1
U

SIN
G
 A

RRAYS

Listing 10-5: Implementing Selection Sort in a single method to sort an array of Person objects

by age (continued)

7 ƒƒƒƒƒƒƒƒfirstUnsorted<this.persons.length-1;
8 ƒƒƒƒƒƒƒƒfirstUnsorted++)
9 ƒƒƒƒ{ƒ// Find the index of the youngest unsorted person.

10 ƒƒƒƒƒƒintƒextremeIndexƒ=ƒfirstUnsorted;
11 ƒƒƒƒƒƒforƒ(intƒiƒ=ƒfirstUnsortedƒ+ƒ1;ƒ
12 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒiƒ<ƒthis.persons.length;ƒi++)
13 ƒƒƒƒƒƒ{ƒifƒ(this.persons[i].getAge()ƒ<ƒ
14 ƒƒƒƒƒƒƒƒƒƒƒƒthis.persons[extremeIndex].getAge())
15 ƒƒƒƒƒƒƒƒ{ƒextremeIndexƒ=ƒi;
16 ƒƒƒƒƒƒƒƒ}
17 ƒƒƒƒƒƒ}
18
19 ƒƒƒƒƒƒ// Swap the youngest unsorted person with the person at firstUnsorted.
20 ƒƒƒƒƒƒPersonƒtempƒ=ƒthis.persons[extremeIndex];
21 ƒƒƒƒƒƒthis.persons[extremeIndex]ƒ=ƒ
22 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis.persons[firstUnsorted];
23 ƒƒƒƒƒƒthis.persons[firstUnsorted]ƒ=ƒtemp;
24 ƒƒƒƒ}
25 ƒƒ}
26 }

Sorting with the Java Library

Sorting an array is a very common activity and so it’s natural that the Java library pro
vides support for it via the java.util.Arrays class. It provides methods to sort
arrays of all of the primitive types as well as arrays of objects.

The ordering of the primitive types is defined naturally by their values. Not so with
arrays of objects. When sorting an array of Person objects, for example, how does the
library sort know whether to sort by age or name or some other criteria?

The library sorts use two different approaches, both of which are explained in Chapter 12.
One approach depends on the objects being sorted implementing the Comparable inter
face. This interface specifies a single method, compareTo, that compares two objects and
returns a number indicating which should come first. Classes that implement this interface
include String, DateTime, File, and enumerated types such as Direction. Sorting a
list of strings, for example, can be accomplished with the code in Listing 10-6.

The vast majority of the code, lines 11–19 and 25–28, is concerned with reading the
strings from the user and printing out the sorted list. The actual sorting is accom
plished by a single line of code calling a method in the Java library (line 22).

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 540

540
CH

AP
TE

R
10

 |
AR

RA
YS

Listing 10-6: Sorting strings read from the console

1 importƒjava.util.Arrays;
2 importƒjava.util.Scanner;
3
4 /** Sort the strings read from a file.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒSort
8 {
9 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

10 ƒƒ{ƒ// Get the strings from the user.
11 ƒƒƒƒScannerƒinƒ=ƒnewƒScanner(System.in);
12 ƒƒƒƒSystem.out.print("How many strings: ");
13 ƒƒƒƒintƒnumƒ=ƒin.nextInt();
14 ƒƒƒƒin.nextLine();
15 ƒƒƒƒƒƒƒƒƒƒ
16 ƒƒƒƒString[]ƒstringsƒ=ƒnewƒString[num];
17 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒnum;ƒi++)
18 ƒƒƒƒ{ƒstrings[i]ƒ=ƒin.nextLine();
19 ƒƒƒƒ}ƒƒƒƒƒ
20 ƒƒƒƒƒ
21 ƒƒƒƒ// Sort the strings.
22 ƒƒƒƒArrays.sort(strings);
23 ƒƒƒƒƒ
24 ƒƒƒƒ// Display the sorted list of strings.
25 ƒƒƒƒSystem.out.println("The sorted strings:");
26 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒstrings.length;ƒi++)
27 ƒƒƒƒ{ƒSystem.out.println(strings[i]);
28 ƒƒƒƒ}
29 ƒƒ}
30 }

The second approach to ordering objects is to pass the sort method the list to sort and
an object implementing the Comparator interface. This is the most flexible approach
and is discussed in Chapter 12.

10.1.9 Comparing Arrays and Files

Some beginning programmers have a hard time distinguishing an array from a file.
After all, both store an ordered collection of objects. Both often use algorithms that
process all of the objects in the collection.

ch10/librarySort/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 541

541

So what’s the difference? The core difference is that a file stores the objects on a disk
drive or a related device. An array is stored in the computer’s memory.

One consequence is that accessing an array is much faster than accessing a file. The
disk drive holding your file has moving parts; waiting for them to move makes access
ing a file slow. Memory, on the other hand, stores the array by arranging electrons in
its chips. Manipulating electrons is much faster.

Files are linear structures. When a file is stored on the disk, all the information is
placed into one long line. It’s processed by reading the first item of information from
the line, then the second, and so on. It’s possible to read an item from the middle of the
line, but you have to know exactly where to start in considerable detail. You need to
know not just that you want the 132nd item, but the exact length of the 131 items that
come before it.

Arrays, on the other hand, support random access naturally. If you want the 132nd

item, use 131 as the index into the array (because arrays are indexed starting at 0).
Random access makes sorting an array easy but sorting a file difficult.

So why do we use files at all? Why not store everything in an array? Because storing
information on a disk drive is much cheaper and because disk drives retain the infor
mation even when the power is off; memory does not.

Arrays and files are complementary. We often store information in files while we aren’t
working on it. When we begin to use the information, we use a program that loads the
information from the file into an array. After we’re done, usually as one of the last
things a program does, the information is written from the array back to the disk
where it waits until the next time we use it.

10.2 Creating an Array

10.2
C

REATIN
G
 AN

 A
RRAY

KEY IDEA

Creating an array has
three steps:
declaration,

allocation, and
initialization.

So far we have assumed that the BBBS class contains an instance variable that is an
array of Person objects. In this section, we’ll see how to create such an array.

Briefly, creating an array has three steps: declaring the variable, allocating the memory,
and initializing each element in the array to a desired value. In some ways, creating an
array is like hosting a dinner party. The declaration states your intent to have an
array—like sending out invitations to your dinner party. When you allocate memory
you decide how many elements your array will have—like counting up the responses to
your invitation and setting that many dinner places at the table. Finally, initialization
puts a value in each element of the array—like seating one of your guests at each place
around your table. These three steps are illustrated in Figure 10-13.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 542

542
CH

AP
TE

R
10

 |
AR

RA
YS

(figure 10-13) Step 1: Declare persons
the array Three steps in preparing

an array for use

Step 2: Allocate space persons
for the references

Person[]
length 8

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

Step 3: Initialize each persons
element of the array

Person[]
length 8

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

Roydyn, 1993/5/25, M, L

Kala, 1992/2/16, F, L

Ali, 1985/7/12, M, B

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, B

Zaki, 1980/9/2, F, B

10.2.1 Declaration

Declaring an array is like declaring any other reference variable. A type such as
Person or Robot is required, followed by the name of the variable. If the array is an
instance variable, then an access modifier such as private is appropriate.

The only trick is knowing the type. The type for an array of Person objects is
Person[] and the type for an array of Robot objects is Robot[]. Simply add a set of
square brackets after the type of elements the array will hold. You might think of the
brackets as making the type plural. A variable of type Person holds one person. A
variable of type Person[] holds many persons.

KEY IDEA

The type of an array is
the same as the type
of each element, but
with [] appended.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 543

543

LOOKING AHEAD

In Chapter 12, we
will see that the

persons array can
also hold subclasses

of Person.

KEY IDEA

Use the new keyword
to set aside space for

a specific number of
elements.

KEY IDEA

An array may be
declared and

allocated in one
statement when you

know how many
elements it will hold.

With this background, we can replace the following code:

publicƒclassƒBBBSƒextendsƒObject
{ƒ...ƒpersonsƒ...ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// An array of Person objects.

shown in the listings in Section 10.1 with the complete declaration:

publicƒclassƒBBBSƒextendsƒObject
{ƒprivateƒPerson[]ƒpersons;ƒƒƒƒƒƒƒƒ// An array of Person objects.

The persons array can only hold Person objects.

10.2.2 Allocation

The declaration of an array does not create the array, but only a place to hold a refer
ence to an array. See Step 1 in Figure 10-13. We also need to allocate the array object
itself, similar to constructing any other kind of object. See Step 2 in Figure 10-13.

The following code fragment constructs an array object, allocating space for eight ele
ments. It uses the new keyword followed by the type of the elements the array will
store. In square brackets is the number of elements the array will be able to hold.

this.personsƒ=ƒnewƒPerson[8];

Of course, including a different number in place of the 8 would allocate space for a dif
ferent number of elements. The 8 in this example can also be replaced with any expres
sion that evaluates to an integer, including a simple variable or a complex calculation.
This calculation may, for example, be based on information obtained from a user, as
shown in the following code fragment:

publicƒclassƒBBBSƒextendsƒObject

{ƒprivateƒPerson[]ƒpersons;

ƒƒ...

ƒƒprivateƒvoidƒcreateArray()

ƒƒ{ƒScannerƒinƒ=ƒnewƒScanner(System.in);

ƒƒƒƒSystem.out.print("How many persons: ";

ƒƒƒƒintƒnumPersonsƒ=ƒin.nextInt();

ƒƒƒƒthis.personsƒ=ƒnewƒPerson[numPersons];

ƒƒƒƒ...

ƒƒ}

}

The programmer often knows how many elements will be in the array when the pro
gram is written. In this case, the declaration and the allocation may be combined:

privateƒPerson[]ƒpersonsƒ=ƒnewƒPerson[100];ƒ

10.2
C

REATIN
G
 AN

 A
RRAY

http:Scanner�in�=�new�Scanner(System.in

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 544

544
CH

AP
TE

R
10

 |
AR

RA
YS

10.2.3 Initialization

The final step in creating an array is to initialize each element, as illustrated in Step 3
of Figure 10-13. The simplest approach is to call an appropriate constructor for each
element in the array. For example, a small array of Person objects could be initialized
like this:

this.persons[0]ƒ=ƒnewƒPerson("Steve",ƒ"1968/12/24",
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒGender.MALE,ƒRole.BIG);
this.persons[1]ƒ=ƒnewƒPerson("Ken",ƒ"1997/8/7",
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒGender.MALE,ƒRole.LITTLE);
this.persons[2]ƒ=ƒnewƒPerson("Beth",ƒ"1993/8/27",ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒGender.FEMALE,ƒRole.LITTLE);

This approach works, but is impractical for a large number of elements. Array initial
ization is often performed by reading information from a file and constructing an
object for each of the file’s records.

The main problem is knowing how many records are in the file. This information is
needed to allocate the correct number of elements for the array.

One approach is to simply count the records. The file is opened and the records are
read, counting each one. When the end of the file is reached, it is closed and then
opened again. The array is allocated using the count just obtained. The entire file is
then read a second time, storing each object in the array.

Listing 10-7 shows the constructor to the BBBS class in lines 14–36. The initialization
of the array takes place in the constructor. The relevant points are:

➤	 The array is declared at line 10.

➤	 In lines 18–24, the file is opened, every record is read and counted, and then
the file is closed.

➤	 In line 27, the array is allocated using the count of the records in the file.

➤	 In lines 30–33, the file is again opened and the records read. This time, how
ever, the objects created with the data are stored in the array at line 32. The
file is closed again in line 34 after all of the records have been read.

LOOKING AHEAD

Reading objects from
a file was discussed in
Section 9.2.1.

Listing 10-7: Initializing an array from a file

1 importƒjava.util.Scanner;
2
3 /** A list of the "bigs" and "littles" associated with a Big Brother/Big Sister program.
4 * "Bigs" are the Big Brothers and Big Sisters; "littles" are the Little Brothers and Sisters
5 * they are (potentially) paired with.
6
7 * @author Byron Weber Becker */

ch10/bbbs/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 545

545
10.2

C
REATIN

G
 AN

 A
RRAY

Listing 10-7: Initializing an array from a file (continued)

8 publicƒclassƒBigBroBigSisƒextendsƒObject
9 {

10 ƒƒprivateƒPerson[]ƒpersons; // the list of bigs and littles
11
12 ƒƒ/** Construct a new object by reading all the bigs and littles from a file.
13 ƒƒ* @param fileName the name of the file storing the information for bigs and littles */
14 ƒƒpublicƒBigBroBigSis(StringƒfileName)
15 ƒƒ{ƒsuper();
16
17 ƒƒƒƒ// Count the number of Persons in the file.
18 ƒƒƒƒintƒcountƒ=ƒ0;
19 ƒƒƒƒScannerƒinƒ=ƒthis.openFile(fileName);
20 ƒƒƒƒwhileƒ(in.hasNextLine())
21 ƒƒƒƒ{ƒPersonƒpƒ=ƒnewƒPerson(in);
22 ƒƒƒƒƒƒcount++;
23 ƒƒƒƒ}
24 ƒƒƒƒin.close();
25
26 ƒƒƒƒ// Allocate an array to hold each object we read.
27 ƒƒƒƒthis.personsƒ=ƒnewƒPerson[count];
28
29 ƒƒƒƒ// Read the data, storing a reference to each object in the array.
30 ƒƒƒƒinƒ=ƒthis.openFile(fileName);
31 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒcount;ƒi++)
32 ƒƒƒƒ{ƒthis.persons[i]ƒ=ƒnewƒPerson(in);
33 ƒƒƒƒ}
34 ƒƒƒƒin.close();
35
36 ƒƒ}
37 ƒƒ...
99 }

One disadvantage of reading the file twice is inefficiency. Reading from a file is inher
ently slow and it would be more efficient to avoid reading the entire file twice.

Another approach is to store the number of records as the first item in the file, as shown
in Figure 10-14. The constructor can simply read this data item and allocate the array.
The records can then be read and stored into the array the first time the file is read.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 546

546
CH

AP
TE

R
10

 |
AR

RA
YS

5
Kenneth A Parsons
1997/8/7 M L
Beth A Reyburn
1993/8/27 F L
Kathleen A Waller
1979/5/4 F B
Roydyn A. Clayton
1993/5/25 M L
Christopher Aaron Fairles
1981/2/2 M B

A disadvantage of this approach is that the number of records must be kept accurate.
This may be hard to guarantee if the file is edited directly by users. However, it is not
difficult if the file is always created by a program.

Listing 10-8 shows a constructor using this approach. It could be substituted for the
constructor shown in Listing 10-7, provided the data file were changed to include the
number of records in the file.

(figure 10-14)

File with the number of

records stored as the first

data item

LOOKING AHEAD

An array that appears
to grow can also solve
this problem. See
Section 10.4.

Listing 10-8: Initializing an array when the data file contains the number of records

1 ƒƒpublicƒBigBroBigSis(StringƒfileName)
2 ƒƒ{ƒsuper();
3 ƒƒƒƒScannerƒinƒ=ƒthis.openFile(fileName);
4
5 ƒƒƒƒ// Get the number of records in the file.
6 ƒƒƒƒintƒcountƒ=ƒin.nextInt();
7 ƒƒƒƒin.nextLine();
8
9 ƒƒƒƒ// Allocate an array to hold each record we read.

10 ƒƒƒƒthis.personsƒ=ƒnewƒPerson[count];
11
12 ƒƒƒƒ// Read the data, storing a reference to each object in the array.
13 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒcount;ƒi++)
14 ƒƒƒƒ{ƒthis.persons[i]ƒ=ƒnewƒPerson(in);
15 ƒƒƒƒ}
16 ƒƒƒƒin.close();
17 ƒƒ}

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 547

547

Array Initializers (optional)

Java provides a handy shortcut to initialize an array if you know its contents when you
write the program. Essentially, you place the array elements in a comma-separated list
between curly braces, as shown in the following example:

bbbs.personsƒ=ƒnewƒPerson[]

ƒƒ{ƒnewƒPerson("Byron",ƒ"1961/3/21",

ƒƒƒƒƒƒƒƒGender.MALE,ƒRole.BIG),

ƒƒƒƒnewƒPerson("Ann",ƒ"1960/12/3",

ƒƒƒƒƒƒƒƒGender.FEMALE,ƒRole.BIG),

ƒƒƒƒnewƒPerson("Luke",ƒ"1990/10/1",

ƒƒƒƒƒƒƒƒGender.MALE,ƒRole.LITTLE),

ƒƒƒƒnewƒPerson("Joel",ƒ"1994/2/28",

ƒƒƒƒƒƒƒƒGender.MALE,ƒRole.LITTLE)

ƒƒ};

Java will automatically create an array of the right length to hold all the elements
listed. In fact, if you try to specify the size yourself, the compiler will give you an error.

10.3 Passing and Returning Arrays

10.3
P

ASSIN
G
 AN

D
 R

ETU
RN

IN
G
 A

RRAYS

LOOKING AHEAD

Problem 12.13
generalizes this

method with
interfaces and

polymorphism.

Like other reference variables, references to arrays can be passed to a method via para
meters and returned from a method using the return keyword.

One common activity that demonstrates both passing and returning arrays is to extract
a subset from a larger array. For example, return an array of Person objects that con
tains only “bigs” who are female. To make the method more versatile, we’ll pass the
desired gender and role as arguments. The method’s signature is as follows:

publicƒPerson[]ƒextractSubset(Genderƒg,ƒRoleƒr)

The return type of Person[] indicates that the method will return a reference to an
array of Person objects.

To solve this problem, we need to create an appropriately sized array—which means
figuring out the size of the subset. Then we need to fill the array. In pseudocode, we can
state our tasks as follows:

size = count number of elements in the subset

subset = a new array to store size elements

fill subset with the appropriate objects

return subset

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 548

548
CH

AP
TE

R
10

 |
AR

RA
YS

The first step, counting the size of the subset, is an application of the Process Matching
Elements pattern in which the process performed is simply counting. Its signature and
method documentation are as follows; implementing it is Problem 10.7.

/** Count the number of persons matching the given gender and role.

* @param g The gender of persons to be included in the subset.

* @param r The role of the persons to be included in the subset. */

privateƒintƒcountSubset(Genderƒg,ƒRoleƒr)

The second step, allocating a temporary array, illustrates that declaring and allocating
an array within a method is both possible and useful. As always, the access modifier,
such as private, is omitted when declaring a temporary variable.

Person[]ƒsubsetƒ=ƒnewƒPerson[size];

The third step, filling the subset array, is the tricky one. We’ll pass the method the
gender and role of the Person objects desired, as well as a reference to the temporary
array. The method’s signature will be:

privateƒvoidƒfillSubset(Person[]ƒss,ƒGenderƒg,ƒRoleƒr)

Again, notice the type Person[]. The parameter variable ss will refer to an array of
Person objects. Like other references passed as parameters, ss will contain an alias to
subset; both references refer to the same array and both can be used to access and
change the contents of the array. The reference itself cannot be changed, but the thing
it refers to can be changed.

Inside the method, we’ll repeatedly find the next person object with the appropriate
gender and role, copying a reference to it into the next available space in the temporary
array. This will require two index variables, one to keep track of where we are in the
persons array and the other to track our position in the subset array.

Figure 10-15 shows the situation immediately after the first Person object has been
inserted into the subset. The index variable ssPos (“subset position”) gives the index
of the next available position in the subset array. The variable arrPos (“array posi
tion”) gives the index of the next Person object to consider. The colored arrows show
Person objects that have yet to be copied.

Process Matching
Elements

LOOKING AHEAD

Aliases were
discussed in
Section 8.2.2.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 549

Roydyn, 1993/5/25, M, L

Beth, 1993/8/27, F, L
Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, B

Person[]
length 8

[0]
[1]
[2]

persons

Person[]
length 3

[0]
[1]
[2]

ss

Susan, 1983/8/7, F, B

Kala, 1992/2/16, F, L

Ali, 1985/7/12, M, B

[3]
[4]
[5]
[6]
[7]

Zaki, 1980/9/2, F, B

549
10.3

P
ASSIN

G
 AN

D
 R

ETU
RN

IN
G
 A

RRAYS

(figure 10-15)

Filling the subset array,

immediately after the first

Person object reference

has been copied to the

subset array

ssPos 1

arrPos 2

The code for the helper method is shown in lines 27–38 of Listing 10-9. Notice that
ssPos is only incremented when a new element is added to the subset (line 34) but that
arrPos is incremented each time a new Person object is considered (line 36).

The final step in the extractSubset method is to return a reference to the subset
array (line 13).

Listing 10-9: Completed code for the extractSubset method

ch10/bbbs/ 1 publicƒclassƒBigBroBigSisƒextendsƒObject
2 {ƒprivateƒPerson[]ƒpersons;ƒƒƒƒ// The list of bigs and littles.
3
4 ƒƒ...
5
6 ƒƒ/** Extract a subset of all the persons who have the given gender and role.
7 ƒƒ* @param g The gender of all members of the subset.
8 ƒƒ* @param r The role of all members of the subset. */
9 ƒƒpublicƒPerson[]ƒextractSubset(Genderƒg,ƒRoleƒr)

10 ƒƒ{ƒintƒssSizeƒ=ƒthis.countSubset(g,ƒr);
11 ƒƒƒƒPerson[]ƒsubsetƒ=ƒnewƒPerson[ssSize];
12 ƒƒƒƒthis.fillSubset(subset,ƒg,ƒr);
13 ƒƒƒƒreturnƒsubset;
14 ƒƒ}
15
16 ƒƒ/** Count the number of persons matching the given gender and role.
17 ƒƒ* @param g The gender of persons to be counted.
18 ƒƒ* @param r The role of the persons to be counted. */
19 ƒƒprivateƒintƒcountSubset(Genderƒg,ƒRoleƒr)
20 ƒƒ{ƒƒƒƒƒƒ// to be completed as an exercise
21 ƒƒ}

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 550

550
CH

AP
TE

R
10

 |
AR

RA
YS

Listing 10-9: Completed code for the extractSubset method (continued)

22
23 ƒƒ/** Fill the subset array with Person objects matching the given gender and role.
24 ƒƒ* @param subset The array to fill with elements belonging to the subset.
25 ƒƒ* @param g The gender of persons to be included in the subset.
26 ƒƒ* @param r The role of the persons to be included in the subset. */
27 ƒƒprivateƒvoidƒfillSubset(Person[]ƒss,ƒGenderƒg,ƒRoleƒr)
28 ƒƒ{ƒintƒssPosƒ=ƒ0;ƒƒƒ// position within the subset
29 ƒƒƒƒintƒarrPosƒ=ƒ0;ƒƒ// position within the array
30 ƒƒƒƒwhileƒ(ssPosƒ<ƒss.length)
31 ƒƒƒƒ{ƒPersonƒpƒ=ƒthis.persons[arrPos];
32 ƒƒƒƒƒƒifƒ(p.getGender()ƒ==ƒgƒ&&ƒp.getRole()ƒ==ƒr)
33 ƒƒƒƒƒƒ{ƒss[ssPos]ƒ=ƒp;
34 ƒƒƒƒƒƒƒƒssPos++;
35 ƒƒƒƒƒƒ}
36 ƒƒƒƒƒƒarrPos++;
37 ƒƒƒƒ}
38 ƒƒ}
39 }

Client code using the BBBS class could use the extractSubset method as follows:

Person[]ƒfemaleBigsƒ=ƒbbbs.extractSubset(Gender.FEMALE,

ƒƒƒRole.BIG);

System.out.println("FemaleƒBigs:");

forƒ(Personƒpƒ:ƒfemaleBigs)

{ƒSystem.out.println(p.getName());

}

Passing and returning arrays of information are useful techniques. For example, the
Big Brother/Big Sister project might have a reporting subsystem that could use such
techniques extensively. Imagine a suite of subset extraction methods that each return a
subset of a passed array. They could be put together in endless combinations. We could
have, for example, a query like this, in which each extract method takes a criterion
and an array as arguments:

Person[]ƒssƒ=ƒthis.extract(Gender.MALE,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis.extract(Role.LITTLE,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis.extract(Interests.SPORTS,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis.persons)));
this.print(ss);

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 551

Person[]
length 8

[0]
[1]

551

10.4 Dynamic Arrays

10.4
D

YN
AM

IC A
RRAYS

KEY IDEA

Allocate extra space
for the array. Use the

first elements to store
data. Keep the

number of elements
in use in another

variable.

(figure 10-16)

Partially filled array with

four elements

So far, the number of elements stored in our arrays has been fixed. We’ve neither added
elements nor removed them. To be truly useful, this must change. For example, in the Big
Brother/Big Sister program, we need a method to add a new person to the persons array:

/** Add another person to the array of Person objects.

*ƒ@param p The Person object to add. */

publicƒvoidƒadd(Personƒp)

To implement add, we must figure out how to “create” additional space in the array.
In this section, we’ll explore two approaches to this problem, and ultimately conclude
that the best solution uses features of both.

10.4.1 Partially Filled Arrays

The first approach uses a simple idea: Create an array with room to grow, if necessary.
This separates the notion of the size of the array (the number of elements it currently
stores) from the length of the array (the maximum number of elements it can store).
This requires an auxiliary variable that we usually name size. Such an array is usually
only partly filled, so we’ll call it a partially filled array.

We will adopt a convention that indices in the range 0..size-1 will hold the valid ele
ments while indices size..length-1 will be “empty.” This is illustrated in Figure 10-16.

persons

size 4

[2]
[3]
[4] null

[5] null
[6] null
[7] null

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, B

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 552

552
CH

AP
TE

R
10

 |
AR

RA
YS

The auxiliary variable, size, can be interpreted two ways. First, it can be interpreted
as the number of elements in the array that store valid data. This interpretation is use
ful for the Process All Elements and related patterns. For example, to print all the
names in the partially filled persons array, we write

forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.size;ƒi++)
{ƒPersonƒpƒ=ƒthis.persons[i];
ƒƒSystem.out.println(p.getName());
}

Notice the use of this.size rather than this.persons.length to control the
loop. If the array is as shown in Figure 10-16, using length would result in a
NullPointerException when the name for persons[4] is printed because p would
be null.

The other Process All Elements idiom, using the foreach loop, will not work with par
tially filled arrays. Writing forƒ(Personƒpƒ:ƒthis.persons) is the same as writ
ing forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++).

The second interpretation of size is as the first element of the “empty” portion of the
array. This interpretation is the natural one for the add method because it tells us
where to put the new element.

publicƒvoidƒadd(Personƒp)
{ƒthis.persons[this.size]ƒ=ƒp;
ƒƒthis.size++;
}

After a new element is added, the auxiliary variable must be incremented.

Of course, if the array is already full (size has the same value as persons.length),
the add method will fail with an ArrayIndexOutOfBoundsException. We will
investigate a solution to this problem shortly.

Inserting into a Sorted Array

If the array is already sorted and you want to keep it sorted, simply adding the new ele
ment to the end isn’t good enough. One approach would be to add to the end and then
sort the entire array, but that is inefficient. A much better approach is to move elements
larger than the new element down in the array. The new element can then be inserted
in the resulting “hole.” These steps are shown in Figure 10-17.

KEY IDEA

size says how
many elements have
valid data.

KEY IDEA

The foreach loop
doesn’t work for
partially filled arrays.

KEY IDEA

size also says where
the next element
should be added.

LOOKING AHEAD

Implementing this
algorithm is
Problem 10.8.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 553

]
88

[0]
gth

son[

553

4

persons

size 4 5

10.4
D

YN
AM

IC A
RRAYS

(figure 10-17) persons
Inserting a new element in size

an array sorted by name

persons

size

Per
len

[1]
[2]
[3]
[4]
[5]
[6]
[7]

null

null

null

null

Beth

Ken

Steve

Amy

Kathy

Person[]
length 8

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7] null

null

null

8
Beth

Ken

Steve

Amy

Kathy

Person[]
length 8

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7] null

null

null

8
Beth

Ken

Steve

Amy

Kathy

LOOKING AHEAD

Written Exercise 10.1
asks you to explain

why this step is
optional.

p p p

The original array containing Move references at the end of Insert the new element and
four Person objects the array down by one to make increment the auxiliary variable,

room for the new element size

Deletion

When deleting an element, we need to fill the “hole” left by the deleted element so that
all the valid array elements are kept at the beginning of the partially filled array and all
the unused space at the end. We’ll use the following algorithm:

d = find the index of the element to delete
fill d with another element from the array
decrement size, the auxiliary variable
assign null to the element at sizeƒ

The first step may be trivial if we are given the index of the element to delete. In other
situations, we may need to search for the element to find the index.

The second step varies, depending on whether a sorted order must be maintained. If
the array is unsorted, use the last element of the array to replace the element being
deleted. In a sorted array, the elements with indices larger than d all need to be moved
up one position in the array.

The third step recognizes that there is now one less element in the array.

The last step is not strictly necessary, however it is a good idea to assign null to the
element for two reasons. First, it can make debugging easier because accidentally
accessing an element in the unused portion of the partially filled array will generate a
NullPointerException, quickly informing us that we made a mistake. Second, it
may free an object for garbage collection, thereby reducing the memory required by
our program.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 554

554
CH

AP
TE

R
10

 |
AR

RA
YS

Problems with Partially Filled Arrays

Unfortunately, partially filled arrays pose two significant problems. First, a partially
filled array solves the problem of adding elements to an array, but only up to a point.
There is still a limit. If the array is initially allocated to hold 500 elements, we can’t
insert 501. The last one just won’t fit. Using the algorithms discussed earlier will result
in an ArrayIndexOutOfBoundsException. If this abrupt ending to the program
isn’t desired, a check with a friendlier message can be made:

publicƒvoidƒadd(Personƒp)
{ƒifƒ(this.sizeƒ<ƒthis.persons.length)
ƒƒ{ƒthis.persons[this.size]ƒ=ƒp;
ƒƒƒƒthis.size++;
ƒƒ}ƒelse
ƒƒ{ƒ// error message
ƒƒ}
}

One way of addressing the first problem is to allocate arrays with more space than we
think we’ll ever use. Unfortunately, this leads to the second problem with partially
filled arrays—wasting lots of memory. In addition, history is filled with programmers
who dramatically misjudged how much data would be poured into their programs. For
example, a program written to handle people associated with the local chapter of Big
Brothers/Big Sisters might be deployed nationally and suddenly need to deal with much
more information.

In spite of these two problems, partially filled arrays are a great solution where the
amount of data can be reliably estimated.

10.4.2 Resizing Arrays

A second approach to the problem of adding and deleting elements in an array is to
“change” the size of the array. Once an array is allocated, its size can’t be changed, but
we can allocate a new array with a different size and then copy the elements from the
old array to the new array. After updating the array’s reference to point to the new
array, it appears as though the array has simply grown. The new element can then be
added. These four steps are shown in Figure 10-18.

KEY IDEA

Arrays can’t change
size, but we can make
it appear as if they do.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 555

len len

len

555

(figure 10-18)

Reallocating an array

10.4

Person[]
gth
[0]
[1]
[2]
[3]

4

Kathy

Beth

Ken

Steve

Amy

p

Person[]
length

[0]
[1]
[2]
[3]
[4]

null

null

5
null

null

persons
larger

null

Person[]
gth
[0]
[1]
[2]
[3]

4

Kathy

Beth

Ken

Steve

Amy

p

Person[]
length

[0]
[1]
[2]
[3]
[4]

5

persons
larger

null

D
YN

AM
IC A

RRAYS

Step 1: Allocate a new, larger array Step 2: Copy the contents to the larger array

Person[]
gth
[0]
[1]
[2]
[3]

4

Kathy

Beth

Ken

Steve

Amy

p

Person[]
length

[0]
[1]
[2]
[3]
[4]

5

persons
larger

null

p

Step 3: Reassign the array reference Step 4: Add the new element

Kathy

The code to add a person to an unordered array is shown in Listing 10-10.

Beth

Ken

Steve

Amy

Person[]
length

[0]
[1]
[2]
[3]
[4]

5

persons

Listing 10-10: Adding a Person object to an unordered array

1 publicƒclassƒBBBSƒextendsƒObject
2 {ƒprivateƒPerson[]ƒpersons;
3
4 ƒƒ...
5
6 ƒƒ/** Add a new person to the persons array.
7 ƒƒ* @param p The new person to add. */
8 ƒƒpublicƒvoidƒadd(Personƒp)
9 ƒƒ{ƒ// Step 1: Allocate a larger array.

10 ƒƒƒƒPerson[]ƒlargerƒ=ƒnewƒPerson[this.persons.lengthƒ+ƒ1];
11

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 556

10

30

50

70

90

11
0

13
0

15
0

556
CH

AP
TE

R
10

 |
AR

RA
YS

Listing 10-10: Adding a Person object to an unordered array (continued)

12 ƒƒƒƒ// Step 2: Copy elements from the old array to the new, larger array.
13 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++)
14 ƒƒƒƒ{ƒthis.larger[i]ƒ=ƒthis.persons[i];
15 ƒƒƒƒ}
16
17 ƒƒƒƒ// Step 3: Reassign the array reference.
18 ƒƒƒƒthis.personsƒ=ƒlarger;
19
20 ƒƒƒƒ// Step 4: Add the new element.
21 ƒƒƒƒthis.persons[this.persons.length-1]ƒ=ƒp;
22 ƒƒ}
23 }

There is, however, a big disadvantage to this approach. Inserting many elements is very
time consuming because so much copying is required. For example, one test1 produced
the data shown in Figure 10-19. The first column shows the number of insertions. The
second column shows the time, in seconds, required to make the insertions into an
array that grows by one with each insertion. The last column shows the number of sec
onds required to insert the same data into a partially filled array.

a) Time to insert into an array b) Graphing the time to insert data into an array (figure 10-19)

Insertions Grow PFA
10,000 0.4 0.000

20,000 1.8 0.000

30,000 6.1 0.000

40,000 14.2 0.015

50,000 28.4 0.015

60,000 46.8 0.015

70,000 78.3 0.015

80,000 123.3 0.015

90,000 179.8 0.015

100,000 239.2 0.015

110,000 304.4 0.015

120,000 389.6 0.015

130,000 476.8 0.015

140,000 623.7 0.015

150,000 779.8 0.015

that grows
Inserting elements in

an array
800

700

600

Se
co

nd
s 500

400

300

200

100

0

Insertions (1,000's)

1 Using the code in examples/ch10/growArrayTest on a machine with a 2.8GHz Pentium 4
CPU and 1G of RAM running Windows XP and Java 5.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 557

557
10.4

D
YN

AM
IC A

RRAYS

KEY IDEA

Expandable, partially
filled arrays give the

best of both
approaches.

ch10/
bbbsPartiallyFilled/

The test clearly shows that the more insertions there are, the worse the problem is. For
example, the time taken to insert the first 10,000 items is less than half a second.
Inserting the last 10,000 items, however, requires more than three minutes.
Meanwhile, inserting 150,000 items into a partially filled array is so fast the com
puter’s clock isn’t accurate enough to time it and on the graph it can’t be distinguished
from the x axis.

10.4.3 Combining Approaches

The disadvantages of a partially filled array are an upper limit on the number of inser
tions and wasted space if some program executions use lots of data but most do not.
On the other hand, expanding the array with each insertion solves those two problems,
but introduces a performance problem.

Combining the two approaches addresses all three issues. The strategy is to use a par
tially filled array. When it gets full, allocate a larger array. However, don’t increase the
array by only one element. Instead, double the size of the array. That typically wastes
some space, but not more than a factor of two. If that’s too much, the array could be
increased by 25% each time it is enlarged.

The same test as shown in Figure 10-19 takes only 0.047 seconds to insert 150,000
items—a little worse than a partially filled array that is initially allocated to hold
150,000 items, but not nearly as bad as growing the array by one each time.

The ArrayList class in the Java library uses exactly this approach. It is simply a par
tially filled array that can grow when it gets full, wrapped in a class.

Listing 10-11 shows an add method for a partially filled array that is doubled when
ever it becomes full. Note that this same method can be used in the constructor, elimi
nating the need to count the number of items in the file (compare Listing 10-11 with
Listing 10-7).

Listing 10-11: Initializing and adding to an expandable, partially filled array

1 publicƒclassƒBigBroBigSisƒextendsƒObject
2 {
3 ƒƒprivateƒPerson[]ƒpersonsƒ=ƒnewƒPerson[1]; // List of bigs and littles.
4 ƒƒprivateƒintƒsize; // Actual number of persons.
5
6 ƒƒ/** Construct a new object by reading all the bigs and littles from a file.
7 ƒƒ* @param fileName The name of the file storing the information for bigs and littles. */
8 ƒƒpublicƒBigBroBigSis(StringƒfileName)
9 ƒƒ{ƒsuper();

10

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 558

558
CH

AP
TE

R
10

 |
AR

RA
YS

Listing 10-11: Initializing and adding to an expandable, partially filled array (continued)

11 ƒƒƒƒ// Read the data, adding each person to the array
12 ƒƒƒƒScannerƒinƒ=ƒthis.openFile(fileName);
13 ƒƒƒƒwhileƒ(in.hasNextLine())
14 ƒƒƒƒ{ƒthis.add(newƒPerson(in));
15 ƒƒƒƒ}
16 ƒƒƒƒin.close();
17 ƒƒ}
18
19 ƒƒ/** Add a person to the the list of persons. */
20 ƒƒpublicƒvoidƒadd(Personƒp)
21 ƒƒ{ƒifƒ(this.persons.lengthƒ==ƒthis.size)
22 ƒƒƒƒ{ƒ// The array is full -- grow it.
23 ƒƒƒƒƒƒPerson[]ƒlargerƒ=ƒnewƒPerson[this.sizeƒ*ƒ2];
24 ƒƒƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.size;ƒi++)
25 ƒƒƒƒƒƒ{ƒlarger[i]ƒ=ƒthis.persons[i];
26 ƒƒƒƒƒƒ}
27 ƒƒƒƒƒƒthis.personsƒ=ƒlarger;
28 ƒƒƒƒ}
29 ƒƒƒƒthis.persons[this.size]ƒ=ƒp;
30 ƒƒƒƒthis.size++;
31 ƒƒ}
32 }

10.5 Arrays of Primitive Types

So far we have only discussed arrays of objects. Java also allows arrays of primitive types
such as integers, Booleans, and doubles. Arrays of primitives and arrays of objects share
many similarities. For example, declaring and allocating an array of four doubles bears a
striking resemblance to declaring and allocating an array of four Person objects:

Person[]ƒpersonsƒ=ƒnewƒPerson[4];
double[]ƒinterestsƒ=ƒnewƒdouble[4];

In these examples, each element in persons is automatically initialized to null and
each element in interests is automatically initialized to 0.0.

10.5.1 Using an Array of double

The Person class used in the Big Brother/Big Sister program defines four variables to
store potential interests of the participants: the extent to which they like sports, crafts,

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 559

559

games, and the outdoors. A value of 0.0 indicates they don’t have an interest in it at all
whereas a value of 1.0 indicates a very high interest. Before two people are paired,
their compatibility is determined with the getCompatibility query:

publicƒdoubleƒgetCompatibility(Personƒp)

{ƒreturnƒ(this.likesCraftsƒ*ƒp.likesCraftsƒ

ƒƒƒƒƒƒ+ƒthis.likesGamesƒ*ƒp.likesGames

ƒƒƒƒƒƒ+ƒthis.likesOutdoorsƒ*ƒp.likesOutdoors

ƒƒƒƒƒƒ+ƒthis.likesSportsƒ*ƒp.likesSports)

ƒƒƒƒƒƒ/4.0;

}ƒ

Suppose it was determined that these four interests need to be supplemented with an
additional 16, for a total of 20 different interests. Using separate variables for each one
would be tedious; an array is a much better choice. Using an array, the Person class is
written as shown in Listing 10-12.

10.5
A

RRAYS O
F P

RIM
ITIVE T

YPES

Listing 10-12: Using an array of doubles to represent interests

1 publicƒclassƒPersonƒextendsƒObject
2 {ƒ...
3 ƒƒprivateƒstaticƒfinalƒintƒNUM_INTERESTSƒ=ƒ20;
4 ƒƒprivateƒdouble[]ƒinterestsƒ=ƒnewƒdouble[NUM_INTERESTS];
5 ƒƒ...
6
7 ƒƒpublicƒPerson(Scannerƒin)
8 ƒƒ{ƒ...
9 ƒƒƒƒ// Read this person's interests from the file.

10 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒPerson.NUM_INTERESTS;ƒi++)
11 ƒƒƒƒ{ƒthis.interests[i]ƒ=ƒin.nextDouble();
12 ƒƒƒƒ}
13 ƒƒƒƒ...
14 ƒƒ}
15
16 ƒƒ/** How compatible is this person with person p? A score of 0.0 means not at all
17 ƒƒ* compatible; 1.0 means extremely compatible. */
18 ƒƒpublicƒdoubleƒgetCompatibility(Personƒp)
19 ƒƒ{ƒdoubleƒcompatƒ=ƒ0.0;
20 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒPerson.NUM_INTERESTS;ƒi++)
21 ƒƒƒƒ{ƒcompatƒ=ƒcompatƒ+ƒthis.interests[i]ƒ*ƒp.interests[i];
22 ƒƒƒƒ}
23 ƒƒƒƒreturnƒcompatƒ/ƒPerson.NUM_INTERESTS;
24 ƒƒ}
25 }

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 560

560
CH

AP
TE

R
10

 |
AR

RA
YS

10.5.2 Meaningful Indices

So far the indices of our arrays have been just positions. They haven’t had any meaning
attached to them, though it is sometimes useful to do just that. Suppose, for example,
that we wanted to know the distribution of ages of the people participating in the Big
Brother/Big Sister program. That is, we want to know how many people are 10 years
old, how many are 11, and so on. We’ll assume no one is over 200 years old.

To solve this problem we can allocate an array named ageCounters with 200 ele
ments. Each element will be a counter for a particular year. Which year? The year cor
responding to the index. Thus, ageCounters[10] will be the number of 10 year-olds
and ageCounters[25] will be the number of 25 year-olds. We’ll have a counter for
everyone between 0 and 199 years old, inclusive.

The method shown in Listing 10-13, when added to the BigBroBigSis class, will
return a filled array giving the number of participants for each age. It could be used
like this:

int[]ƒagesƒ=ƒbbbs.getAgeCounts();
forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒages.length;ƒi++)
{ƒifƒ(ages[i]ƒ>ƒ0)
ƒƒ{ƒSystem.out.printlnƒ("There are "ƒ+ƒages[i]ƒ+ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ" participants that are "ƒ+ƒiƒ+ƒ" years old.");
ƒƒ}
}

Listing 10-13: A method to count the participants in each age group

1 publicƒclassƒBigBroBigSisƒextendsƒObject
2 {ƒprivateƒPerson[]ƒpersons;
3 ƒƒprivateƒintƒsizeƒ=ƒ0;
4
5 ƒƒ...
6
7 ƒƒ/** Find the number of participants in each age group.
8 ƒƒ* @return A filled array where a[i] is the number of people i years old. */
9 ƒƒpublicƒint[]ƒgetAgeCounts()

10 ƒƒ{ƒint[]ƒageCountersƒ=ƒnewƒint[200];
11 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.size;ƒi++)
12 ƒƒƒƒ{ƒintƒageƒ=ƒthis.persons[i].getAge();
13 ƒƒƒƒƒƒageCounters[age]++;
14 ƒƒƒƒ}
15 ƒƒƒƒreturnƒageCounters;
16 ƒƒ}
17 }

ch10/
bbbsPartiallyFilled/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 561

561

In the last example, the indices naturally matched ages because both ranges start at 0.
Sometimes that isn’t the case. Consider a slight modification of this problem: Count
the number of coins in a collection by the year they were minted. Assume the oldest
coin was minted in 1850.

This problem could be solved by allocating an array with 1850 unused elements. A bet
ter approach is to offset the indices by 1850, as shown in Listing 10-14. The crucial
lines are 5, 16, and 22. In line 5, the constants EARLIEST and LATEST are used to cal
culate the actual number of elements or counters that are needed. This avoids the
unused elements at the beginning of the array. In line 16, the year entered by the user is
reduced by the appropriate amount so that it can be used as an index into the array. In
line 22, the reverse is done to map the index to the appropriate year.

10.5
A

RRAYS O
F P

RIM
ITIVE T

YPES

Listing 10-14: Offsetting an index to start at zero

1 /** Count the number of coins minted in each year. */
2 publicƒstaticƒvoidƒmain(String[]ƒargs)
3 {ƒintƒEARLIESTƒ=ƒ1850;
4 ƒƒintƒLATESTƒ=ƒ2008;
5 ƒƒint[]ƒagesƒ=ƒnewƒint[LATESTƒ-ƒEARLIESTƒ+ƒ1];
6
7 ƒƒ// Count the coins.ƒ
8 ƒƒScannerƒinƒ=ƒnewƒScanner(System.in);
9 ƒƒwhileƒ(true)

10 ƒƒ{ƒSystem.out.print("Enter a mint year or -1 to exit: ");
11 ƒƒƒƒintƒyrƒ=ƒin.nextInt();
12 ƒƒƒƒifƒ(yrƒ==ƒ-1)
13 ƒƒƒƒ{ƒbreak;
14 ƒƒƒƒ}
15
16 ƒƒƒƒages[yrƒ-ƒEARLIEST]++;
17 ƒƒ}
18
19 ƒƒ// Print out the number of coins for each year.ƒ
20 ƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒages.length;ƒi++)
21 ƒƒ{ƒSystem.out.println(ages[i]ƒ+ƒ
22 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ"ƒcoinsƒmintedƒinƒ"ƒ+ƒ(iƒ+ƒEARLIEST));
23 ƒƒ}
24 }

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 562

562

10.6 Multi-Dimensional Arrays

CH
AP

TE
R

10
 |

AR
RA

YS

Sometimes an array with more than one dimension is useful. For example, consider a
two-dimensional (2D) array recording the money given to Big Brothers/Big Sisters by
month and source. Figure 10-20 shows the source of the money across the top in cate
gories such as United Way and government grants. Down the left side are the months.
At the intersection of each row and column is the amount of money received in a par
ticular category in a particular month. For example, the cell in the column labeled
“Individual Donations” and in the row labeled “Apr” indicates that $4,833 were
received in April from individual donations.

(figure 10-20)

Two-dimensional array

recording income by

source and month

Java uses one pair of brackets for each dimension of an array. The one-dimensional
arrays we used earlier in the chapter use one pair of brackets; the two-dimensional
array shown in Figure 10-20 uses two. Of course, a three-dimensional array uses three
pairs. The pattern continues for as many dimensions as you need.

int[][]ƒincomeƒ=ƒnewƒint[12][5]

The declaration on the left side of the equal sign specifies a 2D array where each cell
stores an integer. The allocation on the right side specifies that the array has 12 rows
and five columns.

Figure 10-20 is actually a bit misleading, for the following reasons:

➤	 Column names like “Corporate Donations” and row names like “May” are
not directly associated with an array. The array itself is declared to store only
integers. It cannot store strings as column or row labels.

KEY IDEA

The first pair of
brackets is for the
rows; the second pair
of brackets is for the
columns.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 563

0 3,000 6,915 0 15,500

0 2,125 4,606 0 5,500

0 2,000 5,448 0 5,500

0 3,000 4,833 13,983 15,500

20,569 2,000 6,091 0 5,500

0 8,000 4,867 0 5,500

0 3,000 4,196 0 15,500

0 2,550 4,736 0 5,500

0 2,000 4,305 0 5,500

0 3,000 5,286 32,254 15,500

0 2,000 6,834 0 5,500

9,351 2,000 7,459 0 5,500

563
10.6

M
U
LTI-D

IM
EN

SIO
N
AL A

RRAYS

(figure 10-21)

More accurate

visualization of a two-

dimensional array

➤	 Rows and columns must be accessed using integer indices.

➤	 The variable name, income, actually refers to memory that holds the array; it
isn’t the array itself.

A more accurate picture of the array is shown in Figure 10-21 which takes all this into
account.

int[][]income

0 1 2 3 4

0

1

2

3

4

5

6

7

8

9

10

11

10.6.1 2D Array Algorithms

Most algorithms that process a 2D array use two nested loops. The outside loop gen
erally specifies which row to access and the inside loop generally specifies the column.
A number of the following algorithms will display this general pattern. We say that
such an algorithm accesses the array in row-major order. Some algorithms access the
array in column-major order—the columns are indexed by the outer loop.

Printing Every Element

For example, to print the income array we could use a method like the one shown in
Listing 10-15.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 564

564
CH

AP
TE

R
10

 |
AR

RA
YS

Listing 10-15: Printing a 2D array

1 publicƒclassƒBBBSIncomeƒextendsƒObject
2 {ƒ// income by month (row) and source (column)
3 ƒƒprivateƒint[][]ƒincome;
4
5 ƒƒ...
6
7 ƒƒ/** Print the income chart. */
8 ƒƒpublicƒvoidƒprintIncomeChart()
9 ƒƒ{ƒforƒ(intƒrƒ=ƒ0;ƒrƒ<ƒthis.income.length;ƒr++)

10 ƒƒƒƒ{ƒforƒ(intƒcƒ=ƒ0;ƒcƒ<ƒthis.income[r].length;ƒc++)
11 ƒƒƒƒƒƒ{ƒSystem.out.print(this.income[r][c]ƒ+ƒ"\t");
12 ƒƒƒƒƒƒ}
13 ƒƒƒƒƒƒSystem.out.println();
14 ƒƒƒƒ}
15 ƒƒ}
16 }

ch10/income/

The inside loop, lines 10–12, prints one entire row each time it executes. The row it
prints is specified by the outer loop, row r. After the row is printed, line 13 ends the
current line of text and begins a new line. This process of printing a row is repeated for
each row specified by the outer loop.

Notice that the number of rows is found in line 9 with this.income.length while
the number of columns in a particular row is found in line 10 with this.
income[r].length. They differ because in Java a 2D array can be ragged—each row
may have its own length. We will see an example of this in Section 10.6.3.

Sum Every Element

The same nested looping pattern can be used to find the total income, from all sources,
for the entire year:

/** Calculate the total income for the year. */
publicƒintƒgetTotalIncome()
{ƒintƒtotalƒ=ƒ0;
ƒƒforƒ(intƒrƒ=ƒ0;ƒrƒ<ƒthis.income.length;ƒr++)
ƒƒ{ƒforƒ(intƒcƒ=ƒ0;ƒcƒ<ƒthis.income[r].length;ƒc++)
ƒƒƒƒ{ƒtotalƒ=ƒtotalƒ+ƒthis.income[r][c];
ƒƒƒƒ}
ƒƒ}
ƒƒreturnƒtotal;
}

KEY IDEA

It’s possible to find
the number of rows in
a 2D array, as well
as the number of
columns in each row.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 565

565

Every time you need to examine every cell in a 2D array, you will likely use this nested
looping pattern.

Summing a Column

To find the total of the individual donations in one year, we need to sum column 2 in
the income array. This task requires a single loop because it is working in a single
dimension—moving down the column. Passing the column index as a parameter makes
the method more flexible:

/** Calculate the total income for a given category for the year.
* @param columnNum The index of the column containing the desired category. */

publicƒintƒgetTotalByCategory(intƒcolumnNum)

{ƒintƒtotalƒ=ƒ0;

ƒƒforƒ(intƒrƒ=ƒ0;ƒrƒ<ƒthis.income.length;ƒr++)

ƒƒ{ƒtotalƒ=ƒtotalƒ+ƒthis.income[r][columnNum];

ƒƒ}

ƒƒreturnƒtotal;

}

10.6.2 Allocating and Initializing a 2D Array

As with a one-dimensional array, the declaration and allocation of the array can be
split. This means that determining the size of an array can be delayed until the program
is actually executing. For example, the array could be initialized from a file where the
first two numbers indicate the number of rows and columns, respectively.

The first five rows of such a data file are shown in Figure 10-22. The constructor
shown in Listing 10-16 shows how the array is allocated and then initialized using this
data. The size of the array is determined in lines 11 and 12. The array itself is allocated
using those sizes in line 16. Finally, the data is read and stored in the array using the by
now familiar double loop in lines 19-24. The calls to nextLine in lines 13 and 23 are
not strictly necessary because nextInt will read across line boundaries; however,
using nextLine shows where line endings are expected in the file and adds to the clar
ity of the code.

(figure 10-22) 12 5

Sample data file 0
0

3000
2125

6915
4606

0
0

15500
5500

0 2000 5448 0 5500
0 3000 4833 13983 15500
...

10.6
M

U
LTI-D

IM
EN

SIO
N
AL A

RRAYS

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 566

566
CH

AP
TE

R
10

 |
AR

RA
YS

Listing 10-16: Allocating and initializing a 2D array from a file

1 publicƒclassƒBBBSIncomeƒextendsƒObject
2 {
3 ƒƒ// Income by month (row) and source (column).
4 ƒƒprivateƒint[][]ƒincome;
5
6 ƒƒ/** Read the income data from a file.
7 ƒƒ * @param in The open file containing the data. */
8 ƒƒpublicƒBBBSIncome(Scannerƒin)
9 ƒƒ{ƒsuper();

10 ƒƒƒƒ// Get the size of the array.
11 ƒƒƒƒintƒrowsƒ=ƒin.nextInt();
12 ƒƒƒƒintƒcolsƒ=ƒin.nextInt();
13 ƒƒƒƒin.nextLine();
14
15 ƒƒƒƒ// Allocate the array.
16 ƒƒƒƒthis.incomeƒ=ƒnewƒint[rows][cols];
17
18 ƒƒƒƒ// Fill the array.
19 ƒƒƒƒforƒ(intƒrƒ=ƒ0;ƒrƒ<ƒthis.income.length;ƒr++)
20 ƒƒƒƒ{ƒforƒ(intƒcƒ=ƒ0;ƒcƒ<ƒthis.income[r].length;ƒc++)
21 ƒƒƒƒƒƒ{ƒthis.income[r][c]ƒ=ƒin.nextInt();
22 ƒƒƒƒƒƒ}
23 ƒƒƒƒƒƒin.nextLine();
24 ƒƒƒƒ}
25 ƒƒ}
26 }

10.6.3 Arrays of Arrays

The picture we’ve used so far of a 2D array having rows and columns is adequate in
most circumstances (see Figure 10-21). However, it doesn’t match reality and some
times knowing all the details is useful.

In reality, a 2D array is an array of arrays, as illustrated in Figure 10-23. The variable
income actually refers to a one-dimensional array with 12 elements. Each element in
that 1D array refers to an array with five elements—a “row” of the 2D array.

We can now understand accessing the number of rows and columns in an array. When
we write this.income.length, it returns the length of the array holding the rows—
the number of rows in the 2D array. When we write this.income[r].length, it

ch10/income/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 567

[0
]

[4
]

5

[2
]

[3
]

[1
]

0
3,

00
0

4,
83

3
13

,9
83

15
,5

00

[0
]

[4
]

[2
]

[3
]

[1
]

[4
]

[3
]

[0
]

[4
]

[2
]

[3
]

[1
]

4.
73

6 0
5,

50
0

[4
]

5

[2
]

[3
]

[1
]

9,
35

1
2,

00
0

7,
45

9 0
5,

50
0

le
ng

th [0
]

[4
]

[2
]

[3
]

[1
]

6,
09

1 0
5,

50
0

[0
]

[4
]

[2
]

[3
]

[1
]

0

5,
28

6
32

,2
54

15
,5

00le
ng

th [0
]

5
in

t[
]

[2
]

[3
]

[1
]

0
3,

00
0

le
n

567

returns the length of the array stored in income[r]—the length of row r, or the num
ber of columns in that row.

(figure 10-23)

Viewing a 2D array as an

array of arrays

le
ng

th
 in
t[

]

le
ng

th

5
in

t[
]

0
3,

00
0

6,
91

5 0
15

,5
00

le
ng

th [0
]

5
in

t[
]

[2
]

[1
]

0
2,

12
5

4,
60

6 0
5,

50
0

le
ng

th

5
in

t[
]

0
2,

55
0

le
ng

th [0
]in
t[

]

5
in

t[
] 20

,5
69

2,
00

0

le
ng

th

5
in

t[
] 3,

00
0

[4
]

4,
19

6 0
15

,5
00

length
[0]

[8]
[9]

[10]
[11]

12
int[][]

[5]
[6]
[7]

[2]
[3]
[4]

[1]

income

le
ng

th [0
]

[4
]

5
in

t[
]

[2
]

[3
]

[1
]

0
2,

00
0

5,
44

8 0
5,

50
0

le
ng

th [0
]

[4
]

5
in

t[
]

[2
]

[3
]

[1
]

0
8,

00
0

4,
86

7 0
5,

50
0

gt
h

[0
]

[4
]

5
in

t[
]

[2
]

[3
]

[1
]

0
2,

00
0

4,
30

5 0
5,

50
0

le
ng

th [0
]

[4
]

5
in

t[
]

[2
]

[3
]

[1
]

0
2,

00
0

6,
83

4 0
5,

50
0

Sometimes, viewing a 2D array this way can work to our advantage in writing a pro
gram, too. For example, suppose you want to swap row r and row s in the array
income. Rather than swap each element in row r with the corresponding element in
row s, we can write:

int[]ƒtempƒ=ƒincome[r];

income[r]ƒ=ƒincome[s];

income[s]ƒ=ƒtemp;

The first line declares a temporary variable to store a 1D array. Then the rows are
swapped by swapping their references. There is no equivalent way to swap columns.

Another way in which the array of arrays viewpoint can make a difference in our code
is a method that takes an entire row as a parameter. For example, we might already
have a simple utility method to sum a 1D array:

privateƒintƒsum(int[]ƒa)

{ƒintƒsumƒ=ƒ0;

ƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒa.length;ƒi++)

ƒƒ{ƒsumƒ=ƒsumƒ+ƒa[i];

ƒƒ}

ƒƒreturnƒsum;

}

10.6
M

U
LTI-D

IM
EN

SIO
N
AL A

RRAYS

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 568

568
CH

AP
TE

R
10

 |
AR

RA
YS

We can find the sum of the entire income array by passing sum a row at a time:

publicƒintƒgetTotalIncome()

{ƒintƒtotalƒ=ƒ0;

ƒƒforƒ(intƒrƒ=ƒ0;ƒrƒ<ƒthis.income.length;ƒr++)

ƒƒ{ƒtotalƒ=ƒtotalƒ+ƒthis.sum(this.income[r]);

ƒƒ}

ƒƒreturnƒtotal;

}

A final use of the array-of-arrays view is when rows of the array have different lengths.
For example, Blaise Pascal explored the many properties of a pattern of numbers that
has come to be known as “Pascal’s Triangle.” The first five rows of the triangle are
shown in Figure 10-24. The first and last element of each row is 1. The elements in
between are the sum of two elements from the row before it.

1 2 1

11

1

1

1

3

4

1

6 4

3

1

(figure 10-24)

Pascal’s Triangle

A 2D array to store the first 10 rows of Pascal’s Triangle can be declared and allocated
with the following statement:

int[][]ƒpascalƒ=ƒnewƒint[10][];

Notice that the last pair of brackets is empty. This causes Java to allocate only one
dimension of the array. We can now allocate the rest of the array—with each row hav
ing the appropriate length—with the following loop. It first allocates a 1D array the
correct length and then inserts it into the pascal array.

forƒ(intƒrƒ=ƒ0;ƒrƒ<ƒpascal.length;ƒr++) LOOKING AHEAD
{ƒpascal[r]ƒ=ƒnewƒint[r+1];

See Problem 10.12.

ƒƒ// the array must still be initialized with the correct values!

}

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 569

569

This solution provides two interesting elements: First, because each row is just the right
length, no space is wasted. Second, the array can still be printed with our standard
nested loop, as follows:

forƒ(intƒrƒ=ƒ0;ƒrƒ<ƒpascal.length;ƒr++)

{ƒforƒ(intƒcƒ=ƒ0;ƒcƒ<ƒpascal[r].length;ƒc++)

ƒƒ{ƒSystem.out.print(pascal[r][c]ƒ+ƒ"\t");

ƒƒ}

ƒƒSystem.out.println();

}

10.7 GUI: Animation

10.7
G
U
I: A

N
IM

ATIO
N

There are several ways to perform animation in a graphical user interface. We’ve
already seen a primitive animation in the Thermometer example in Section 6.7.3. In
that example, the line representing the mercury in the thermometer was drawn several
times, each time a little longer than before.

In Chapter 9, we saw how to display a single image from a file. In this section, we’ll com
bine that capability with arrays to display a simple animation. The principle of this ani
mation approach is to store a sequence of images in an array. The image displayed is
switched from one image to the next quickly enough that it fools the eye into thinking
there is smooth motion. Our example will use the six images shown in Figure 10-25.
When shown repeatedly in quick succession, the eyes appear to roll. The images them
selves were created with a graphics program that can create .gif files.

(figure 10-25)

Six images used in an

animation

Listing 10-17 and Listing 10-18 work together to show two happy face images, one
with the eyes rolling clockwise and the other with the eyes rolling counterclockwise.
One goes through the array forward as it displays the images; the other goes through
the array backward as it displays the images.

The main method for the program is shown in Listing 10-17 and follows our standard
pattern: Create the components we need (two instances of a custom component named
AnimateImage), put them in an instance of JPanel, and then put the panel in an
instance of JFrame.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 570

570
CH

AP
TE

R
10

 |
AR

RA
YS

Lines 25-28 start two threads, one for each animation. Just like threads allowed robots
in Section 3.5.2 to move independently and simultaneously, these threads allow each
animation to run independently of the other.

Listing 10-17: The main method for an animation

1 importƒjavax.swing.*;
2
3 /** Create an animated image.
4 *
5 *ƒ@author Byron Weber Becker */
6 publicƒclassƒMainƒextendsƒObject
7 {
8 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
9 ƒƒ{ƒ// Create two animated components.

10 ƒƒƒƒAnimateImageƒanim1ƒ=ƒnewƒAnimateImage("img",ƒ6,ƒ".gif",ƒ1);
11 ƒƒƒƒAnimateImageƒanim2ƒ=ƒnewƒAnimateImage("img",ƒ6,ƒ".gif",ƒ-1);
12
13 ƒƒƒƒ// Put the components in a panel and then in a frame.
14 ƒƒƒƒJPanelƒcontentsƒ=ƒnewƒJPanel();
15 ƒƒƒƒcontents.add(anim1);
16 ƒƒƒƒcontents.add(anim2);
17
18 ƒƒƒƒJFrameƒfƒ=ƒnewƒJFrame("Animations");
19 ƒƒƒƒf.setContentPane(contents);
20 ƒƒƒƒf.pack();
21 ƒƒƒƒf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22 ƒƒƒƒf.setVisible(true);
23
24 ƒƒƒƒ// Run each animation in its own thread.
25 ƒƒƒƒThreadƒt1ƒ=ƒnewƒThread(anim1);
26 ƒƒƒƒt1.start();
27 ƒƒƒƒThreadƒt2ƒ=ƒnewƒThread(anim2);
28 ƒƒƒƒt2.start();
29 ƒƒ}
30 }

ch10/animation/

The component that actually does the animation is shown in Listing 10-18. Its key fea
tures are the following:

➤	 An array to store the images comprising the animation is declared (line 10)
and initialized with the images (lines 28–31).

➤	 An instance variable, currentImage, holds the array index of the image cur
rently being displayed.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 571

571
10.7

G
U
I: A

N
IM

ATIO
N

➤	 A method overriding paintComponent paints the image indexed by
currentImage on the screen.

➤	 A run method is required to implement the interface Runnable. When the
thread is started in the main method, this is the method that runs. It loops for
ever. With each iteration, it advances currentImage to be either the next
image or the previous image, depending on the value stored in the instance
variable direction. After requesting that the system repaint the component
by calling repaint, the method sleeps for 0.10 seconds to give the user time
to see the new image.

Listing 10-18: A component that shows images in sequence to produce an animation

1 importƒjavax.swing.*;
2 importƒjava.awt.*;
3
4 /** Instances of AnimateImage show a sequence of images to produce an animation.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒAnimateImageƒextendsƒJComponentƒ
8 ƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒRunnable
9 {

10 ƒƒprivateƒImageIcon[]ƒimages;
11 ƒƒprivateƒintƒcurrentImageƒ=ƒ0;
12 ƒƒprivateƒintƒdirection;
13
14 ƒƒ/** Construct a new animation component, loading all the images. Images are read from
15 ƒƒ* files whose names have three parts: a root string, a sequence number, and an extension.
16 ƒƒ*
17 ƒƒ* @param fileNameRoot The root of the image filenames.
18 ƒƒ* @param numImages The number of images in the animation.
19 ƒƒ* @param extension The extension used for the images (e.g., .gif)
20 ƒƒ* @param dir 1 to animate going forward through the array; -1 to animate
21 ƒƒ* going backward through the array. */ƒ
22 ƒƒpublicƒAnimateImage(StringƒfileNameRoot,ƒintƒnumImages,ƒ
23 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒStringƒextension,ƒintƒdir)
24 ƒƒ{ƒsuper();
25 ƒƒƒƒthis.imagesƒ=ƒnewƒImageIcon[numImages];
26 ƒƒƒƒthis.directionƒ=ƒdir;
27
28 ƒƒƒƒforƒ(intƒi=0;ƒi<numImages;ƒi++)
29 ƒƒƒƒ{ƒStringƒfileNameƒ=ƒfileNameRootƒ+ƒiƒ+ƒextension;
30 ƒƒƒƒƒƒthis.images[i]ƒ=ƒnewƒImageIcon(fileName);
31 ƒƒƒƒ}
32

ch10/animation/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 572

572
CH

AP
TE

R
10

 |
AR

RA
YS

Listing 10-18: A component that shows images in sequence to produce an animation (continued)

33 ƒƒƒƒthis.setPreferredSize(newƒDimension(
34 ƒƒƒƒƒƒƒƒƒƒƒƒthis.images[0].getIconWidth(),
35 ƒƒƒƒƒƒƒƒƒƒƒƒthis.images[0].getIconHeight()));
36 ƒƒ}
37
38 ƒƒ/** Paint the current image on the screen. */
39 ƒƒpublicƒvoidƒpaintComponent(Graphicsƒg)
40 ƒƒ{ƒsuper.paintComponent(g);
41 ƒƒƒƒImageƒimgƒ=ƒthis.images[this.currentImage].getImage();
42 ƒƒƒƒg.drawImage(img,ƒ0,ƒ0,ƒnull);
43 ƒƒ}
44
45 ƒƒ/** Run the animation. */
46 ƒƒpublicƒvoidƒrun()
47 ƒƒ{ƒwhileƒ(true)
48 ƒƒƒƒ{ƒ// Select the next image and call for the system to repaint the component.
49 ƒƒƒƒƒƒ// If this.dir is negative, the remainder operator doesn't work as desired. Add
50 ƒƒƒƒƒƒ// this.images.length to compensate.
51 ƒƒƒƒƒƒthis.currentImageƒ=ƒ(this.currentImageƒ+ƒthis.direction
52 ƒƒƒƒƒƒƒƒƒƒƒƒ+ƒthis.images.length)ƒ%ƒthis.images.length;
53 ƒƒƒƒƒƒthis.repaint();
54 ƒƒƒƒƒƒtryƒ
55 ƒƒƒƒƒƒ{ƒThread.sleep(100); // Use the sleep method in the Java library.
56 ƒƒƒƒƒƒ}ƒcatchƒ(InterruptedExceptionƒex)ƒ
57 ƒƒƒƒƒƒ{// ignore
58 ƒƒƒƒƒƒ}
59 ƒƒƒƒ}
60 ƒƒ}
61 }

10.8 Patterns

Many patterns involve arrays. They include initialization and changing the size of an
array, as well as many algorithms. This section contains only a sampling of what could
be considered patterns in this chapter.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 573

573

10.8.1 The Process All Elements Pattern

Name: Process All Elements

Context: You have a collection of values stored in an array and need to perform the
same operation on all of them.

Solution: Use a for loop to process each element of the array, one element with each
iteration of the loop. The following code template applies:

forƒ(«elementType»ƒ«elementName»ƒ:ƒ«arrayName»)
{ƒ«statements to process element»
}

For example, to print the names of all the elements in the persons array:

forƒ(Personƒpƒ:ƒthis.persons)
{ƒSystem.out.println(p.getName());
}

Consequences: Each element in the array is processed by the statements inside the loop.
If the array happens to be partially filled, the preceding form will cause a null pointer
exception. Then the alternate form, which uses an explicit index and an auxiliary vari
able, should be used.

Related Patterns: The Process Matching Elements, Find an Extreme, Selection Sort,
and many other patterns are specializations of the Process All Elements pattern.

10.8.2 The Linear Search Pattern

Name: Linear Search

Context: You have an indexed collection and are interested in objects in the collection
that satisfy a particular property. You want to do one of the following tasks:

➤	 determine whether an element satisfying the property exists in the collection

➤	 determine the position of the first or last element in the collection that satisfies
the property

➤	 retrieve the first or last element in the collection that satisfies the property

Solution: Write a method that takes the criteria that identify the desired element as one
or more parameters. Use the Process All Elements pattern to test each element of the
array against the criteria. An element satisfying them can be saved and returned after
the loop, or more efficiently, returned as soon as it is found. The following code tem
plate uses the early return approach and assumes a partially filled array.

10.8
P

ATTERN
S

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 574

574
CH

AP
TE

R
10

 |
AR

RA
YS

publicƒ«typeOfElement»ƒ«methodName»(«type»ƒ«criteria»)

{ƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒ«auxVar»;ƒi++)

ƒƒ{ƒ«typeOfElement»ƒ«elem»ƒ=ƒ«arrayName»[i];

ƒƒƒƒifƒ(«elem»ƒsatisfiesƒ«criteria»)

ƒƒƒƒ{ƒreturnƒ«elem»;

ƒƒƒƒ}

ƒƒ}

ƒƒreturnƒ«failureValue»;

}

This basic pattern has many variations. Some of the differences are whether the array
is partially filled, whether the element is guaranteed to be found, and whether you
want to know whether such an element exists, its position, or the element itself.

Many people prefer to use a while loop instead of a for loop. In that case, use the fol
lowing variant of the pattern. The while loop depends on short circuit evaluation to
stop the loop when the element is not found. For this to work, the test for the index
being in bounds must be first.

publicƒ«typeOfElement»ƒ«methodName»(«type»ƒ«criteria»)

{ƒintƒiƒ=ƒ0;

ƒƒwhileƒ(iƒ<ƒ«auxVar»ƒ&&ƒ

ƒƒƒƒƒƒƒƒƒ!(«arrayName»[i]ƒsatisfiesƒ«criteria»))

ƒƒ{ƒi++;

ƒƒ}

ƒƒifƒ(iƒ==ƒ«auxVar»)ƒƒ{ƒreturnƒ«failureValue»;ƒƒƒƒ}
ƒƒelseƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{ƒreturnƒ«arrayName»[i];ƒƒƒƒ}
}

Consequences: The desired element is either found and returned, or a designated
«failureValue» is returned. If the array contains objects, the «failureValue» is
null. If the array contains primitive values, the failure value must be chosen carefully
to avoid all valid values that could be stored in the array. If no such value exists, another
technique must be used such as setting an instance variable as an error flag, returning an
object that contains the primitive value or is null, or throwing an exception.

Related Patterns: Some variations of this pattern are similar to the Process All Elements
pattern.

10.9 Summary and Concept Map

This chapter has focused on arrays, a fundamental programming structure for storing
multiple values using a single name, with individual values referenced using an integer
index. Arrays are closely related to collection classes such as ArrayList. An array
should be used when efficiency matters or when more precise control over the size of
the array is desired.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 575

575

Many important algorithms apply to collections that are stored in an array. Examples
include Process All Elements, Find an Extreme, Search, and Sort.

10.10
P

RO
BLEM

 S
ET

ho
ld

are
refe

ren
ced

with

are
 so

met
im

es

are usually

may havemay be

track filled elements with an

m
ay be reallocated to

such as

m
us

t
be

fir

st
 b

y

se
co

nd
 b

y

thi
rd

by

are p
rocess

ed with such as

such as

such as

such as

ea
ch

ha
ve

th
e sa

me

arrays

multiple
values

meaningful

sequence
numbers

multiple
dimensions

allocating
space

find an
extreme

partially
filled arrays

auxiliary
variable

change size

algorithms insert

prepared
for use

declaring
variables initializing

elements

process all
elements

algorithms

sort

delete

type

indices

have additional

10.10 Problem Set

Written Exercises

10.1 In Section 10.4.1, it was noted that assigning null to an unused element after a
deletion from a partially filled array is not strictly necessary. Explain why a pro
gram should work as implemented without that step. Drawing pictures may help.

10.2 Consider the code shown in Section 10.6.3 that swaps two rows of a 2D array.

a. Draw four diagrams, each one similar to Figure 10-23, that trace the three
lines of code. Assume the array has five rows with three columns each and
that r is one and s is three.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 576

576
CH

AP
TE

R
10

 |
AR

RA
YS

b. Write pseudocode for a method that swaps two rows by swapping individ
ual elements rather than entire rows.

10.3 Write patterns, in the same style as Section 10.8, for the following:

a. Declaring, allocating, and initializing a filled array where the initial values
are read from a file

b. Finding an extreme element

c. Deleting an element from a specified index in an unsorted, partially filled array

d. Inserting an element into a sorted, partially filled array

e. Enlarging a partially filled array

Programming Exercises

10.4 In Section 10.1.7, we found the oldest person by comparing the ages of everyone
in the array. This, however, is accurate only to the nearest year. On 364 days of
the year, a person born April 1, 1987 and another born April 2, 1987 will be the
same number of years old—yet one is clearly older than the other. Rewrite the
findOldestPerson method to compare their birth dates rather than their ages.
With this modification, two people must be born on exactly the same day and year
to be considered equally old. You will need to add a method to the Person class.

10.5 Write a method named split. This method is passed a Scanner object. It
reads all of the tokens up to the end of the file, returning them as a filled array
of strings (no blanks or nulls). Do not use the split method in the String
class nor any of the collection classes.

10.6 The package becker.xtras.hangman includes classes implementing the
game of Hangman. Figure 7-13 has an image of the user interface. Extend
SampleHangman. Your new constructor should read a file of phrases that you
create and store them in an array. Override the newGame() method to choose a
random phrase from the array and then call the other newGame method with
the chosen phrase. Create a main method, as shown in the package overview,
to run your program.

10.7 Complete the countSubset helper method discussed in Section 10.3.

10.8 Write a method named add that adds a new Person object into a sorted, par
tially filled array. You may find Figure 10-17 helpful for this.

10.9 Implement a method with the signature voidƒdelete(intƒd) that deletes the
element at index d from a partially filled array.

a. Assume the partially filled array is unsorted.

b. Assume the array is sorted.

10.10 Write a program that reads a series of daily high temperatures from a file. Print
out the number of days that each high was achieved. If you normally think of
temperatures in degrees Celsius, assume the temperatures fall between -40° and
50°. If you normally think in Fahrenheit, assume they fall between -40° and 110°.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 577

577

10.11 Write methods in the BBBSIncome class to:

a. Find the month with the largest income in a given category.

b. Find the category with the largest income for a given month.

c. Find the month with the largest total income from all sources.

10.12 Review Pascal’s Triangle and the code after Figure 10-24 to allocate an
array for it.

a. Draw an object diagram, similar to Figure 10-23, showing Pascal’s Triangle
as an array of arrays.

b. Complete the initialization code. Print the triangle using the algorithm in
Listing 10-15 to verify the correctness of your code.

c. Write a method, printFormatted, that prints an array representing
Pascal’s Triangle with appropriate spacing. Your output will be spaced simi
larly to Figure 10-24, but will not display the background grid. You may
find the printf method useful; see Section 7.2.4.

d. Write a method, rowsSumToPowers. It verifies that the sum of the num
bers in each row is 2n, where n is the row number. That is, the sum of row 0
is 20 (or 1) and the sum of row 1 is 21 (or 2). Use the pow method in the
Math class to calculate 2n.

e. Write a method, naturalNumbers. It should verify that the elements next
to the end of each row except the first, when taken in sequence, are the nat
ural numbers. For example, the 2nd element in row 1 is 1. The second ele
ment in row 2 is 2, and the second element in row 3 is 3. The same is true
for the element next to the end of each row. Return true if the property
holds; false otherwise.

Programming Projects

10.13 Write a program implementing a robot bucket brigade. The bucket brigade con
sists of some number of RobotSEs positioned on consecutive intersections. There
are a number of Thing objects (buckets) on the same intersection as the first
robot in the brigade. When the program executes, the first robot will pick up one
Thing and move it to the next robot’s intersection, put it down, and return to its
original position. The next robot will then move the Thing one more position
down the line, and so on. When the brigade is finished, all the Things will be at
the other end of the line of robots, one intersection beyond the last robot.

10.14 Implement a class named SortTest. It asks the user for an array size, a file
name, and a sorting algorithm. It then allocates an array of strings the given
length and fills it by reading tokens from the file. If the file doesn’t have
enough tokens, close it and begin reading again from the beginning. When the
array is filled, sort it using either Selection Sort or the sort method imple
mented in java.util.Arrays (an implementation of MergeSort). Use the

10.10
P

RO
BLEM

 S
ET

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 578

578
CH

AP
TE

R
10

 |
AR

RA
YS

program to construct a graph for each algorithm comparing the number of
tokens on the x axis with the time to sort on the y axis. What conclusions can
you draw about the performance of the two algorithms? (Hint: A good source
for tokens is a book such as Moby Dick, available from www.gutenberg.org.)

10.15 The user interface for graphing mathematical functions presented in Problem 7.14
is also capable of graphing polynomial functions. Polynomials have n terms added
together. Each term has the form aix

i, where ai is called the coefficient. The overall
form of a polynomial is a xn + an-1x

n-1 + … + a0x
0. Write a class named n

PolyFunc that extends Object and implements IPolynomialFunction. Write
another class, Main, that includes a main method to run the program.

a. Use PolyFunc to graph a4x
4 + a3x

3 + a2x
2 + a1x + a0, using a4=0.5, a3=

-0.75, a2=0.1, a1=0.0, and a0=-1.0.

b. Without changing PolyFunc in any way, graph
a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0
(You may, however, change your main method.) Choose your own coefficients.

10.16 Explore the documentation for becker.xtras.imageTransformation. This
package provides a graphical user interface for a program to transform images by
rotating, cropping, brightening, darkening, stretching, and so on. See Figure 10-26.
The actual transformations are provided by a class implementing the
ITransformations interface.

(figure 10-26)

Image transformation

graphical user interface

Write a class named Transformer that implements ITransformations
and provides a reset function to reset the image to the original image that
was provided as a parameter to setPixels. (Hint: Assigning references
will not be enough. You need to actually copy the array.) Add code to imple
ment the following transformations:

a. “Darken” divides the intensity of each pixel by two.

b. “Brighten” multiplies the intensity of each pixel by two; pixels that have a
resulting value larger than 255 are set to 255.

c. “Invert” makes the light pixels dark and the dark pixels light.

http:www.gutenberg.org

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 579

579

d. “FlipX” turns the picture upside down.

e. “FlipY” reverses the left and right sides of the image.

f. “FlipDiag” reverses the lower left and upper right corners.

g. “Rotate” turns the image 1⁄4 turn to the left (be careful that you don’t inad
vertently implement “FlipDiag”).

h. “Scale50” removes every other row and every other column from the image,
making the result .25 times the size of the original.

i.	 “Mirror” makes an image that is twice as wide as the original image, where
the left half contains the original and the right side contains a mirror image.

j. “Blur” sets each pixel to the average of its neighbors.

10.17 Explore the documentation for the package becker.xtras.jotto. A graphi
cal user interface, as shown in Figure 10-27, is provided in the package.

10.10
P

RO
BLEM

 S
ET

(figure 10-27)

Jotto’s graphical user

interface

a. Write a main method, as described in the package overview, so that you can
play a game of Jotto using the supplied SampleWordList and
SampleGuessEvaluator classes together with the supplied user interface.

b. Write a class named WordList that implements the interface IWordList.
Modify your main method to run the program using your new class.
Implement it using a completely filled array.

c. Write a class named WordList that implements the interface IWordList.
Modify your main method to run the program using your new class.
Implement it using a partially filled array that includes an addWord method
which enlarges the array as required.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 580

580
CH

AP
TE

R
10

 |
AR

RA
YS

d. Write a class named HintContainsLetter that extends Hint and con
tains the code shown in the documentation for the Hint class. Modify your
main method so you can play the game and use your new hint mechanism.

e. Write a class named HintExcludesLetter. It will be similar to the class
written in part (d) except that isOK will return true when the specified
word does not contain the given character.

f. Write a class named HintContainsLetters. It will extend Hint and its
isOK method will return true if the specified word contains all of the letters
obtained with the getLetters method in the IHintData object passed as
a parameter.

g. Write a class named HintExcludesLetters. It will extend Hint and its
isOK method will return true if the specified word does not contain any of
the letters obtained with the getLetters method in the IHintData
object passed as a parameter.

h. Write a class named HintContains3Letters. It will extend Hint and its
isOK method will return true when the specified word contains at least 3 of
the letters obtained with the getLetters method in the IHintData
object passed as a parameter.

i.	 Generalize the class described in part (h) so that the number of letters can be
specified when the object is constructed. Name the class
HintContainsNLetters.

10.18 Explore the documentation for the package becker.xtras.marks. Write a
class named Marks that implements the interface IMarks. Write another class
named Main that contains a main method as shown in the documentation. The
result should appear similar to Figure 10-28.

(figure 10-28)

Graphical user interface

for a spreadsheet storing

marks or grades

10.19 Consider Table 10-1. It gives distances between pairs of cities, similar to the
charts found in some road atlases. Write a class, Distances, that has an
instance variable referring to a 2D array storing the distances. Initialize the
array from a file.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 581

581

(table 10-1)

Distances in kilometers

between cities in southern

Ontario

Kitchener London Stratford Toronto

Kitchener 0 110 45 107

London 110 0 61 194

Stratford 45 61 0 149

Toronto 107 194 149 0

10.10
P

RO
BLEM

 S
ET

Add the following methods:

a.	 displayFarthestPair finds and prints the pair of cities that is
farthest apart.

b. displayClosestPair finds and prints the pair of distinct cities that are
closest together.

c.	 isSymmetrical verifies that the table is symmetrical; that is, it returns
true if the distance from X to Y is the same as from Y to X for each pair of
cities, and if the distance from X to X is 0.

d. getDistance returns the distance between two cities, given their names.
(Hint: You’ll need to add a 1D array of Strings to store the city names.
Finding “Stratford” at index i indicates that i should be used as the index in
the row or column of the 2D array of distances. You may need to adjust the
format of your input file to include the city names.)

e.	 getTripDistance returns the total distance for a trip when given an array
of city names. The order of the names in the array corresponds to the order
the cities are visited on the trip.

10.20 Notice that less than half of the data in the distance chart shown in Table 10-1
is actually needed. The upper half of the chart isn’t needed because the array is
symmetrical. Write a program that reads data from a file such as

4

110

45ƒƒƒƒ61
107ƒƒ194ƒƒƒƒ149

where the first line gives the number of cities and the remaining lines give the
distances between cities X and Y where the index of city X is less than the
index of city Y. Note that this data corresponds to the lower left corner of
Table 10-1.

a. Write a constructor that reads this data but constructs a full 2D array, the
same as Problem 10.19.

b. Write a constructor that reads this data into a 2D array where each row is
only long enough to store the required data.

c. Add methods that perform the same calculations as a, b, d, and e in
Problem 10.19.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 582

 Chapter 11 Building Quality Software

Chapter Objectives

After studying this chapter, you should be able to:

➤	 Identify characteristics of quality software, both from the users’ and programmers’
perspectives

➤	 Follow a development process that promotes quality as you develop your programs

➤	 Avoid common pitfalls in designing object-oriented programs

➤	 Include defensive programming measures to make errors more likely to expose
themselves so they can be fixed

➤	 Explain characteristics of quality user interfaces and describe an iterative method
ology for developing them

Suppose your rich uncle offered you a choice of two automobiles. One is known for its
high performance, luxurious leather interior, and precision workmanship. The other is
underpowered, needs frequent repair, and will probably have visible body rust before
it’s five years old. Both are free, no strings attached. Which would you take?

Most of us have a highly developed sense of quality. It’s sometimes hard to define
exactly what quality is, but given a choice, we prefer the higher quality option.

This chapter begins by describing what to look for in high-quality software. The rest of
the chapter describes how to improve the quality of the software we write.

583

584

11.1 Defining Quality Software

CH
AP

TE
R

11
 |

BU
IL

D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

The dictionary defines quality as “the degree of excellence of a thing.” In the automo
bile example in the introduction, quality was described in terms of performance, inte
rior finishing, workmanship, reliability, and susceptibility to rust. In an article of
clothing, the relevant characteristics might include the strength, wrinkle resistance, and
color fastness of the fabric, as well as the perceived style of the garment.

Sometimes we can take measurements that correspond very well to quality. For exam
ple, an automobile’s top speed or time to accelerate from 0 to 60 miles per hour are
easily measured and indicate the car’s performance pretty well. Similarly, the number
of threads per inch is easily measured and often corresponds to the quality of a gar
ment’s fabric. The quality of other characteristics such as an automobile’s reliability or
the style of a garment is more subjective and must be measured less directly. For exam
ple, one could survey car owners for the number of repairs they have required over the
last 5 years or survey shoppers on their reactions to a garment.

In the remainder of this section we’ll examine characteristics that are important to “the
degree of excellence” or quality of software.

11.1.1 Quality from a User’s Perspective

The user of a program judges its quality based on many characteristics. Three of the
most important, however, are correctness, usability, and reliability.

A program is correct if it meets its specifications. A payroll program that ignores over
time or withholds too much tax would not be correct. A Web browser that only dis
plays the first five paragraphs of a Web page cannot be considered correct. However, a
program can be missing your favorite feature and still be correct. The key is whether it
meets its specification—whether it does what it is supposed to do—correctly. It’s a fact
of life, however, that all but the simplest programs will be less than 100% correct.

The usability of a program is determined by the effort required to learn, operate, pre
pare input, and interpret output when compared to the alternatives. A more usable
program is a higher quality program. But usability is subjective and must take the user
into account. A beginning digital photographer may want a very simple program to
crop photos and touch up “red-eye.” The “ease-of-use” of this program would be
nothing but frustration to a professional photographer that also wants to manipulate
the color balance or merge parts of one image into another.

A third characteristic of quality programs is reliability. A program is reliable if it does
not crash, does not lose or corrupt data, and is consistent in how it works. Obviously,
an unreliable program is not a quality program.

585

11.1.2 Quality from a Programmer’s Perspective

It may seem strange, at first, to consider quality from any other perspective than the
user. However, when buying a new car, your mechanic may tell you to avoid certain
models because they are difficult to repair. From the mechanic’s perspective, the mod
els differ in quality. New home buyers often have the home inspected by someone
trained to look beneath the paint. The inspector determines whether the foundation is
sound or whether shortcuts were taken in insulating the windows. From the inspector’s
perspective, two homes that look the same may have different levels of quality.

Similarly, two programs may look exactly the same to the user but have radically dif
ferent quality levels to programmers. From their perspective, a quality program makes
their life easier because it is understandable, testable, and maintainable.

Understandable Programs

A program is understandable if it is easy to determine how the program works.
Choosing descriptive variable and method names is one of the easiest ways to increase
the understandability of a program. Appropriate comments describing each class and
method, as well as explanatory comments for more difficult code, also play a large role
in the understandability of a program.

Understandability is important because most programs are read by many people over
many years. A program in an insurance company may be written and debugged by a
team of programmers over several months. Understandability helps the team work
together. Several months later, another programmer may read the code to correct bugs.
Five years later, the program may need extensive modifications to accommodate a new
product offered by the company and two years after that it may again need modifica
tion to accommodate a change to the business practice of the company. In each of these
situations, the programmer’s life is improved by working with understandable code.

Most professional programs last much longer than those written by students learning
to program. A typical student program is written in a few hours or at most a few
weeks. After it is handed in, someone reads it, assigns a grade, and the program’s use
ful life is over. With such short lifespans and so few people involved, program under
standability has less importance—although it never hurts to ensure that the person
assigning the grade can understand what you’ve written!

Understandability becomes more important as the size of the program grows. A typical
student program may contain between twenty and several hundred lines of code. At this
scale, programmers can keep most of the important details for the entire program in
mind or can easily remind themselves if they forget. Not so for commercial programs
that may involve between several thousand and several million lines of code. In such pro
grams, understandability is vital to successfully writing or fixing the program.

11.1
D

EFIN
IN

G
 Q

UALITY S
O
FTW

ARE

586
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

Testable Programs

Programmers need to test their code. It’s a simple fact of a programmer’s life. Designing
software that is easy to test makes this part of programming easier and more enjoyable,
and improves the program’s quality from the programmer’s perspective.

It is also likely to improve the program’s quality from the user’s perspective. Recall that
correctness is a major factor. A testable program is more likely to be tested, and is
therefore more likely to be correct.

A testable program has classes with a single, well-defined purpose. Methods have a sin
gle purpose and few dependencies on other parts of the code. A testable program has
an infrastructure for testing, allowing it to be easily tested whenever it is modified
using the techniques discussed in Section 7.1.

Maintainable Programs

As noted earlier, a typical program is often changed over its lifetime to accommodate
new requirements. A high-quality program is maintainable if it is easy to find and cor
rect bugs, easy to adapt to new requirements, and easy to improve its overall quality in
a process called refactoring. Refactoring modifies the code to improve its quality but
doesn’t actually change what the program does.

The maintainability of a program is strongly influenced by how understandable and
testable it is. Carefully designed programs are more maintainable. Later in this chapter
we will investigate a number of design guidelines such as writing appropriately para
meterized methods, avoiding duplicated code, and using private instance variables.

11.2 Using a Development Process

How do we build high-quality software? It doesn’t just happen! We need some disci
pline and a development process—a set of steps that help us know what to do next.

Many development processes have been proposed over the years. The one we will use
is illustrated in Figure 11-1. It combines the best of the older, plan-first development
processes with the newer, object-oriented and agile development processes.

Program development begins with defining the requirements. Upon completing each
stage, development proceeds to the next stage as shown by the heavier arrows. At each
stage, perhaps with the exception of implementing scenarios, lots of interaction with
users should be expected.

In the following sections we’ll examine each of the major stages shown in Figure 11-1
and illustrate the process with a case study.

KEY IDEA

User involvement is
vital to a successful
project.

587

(figure 11-1)

Software development

process Design the Architecture
Identify classes and methods
Create CRC cards
List scenarios
Walk through scenarios
Develop a class diagram

Define the Requirements
Describe the desired system

Refine the Design Choose a Set of Scenarios
Refine requirements
Add new scenarios
Walk through new scenarios

Implement the Scenarios

Choose one scenario
Write tests for that scenario
Write code to pass tests

11.2
U

SIN
G
 A D

EVELO
PM

EN
T P

RO
CESS

Evaluate with Users Refactor

11.2.1 Defining Requirements

The first stage of the development process is defining the requirements, also known
as the specification. The requirements are a written statement of what the program is
supposed to do. Depending on the complexity of the problem, it could be several
paragraphs or many pages.

Requirements often start with a single person’s idea, but are usually developed by talk
ing with people who are expected to use the program. Questions might include:

➤ How do you currently do the job (without the program)?

➤ What are the good parts and the bad parts of your current approach?

➤ What capabilities would you like to have that you don’t have now?

Eventually, the answers to these questions are written down. They might result in a
document that contains information similar to the paragraphs shown in Figure 11-2.
We will use it as a running example for the remainder of this section.

588
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

The video store system is used to rent videos to the store’s customers.

The system has a list of videos and a list of customers. Each video has a unique
identifying number, title, and genre. The system must be able to add new customers and
videos to these lists, as well as remove inactive customers and videos no longer in
circulation.

Customers are charged a rental fee of $.99 for videos released more than one year ago
and $2.99 for new releases, plus any accumulated late fees, when they rent a video.
Customers are assessed late fees if a video is returned past its due date. Customers
have a rental history to help resolve late fee disputes.

Requirements are seldom complete. This is a fact of life that programmers must deal
with, rather than the way it should be. Incomplete requirements mean that program
mers typically need to go back to the users with questions about what the system
should do. Some of the issues these requirements should address, but don’t, include the
following:

➤	 Can the store have multiple copies of the same video?

➤	 Can a customer rent more than one video at one time?

➤	 Are there additional fees such as taxes?

➤	 Will other pricing strategies be offered? For example, three videos for three
nights at a reduced rate?

➤	 What kind of reports are required?

➤	 What are the possible genres?

➤	 Does this program run on a single computer or many? (Running on many
computers with coordinated data is much beyond the scope of this book.)

For this example, we will assume the store can have multiple copies of a video and that cus
tomers can rent more than one video at a time. We will ignore the other issues for now.

11.2.2 Designing the Architecture

The second stage of the software development process is designing the program’s archi
tecture. The architecture refers to how the most important classes interact with each
other. Crucial decisions here have consequences throughout the life of the program, so
it’s important to get it right. Designing the architecture consists of five tasks, as shown
in Figure 11-1. The five tasks are as follows:

➤	 Identify the most important classes and methods for the program using an
analysis of the nouns and verbs in the requirements.

➤	 Summarize the responsibilities and collaborators for each class on index cards.

➤	 List scenarios in which the software will be used.

➤	 Walk through the scenarios using the index cards to further develop the
responsibilities and collaborators.

(figure 11-2)

Requirements for a video

store system

KEY IDEA

Defining the
architecture includes
some of the most
important and far-
reaching decisions of
the project.

589

➤	 Develop a class diagram based on the responsibilities and collaborators listed
on the index cards.

These five tasks are elaborated in the sections that follow.

Identify Classes and Methods

In Section 8.3 we introduced an object-based design strategy, reproduced in Figure 11-3.
The methodology uses nouns and noun phrases in the requirements to help identify
objects and classes, and verbs and verb phrases to help identify methods. Recall that a
noun is a word indicating a person, place, thing, or idea, while a verb is a word express
ing an action or a state of being.

(figure 11-3) 1. Read the description of what the program is supposed to do, highlighting the nouns and noun
phrases. These are the objects your program must declare. If there are any objects that cannot
be directly represented using existing types, define classes to represent such objects.

Object-based design

methodology (reproduced

from Figure 8-13) 2. Highlight the verbs and verb phrases in the description. These are the services. If a service is
not predefined:
a. Define a method to perform the service.
b. Store it in the class responsible for providing the service.

3. Apply the services from Step 2 to the objects from Step 1 in a way that solves the problem.

Applying this methodology is easier if the specification is rewritten using simpler sen
tences. All sentences have a subject and a predicate. The subject is a noun or noun
phrase and provides the answer of who or what did the action. The predicate contains
a verb and explains the action or condition of the subject.

The rewritten specification should use a verb in the active voice. Such a sentence has a
subject that does something or is in a state of being. The alternative is a passive voice
where the subject receives the action. “Customers are charged a rental fee of $.99 …”
is passive. “Customers pay a rental fee of $.99 …” is active.

The rewritten specification should also remove connecting words like “and” in the
predicates, wherever possible. This will introduce some verbal redundancy. For exam
ple, “The system has a list of videos and a list of customers” will turn into two sen
tences: “The system has a list of videos” and “The system has a list of customers.”
Such rewriting must be done carefully to ensure that the meaning is unchanged.

The result of rewriting the requirements in Figure 11-2 is shown in Figure 11-4. The
verb is underlined in each case.

11.2
U

SIN
G
 A D

EVELO
PM

EN
T P

RO
CESS

590
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

(figure 11-4) The system rents videos to customers.

The system has a list of videos.
 Requirements rewritten
The system has a list of customers.

using the active voice and Each video has a unique identifying number.

Each video has a title.
 simpler sentences
Each video has a genre.

The system adds new customers (to its list of customers).

The system adds new videos (to its list of videos).

The system removes inactive customers (from its list of customers).

The system removes videos (from its list of videos).

Customers pay a rental fee of $.99 for releases more than one year old.

Customers pay a rental fee of $2.99 for new releases.

Customers pay a late fee after a video has been returned late.

Customers have a rental history to help resolve late fee disputes.

With the requirements in this form, we can more easily use the nouns and verbs to
identify classes and methods, as suggested by the methodology in Figure 11-3. The fol
lowing guidelines are relevant:

➤	 Nouns in the sentence’s subject are almost always relevant classes.

➤	 Some nouns will represent instance variables in a class. Examples from

Figure 11-4 include “unique identifying number” and “title.” Nouns that

can be represented using existing types such as int and String or occur

with a verb such as has are particularly likely to be instance variables rather

than new classes.

➤	 Look at nouns in the predicate as well. For example, “rental history” looks

like it might be a class we need to write.

➤	 Name classes with singular nouns. If we need many videos or customers, we

will construct many Video or Customer objects.

➤	 Don’t let adjectives fool you. They describe or modify a noun, but rarely rep
resent a new class. For example, we do not need one class for customers and

another class for inactive customers (“inactive” is the adjective).

➤	 Sometimes synonyms or abbreviations are given for the same thing—for

example, “video store system” and “system.” Choose just one name to repre
sent all of these different ways of saying the same thing.

➤	 Class names are important. Take enough time to find just the right words to

describe the objects they represent. In this case, Video, Customer, and

RentalHistory are fairly obvious choices. “The system” needs more work.

VideoStore is one reasonable choice to encompass the whole “system.”

The predicates in the rewritten requirements represent the responsibilities of each class.
Responsibilities come in two flavors: information the class must know or derive, and
actions the class must be able to carry out. The first kind of responsibility is often rep
resented by possessive verbs such as have, has, or keeps. The second kind is often rep
resented by active verbs such as add, remove, rent, or charge.

591
11.2

U
SIN

G
 A D

EVELO
PM

EN
T P

RO
CESS

KEY IDEA

CRC cards list a
class’s

responsibilities and
collaborators.

(figure 11-5)

Sample CRC card

Create CRC Cards

CRC cards are a handy way to record the classes and responsibilities identified in the
previous step. CRC stands for Classes, Responsibilities, and Collaborators. The cards
are usually made from 4 x 6 inch index cards and are divided into three areas, as
shown in Figure 11-5.

rent videos to customers video

has a list of videos customer

has a list of customers

add and remove videos

add and remove customers

charge customers for videos

assess late fees

The top area of the CRC card contains the name of the class. Below the class name, the
responsibilities are listed on the left side. The right side contains a list of the collaborators.
The collaborators section is a recognition that classes usually do not act alone. They col
laborate with other classes to do their work. For example, to rent a video, the
VideoStore class will likely need to work with instances of the Video and Customer

classes. Hence, both classes are listed to the right. A collaborator is only listed once even
though it may be involved with several responsibilities.

It’s important to use real index cards rather than making these lists on a computer
because in one of the following steps we will distribute the CRC cards to people in a
group. The size is also important. These cards are meant to represent an overview of
the class. If we can’t express it in the space on one card, we are using too much detail.
That’s why the closely related actions of adding and removing customers are com
pressed into a single responsibility in Figure 11-5.

These CRC cards represent the classes likely to play the most important roles within
the program. As such, they form the foundation of the program’s architecture.

592
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

However, we now set the CRC cards aside while we develop scenarios. The scenarios
will eventually be used with the cards to further develop their responsibilities and
collaborations.

Develop Scenarios

A scenario is a specific task that a user might want to do with the program. Scenarios
are also known as use cases. We will use scenarios to simulate the program to gain a
better understanding of what classes are needed, the services they need to support, and
how the classes interact with each other.

Scenarios for the video store system might include:

➤	 The program is started.

➤	 A new customer is added.

➤	 An existing customer rents a video.

➤	 An existing customer rents three videos.

➤	 A new customer rents a video.

➤	 A video is returned on time.

➤	 An overdue video is returned.

➤	 A customer returns an overdue video and wants to pay the late fee without
renting another video.

➤	 A customer would like a list of all the drama videos released in the last two
years that he or she has not already rented.

➤	 A report is prepared of all customers with videos more than one week overdue.

➤	 A video has been lost and must be removed from the system.

A complex system could have hundreds or even thousands of scenarios. List as many as
you can think of.

Walk Through Several Scenarios

CRC cards and scenarios are brought together in a walk-through. A walk-through pro
ceeds through one scenario in an orderly fashion to develop the tasks that each class
must perform. A walk-through works best with a group of people in which each per
son is assigned one of the CRC cards. That person gives voice to the class’s responsi
bilities as the group walks through the scenario. If a group of people is not available,
the process can be simulated by just one person.

A walk-through is an active process that is best illustrated by examining a transcript. The
“speaking parts” are people holding their assigned CRC card. We’ll identify them in the

593

KEY IDEA

Responsibilities are
often added during a

walk-through.

KEY IDEA

Defining
responsibilities often

identifies required
instance variables.

KEY IDEA

New CRC cards are
often added during a

walk-through.

transcript by the classes named on their cards. The first scenario is an existing customer,
Ashley Wong, renting the video Star Wars: A New Hope.

VideoStore: “Well, I already have a responsibility to ‘rent videos to customers,’ so I
guess I’ll start this one. I’d better find Ashley in my list of customers.”

Customer: “That sounds like a new responsibility. You’d better write it down on
your card.” (VideoStore adds find customer to her card.)

VideoStore: “I have a list of customer objects. Customer, what kind of information
do I need to find one of you in the list?”

Customer: “I don’t have any responsibilities related to that. I guess I could have
a name or an ID number. I’ll write that down on my card.”
(Customer adds has info like name and ID to his card.) “I could also
have a responsibility to determine if a given name or ID matches
me.” (Customer adds determine if given name or ID matches me.)

VideoStore: “So I need to have a way to get a customer name or an ID from the
user. I can also see that eventually I’m going to need information to
identify a video, too. But I’ve already got a long list of responsibilities
from the noun/verb analysis!”

Video: “What if we had a user interface (UI) class to collect that kind of infor
mation? That would off-load some of that responsibility from you.”

VideoStore: “Great idea!”

VideoStore adds UI as a collaborator. Someone makes a new CRC card for UI and
adds the responsibilities accept customer ID or name and accept video ID as respon
sibilities. VideoStore is added as a collaborator.

VideoStore:	 “OK. So now I can get a customer number from the UI and collabo
rate with Customer to find the specific customer. I can do the same
with Video to find the video. So Video, you already have the respon
sibility to have info like ID, title, and genre from our noun/verb analy
sis. You’d better do like Customer did and add determine if given ID
matches me. I’ll also add the responsibility find a video.

“Now I’ve got a Video and a Customer and I’m supposed to rent
one to the other. I’d really like to give that responsibility to someone
else. Video, can you rent yourself to the Customer?”

11.2
U

SIN
G
 A D

EVELO
PM

EN
T P

RO
CESS

594
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

Video:	 “I suppose so. But I recall that the Customer class has
responsibilities for having a rental history and paying rental
fees. I think it would make more sense for him to have that
responsibility.”

Customer:	 “Yeah, I can do that. I’ll add rent video as a responsibility.
To rent a video, I need to find out if the video is a new release
or not. Video, can you answer that question for me?”

Video:	 “You really want that information so you know how much to
charge, right? I think it would be better if you just asked me
that question directly rather than whether I’m a new release.”

Customer:	 “You’re right!”

Video adds get rental fee to its responsibilities.

Customer:	 I also need to add the video to the rental history. So I’ll add
the responsibility add video to rental history and add
RentalHistory as a collaborator.

RentalHistory:	 “That makes me think that I’m just a list of some other kind
of object. I think “rental history” is really just an
ArrayList in the Customer class. I propose renaming
myself to just Rental. Then I would have the responsibility
of having information about one rental—mainly the video,
the date rented, and the due date.”

The RentalHistory card is thrown away and a new one named Rental is created.
The responsibility to have info like video, date rented, date due is added.
RentalHistory collaborates with Video. The collaborator on the Customer card is
changed from RentalHistory to just Rental.

We’ll stop our transcript here. To finish this scenario the participants need to decide
how to charge the customer for the rental and perhaps for accumulated late charges.

After finishing this scenario, the group should walk through additional scenarios. It’s KEY IDEA

good to do several radically different scenarios early to verify that the evolving archi- Walk through several

tecture can handle them. The architecture often changes quite a bit while walking scenarios.

through the first several scenarios, but then settles down to a stable design. Eventually
scenarios will not result in new CRC cards or collaborations and will produce only a
few new responsibilities. At that point, the walk-through process can stop.

A walk-through blurs the distinction between objects and classes. In practice, it doesn’t
matter. The same person can represent all the instances of one class and generally does
n’t need to keep track of them as distinct objects.

595

Beginners often skip walking through scenarios, perhaps because they feel embarrassed by
the role playing this process demands. Don’t! A walk-through is a very effective way to
understand how the system will work and to come to a common agreement on the design.

Develop a Class Diagram

The final step in designing the architecture is to develop a class diagram from the CRC
cards. “Knowing” responsibilities often turn into instance variables. The other responsibil
ities turn into methods. Collaborations turn into associations between classes. The CRC
cards developed so far for the video store yield the class diagram shown in Figure 11-6.

11.2
U

SIN
G
 A D

EVELO
PM

EN
T P

RO
CESS

VideoStore
-ArrayList videos
-ArrayList customers
-UserInterface ui
+VideoStore(...)
+void rent(int videoID, int customerID)
+void addVideo(String title, Genre aGenre)
+void removeVideo(int id)
+void addCustomer(String name)
+void removeCustomer(int id)
-Customer findCustomer(int id)
-Video findVideo(int id)
-Video findVideo(String title)

Customer
-int id
-String name
-ArrayList rentalHistory
+Customer(...)
+boolean isMatch(int id)
+boolean isMatch(String name)
+void rentVideo (Video v)
-void addToRentalHistory(...)

*

*

(figure 11-6)

Class diagram for the

video store system

*
Video

-int id

-String title

-Genre genre

+Video(...)

+boolean isMatch(int id)

+boolean isMatch(String title)

+double getRentalFee()

Rental
-Video rentedVideo
-DateTime rented
-DateTime due
-DateTime returned
+Rental(Video v,

DateTime rented
DateTime due)

3
DateTime

UserInterface
-VideoStore model

+UI(...)

11.2.3 Iterative Development

The main body of the development methodology, shown in Figure 11-1, consists of
four repeated steps called the development cycle:

➤	 Choose a set of scenarios to implement.

➤	 Implement those scenarios.

➤	 Evaluate the resulting system with users.

➤	 Refine the design based on user evaluation, perhaps by adding new require
ments or scenarios or revising the existing ones.

596
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

In a large project, the development team will repeat this development cycle many times.
With each iteration, they have a program that is closer to the finished product, and with
adequate feedback from users, refined into a product that actually meets their needs.

Choose a Set of Scenarios

The development cycle begins with choosing a subset of the scenarios to implement.
The choice should be made with the users. Which scenarios will they find most useful?
Which scenarios are required for the most basic functionality? For example, we need to
add videos and customers before we can rent videos. So we might choose adding videos
and customers as the first scenarios to implement.

These scenarios form the basis for the remainder of the cycle.

Implement the Chosen Scenarios

The implementation phase is when the code is actually written. As illustrated by the
development methodology diagram in Figure 11-1, implementation itself is iterative
within the larger iterative process.

Each implementation iteration begins with choosing one scenario—for example, adding
a video. This scenario is represented in the class diagram by the addVideo method.

Next, write tests to determine if the scenario is implemented correctly. Recall that a test
involves five steps:

➤	 Decide which method you want to test. In this case, addVideo will be our pri
mary concern.

➤	 Set up a known situation. For example, a brand new VideoStore object that
has zero videos.

➤	 Determine the expected results of executing the chosen method.

➤	 Execute the code you want to test.

➤	 Verify the results. For example, verify that calling addVideo causes the
VideoStore object to have one more video than before. Verifying that the
video can also be retrieved is another good test.

Testing a command such as addVideo also requires queries to determine the current
state of the VideoStore class.

These suggestions result in tests such as those shown in Listing 11-1.

LOOKING BACK

Testing was first
discussed in
Section 7.1.

597
11.2

U
SIN

G
 A D

EVELO
PM

EN
T P

RO
CESS

Listing 11-1: Tests for the VideoStore class

1 publicƒclassƒVideoStoreƒextendsƒObject
2 {ƒ// Methods omitted.
3
4 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
5 ƒƒ{
6 ƒƒƒSystem.out.println("Testing adding a video...");
7 ƒƒƒVideoStoreƒvsƒ=ƒnewƒVideoStore();
8 ƒƒƒTest.ckEquals("no videos",ƒ0,ƒvs.getNumVideos());
9 ƒƒƒvs.addVideo("Star Wars: A New Hope",ƒGenre.SCI_FI);

10 ƒƒƒTest.ckEquals("one video",ƒ1,ƒvs.getNumVideos());
11
12 ƒƒƒ// test finding by name
13 ƒƒƒVideoƒv1ƒ=ƒvs.findVideo("Star Wars: A New Hope");
14 ƒƒƒTest.ckEquals("found video",ƒtrue,ƒ
15 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒv1.isMatch("Star Wars: A New Hope"));
16
17 ƒƒƒ// test finding by id
18 ƒƒƒVideoƒv2ƒ=ƒvs.findVideo(v1.getID());
19 ƒƒƒTest.ckEquals("found video",ƒtrue,ƒ
20 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒv2.isMatch("Star Wars: A New Hope"));
21
22 ƒƒƒ// test not found condition
23 ƒƒƒVideoƒv3ƒ=ƒvs.findVideo("Gone with the Wind");
24 ƒƒƒTest.ckIsNull("not found",ƒv3);
25 ƒƒ}
26 }

KEY IDEA

Some programmers
use the mantra “Test a
little, code a little; test
a little, code a little….”

Another set of tests should be written in the Video class. Among them, tests for
isMatch and tests to verify that each instance of Video is assigned a unique identifi
cation number.

After writing the tests, implement the methods required so that the tests pass. This
means actually compiling the program (and fixing the compile-time errors) and run
ning it (and fixing any bugs the tests expose).

When the scenario passes its tests, choose another scenario and repeat the process.
Keep choosing new scenarios, writing tests, and writing code until all the scenarios for
this development cycle are implemented.

Finally, reexamine the program in light of the new code that has been added. There
may be areas that are overly complex or where code is duplicated. Take the time to
simplify it (refactor) before moving on.

598
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

Evaluate with Users

After the scenarios for this development cycle have been implemented, evaluate the
resulting program with users. Does it do what they expect? Are there ways to improve
how they interact with the program? Does it spark new ideas for how the program can
be used to do their jobs more efficiently?

Users’ needs change over time. In fact, introducing the program itself changes users
and their needs. It could be that what they thought was needed when the project began
is very different now—and the project must adapt to that new reality.

Refine the Design

The evaluation step may require refining the design. Perhaps the requirements them
selves need to be refined. Perhaps a key scenario needs to be changed with a new walk-
through, or it is realized that some scenarios won’t actually be needed, or (more likely)
that some scenarios need to be added.

After refining the design, repeat the development cycle again, beginning with choosing
a new set of scenarios to develop.

Advantages of the Iterative Approach

The iterative approach to implementation has a number of advantages, especially com
pared to an older approach known as the waterfall model. It was named the waterfall
model because the results of each stage of development fell into the next, much like a
series of waterfalls. The waterfall model is illustrated in Figure 11-7.

(figure 11-7) Requirements
Waterfall model

Design

Implementation

Testing

Deployment

Maintenance

The iterative approach offers at least six specific advantages (in no particular order):

➤	 In the iterative approach, bugs are produced, identified, and fixed in small
groups. In the waterfall model, many bugs are produced all at once during the
implementation phase, and then must be found and fixed all at once during

599

the testing phase. This is considerably harder because one bug can interfere
with finding and fixing another.

➤	 The program is always close to working with the iterative approach. If a dead
line is looming (you need to hand in the assignment or your customer wants to
see how the program is coming along), you have all the completed scenarios to
show. Using the waterfall model, it may be that a lot of work has been done but
nothing can actually be demonstrated because the debugging is incomplete.

➤	 The iterative approach does a better job of maintaining programmer morale.
Each small victory of seeing another test pass boosts morale, but a long debug
ging process in the waterfall model saps morale.

➤	 Choosing one scenario to implement and writing tests for it gives program
mers many specific goals to focus their programming efforts. It also provides
an objective means to determine when the goals have been met.

➤	 As the program changes over time, the tests generated in the iterative
approach are useful for verifying that everything that used to work still works.

➤	 Frequent user evaluation helps keep the project on track with the real, chang
ing needs of the users.

11.3 Designing Classes and Methods

11.3
D

ESIG
N
IN

G
 C

LASSES AN
D
 M

ETH
O
D
S

In Section 11.2 we discussed a development process for discovering and implementing
classes. In this section we will explore some concrete rules or heuristics for classes and
methods that increase the understandability, testability, and maintainability of a pro
gram. We will look at a pair of classes that illustrate a number of very poor design deci
sions. We will examine the consequences of those decisions and what better decisions
could have been made.

The program we will examine is the beginnings of an e-mail client such as
Thunderbird, Eudora, or Outlook. The program doesn’t have any code to actually
send or receive e-mail, but the core classes to store messages and manipulate them in a
mailbox exist. A provided graphical user interface allows new messages to be created,
and existing messages to be saved to a file, replied to, or deleted.

Our examination will concentrate on just two classes: Mailbox and Message. The
Message class models a single message that has been either sent or received. It has
instance variables to store the sender, recipient, date, subject, and the body of the mes
sage. The Mailbox class stores and manipulates a number of Message objects. It has
an instance variable, msgs, that is a partially filled array of Message objects. It also
has methods such as sendMessage, replyToMessage, and deleteMessage.

The program uses two instances of Mailbox, one for the “in box” (received messages)
and another for the “out box” (sent messages).

The code for these two classes is shown in Listings 11-2 and 11-3. A class diagram for
the program is shown in Figure 11-8. You should take some time to examine these
classes and try to understand what they do and how they work. Remember, the code
has many poor design decisions. This is not code to emulate! Many of these poor
choices are shown in annotations within the listing.

Mailbox
+String currentMboxFile
+String owner
+int size
+Message[] msgs
+String[] months
+String[] days
+Mailbox(String filename,

String ownerInfo)
+void sendMessage(String recipient,

String subject, String body)
+void saveMessage(int msgNum,

String filename)
+void save()
+void replyToMessage(int i,

String body,
Mailbox outbox)

+void deleteMessage(int i)
+void addMessage(Message m)
+void growArray()
+int getSize()
+String getMessage(int i)
+String makeDateString(Date d)
+String dayOfWeek(int year,

int month, int day)

Message
+String sender
+String recipient
+Date date
+String subject
+String body
+Message()
+void setDate(int y, int m, int d)
+void setDate(Date d)
+Date getDate()
+void setSubject(String aSubject)
+String getSubject()
+void setBody(String aBody)
+String getBody()

Date

+Date(int y, int m, int d)
+Date()
+boolean isEquivalent(Date d)
+String numeric()

DateTime

*

Mail
-Mailbox inbox
-Mailbox outbox

2

600
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

(figure 11-8)

Class diagram for the

e-mail program

Listing 11-2: A very poor implementation of the Mailbox class for an e-mail program

ch11/email/
1 importƒjava.util.Scanner;
2 importƒjava.io.*;
3 importƒbecker.util.*;
4
5 /** A mailbox holds messages for an e-mail program.
6 *
7 * @author Jack Rehder, Byron Weber Becker */
8 publicƒclassƒMailboxƒextendsƒObject

http:import�java.io

10

20

30

40

50

601
11.3

D
ESIG

N
IN

G
 C

LASSES AN
D
 M

ETH
O
D
S

Listing 11-2: A very poor implementation of the Mailbox class for an e-mail program (continued)

9 {
ƒƒpublicƒStringƒcurrentMboxFileƒ=ƒ"";

11 ƒƒpublicƒStringƒowner;ƒ// who's mailbox is this?
12
13 ƒƒpublicƒintƒsizeƒ=ƒ0;ƒ// number of messages
14 ƒƒpublicƒMessage[]ƒmsgsƒ=ƒnewƒMessage[5];
15
16 ƒƒpublicƒstaticƒfinalƒString[]ƒmonthsƒ=ƒ{"Jan",ƒ"Feb",ƒ"Mar",
17 ƒƒƒƒ"Apr",ƒ"May",ƒ"Jun",ƒ"Jul",ƒ"Aug",ƒ"Sep",ƒ"Oct",ƒ"Nov",ƒ"Dec"};
18 ƒƒpublicƒstaticƒfinalƒString[]ƒdaysƒ=ƒ{"Sunday",ƒ"Monday",
19 ƒƒƒƒ"Tuesday",ƒ"Wednesday",ƒ"Thursday",ƒ"Friday",ƒ"Saturday"};

21 ƒƒpublicƒMailbox(Stringƒfilename,ƒStringƒownerInfo)ƒ
22 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthrowsƒFileNotFoundException
23 ƒƒ{ƒsuper();
24 ƒƒƒƒthis.ownerƒ=ƒownerInfo;
25
26 ƒƒƒƒthis.currentMboxFileƒ=ƒfilename;
27 ƒƒƒƒScannerƒinƒ=ƒnewƒScanner(newƒFile(filename));
28
29 ƒƒƒƒwhileƒ(in.hasNextLine())

ƒƒƒƒ{ƒMessageƒmsgƒ=ƒnewƒMessage();ƒƒ// start a new message
31 ƒƒƒƒƒƒin.next();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// skip From: tag
32 ƒƒƒƒƒƒmsg.senderƒ=ƒin.nextLine().trim();
33 ƒƒƒƒƒƒin.next();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// skip To: tag
34 ƒƒƒƒƒƒmsg.recipientƒ=ƒin.nextLine().trim();
35 ƒƒƒƒƒƒin.next();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// skip Date: tag
36 ƒƒƒƒƒƒmsg.setDate(in.nextInt(),ƒ
37 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒin.nextInt(),ƒin.nextInt());
38 ƒƒƒƒƒƒin.next();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// skip Subject: tag
39 ƒƒƒƒƒƒmsg.setSubject(in.nextLine().trim());

41 ƒƒƒƒƒƒStringƒbodyƒ=ƒ"";
42 ƒƒƒƒƒƒwhileƒ(true)
43 ƒƒƒƒƒƒ{ƒStringƒlineƒ=ƒin.nextLine();
44 ƒƒƒƒƒƒƒƒifƒ(line.equals("EOM"))
45 ƒƒƒƒƒƒƒƒ{ƒbreak;
46 ƒƒƒƒƒƒƒƒ}
47 ƒƒƒƒƒƒƒƒbodyƒ=ƒbodyƒ+ƒlineƒ+ƒ"\n";
48 ƒƒƒƒƒƒ}
49 ƒƒƒƒƒƒmsg.setBody(body);

ƒƒƒƒƒƒthis.addMessage(msg);
51 ƒƒƒƒ}

Instance variables that
have little to do with the
class’s core purpose.

Many set methods leave
data in Message objects
unprotected.

Code to read a message belongs
in the Message class.

Nested loops are hard
to understand.

public instance variables

602
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

Listing 11-2: A very poor implementation of the Mailbox class for an e-mail program (continued)

52 ƒƒƒƒin.close();
53 ƒƒ}
54
55 ƒƒpublicƒvoidƒsendMessage(Stringƒrecipient,ƒ
56 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒStringƒsubject,ƒStringƒbody)
57 ƒƒ{ƒMessageƒmƒ=ƒnewƒMessage();
58 ƒƒƒƒm.recipientƒ=ƒrecipient;
59 ƒƒƒƒm.setSubject(subject);
60 ƒƒƒƒm.dateƒ=ƒnewƒDate();
61 ƒƒƒƒm.setBody(body);
62 ƒƒƒƒm.senderƒ=ƒthis.owner;
63
64 ƒƒƒƒthis.addMessage(m);
65
66 ƒƒƒƒPrintWriterƒoutƒ=ƒthis.openOutputFile("outbox.txt");
67 ƒƒƒƒout.println("From: "ƒ+ƒm.senderƒ+ƒ"\nTo: "ƒ+ƒm.recipient
68 ƒƒƒƒƒƒƒƒ+ƒ"\nDate: "ƒ+ƒm.getDate().numeric()ƒ+ƒ"\nSubject: "
69 ƒƒƒƒƒƒƒƒ+ƒm.getSubject()ƒ+ƒ"\n"ƒ+ƒm.getBody());
70 ƒƒƒƒout.close();
71 ƒƒ}
72
73 ƒƒpublicƒvoidƒsaveMessage(intƒmsgNum,ƒStringƒfilename)
74 ƒƒ{ƒPrintWriterƒoutƒ=ƒthis.openOutputFile(filename);
75 ƒƒƒƒout.println("From: "ƒ+ƒthis.msgs[msgNum].senderƒ+ƒ"\nTo: "
76 ƒƒƒƒƒƒƒƒ+ƒthis.msgs[msgNum].recipientƒ+ƒ"\nDate: "
77 ƒƒƒƒƒƒƒƒ+ƒthis.msgs[msgNum].getDate().numeric()ƒ+ƒ"\nSubject: "
78 ƒƒƒƒƒƒƒƒ+ƒthis.msgs[msgNum].getSubject()ƒ+ƒ"\n"
79 ƒƒƒƒƒƒƒƒ+ƒthis.msgs[msgNum].getBody());
80 ƒƒƒƒout.close();
81 ƒƒ}
82
83 ƒƒpublicƒvoidƒsave()
84 ƒƒ{ƒPrintWriterƒoutƒ=ƒ
85 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis.openOutputFile(this.currentMboxFile);
86
87 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.size;ƒi++)
88 ƒƒƒƒ{ƒMessageƒmƒ=ƒthis.msgs[i];
89 ƒƒƒƒƒƒout.print("From: "ƒ+ƒm.senderƒ+ƒ"\nTo: "ƒ+ƒm.recipientƒ
90 ƒƒƒƒƒƒƒƒƒƒ+ƒ"\nDate: "ƒ+ƒm.getDate().numeric()ƒ+ƒ"\nSubject: "ƒ
91 ƒƒƒƒƒƒƒƒƒƒ+ƒm.getSubject()ƒ+ƒ"\n" +ƒm.getBody()ƒ+ƒ"EOM\n");
92 ƒƒƒƒ}
93 ƒƒƒƒout.close();
94 ƒƒ}

Constructor apparently does nothing.

Public instance variables
leave data unprotected.

This code is repeated five times
(look for the other four times).

603
11.3

D
ESIG

N
IN

G
 C

LASSES AN
D
 M

ETH
O
D
S

Listing 11-2: A very poor implementation of the Mailbox class for an e-mail program (continued)

95
96 ƒƒpublicƒvoidƒreplyToMessage(intƒi,ƒStringƒbody,ƒ
97 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒMailboxƒoutBox)
98 ƒƒ{ƒMessageƒreplyƒ=ƒnewƒMessage();
99
100 ƒƒƒƒreply.setDate(newƒDate());
101 ƒƒƒƒStringƒsenderƒ=ƒthis.msgs[i].recipient;
102 ƒƒƒƒreply.senderƒ=ƒsender;
103 ƒƒƒƒStringƒrecipientƒ=ƒthis.msgs[i].sender;
104 ƒƒƒƒreply.recipientƒ=ƒrecipient;
105 ƒƒƒƒStringƒsubjectƒ=ƒthis.msgs[i].getSubject();
106 ƒƒƒƒreply.setSubject("Re: "ƒ+ƒsubject);
107 ƒƒƒƒDateƒdƒ=ƒthis.msgs[i].getDate();
108
109 ƒƒƒƒStringƒwhoƒ=ƒthis.msgs[i].sender;
110 ƒƒƒƒStringƒBEGINƒ=ƒ"**On "ƒ+ƒd.numeric()ƒ+ƒ", "
111 ƒƒƒƒƒƒƒƒ+ƒwho.substring(0,ƒwho.indexOf('<')).trim()ƒ
112 ƒƒƒƒƒƒƒƒ+ƒ" wrote:\n";
113 ƒƒƒƒStringƒENDƒ=ƒ"**end original message**\n\n";
114
115 ƒƒƒƒStringƒorigMsgƒ=ƒthis.msgs[i].getBody();
116 ƒƒƒƒStringƒreplyBodyƒ=ƒBEGINƒ+ƒorigMsgƒ+ƒENDƒ+ƒbody;
117 ƒƒƒƒreply.setBody(replyBody);
118
119 ƒƒƒƒPrintWriterƒoutƒ=ƒthis.openOutputFile("outbox.txt");
120 ƒƒƒƒout.println("From: "ƒ+ƒreply.senderƒ+ƒ"\nTo: "ƒ
121 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ+ƒreply.recipient
122 ƒƒƒƒƒƒƒƒ+ƒ"\nDate: "ƒ+ƒreply.getDate().numeric()ƒ+ƒ"\nSubject: "
123 ƒƒƒƒƒƒƒƒ+ƒreply.getSubject()ƒ+ƒ"\n"ƒ+ƒreply.getBody());
124 ƒƒƒƒout.close();
125 ƒƒƒƒoutBox.addMessage(reply);
126 ƒƒ}
127
128 ƒƒpublicƒvoidƒdeleteMessage(intƒn)
129 ƒƒ{ƒforƒ(intƒiƒ=ƒn;ƒiƒ<ƒthis.sizeƒ-ƒ1;ƒi++)
130 ƒƒƒƒ{ƒthis.msgs[i]ƒ=ƒthis.msgs[iƒ+ƒ1];
131 ƒƒƒƒ}
132 ƒƒƒƒthis.size--;
133 ƒƒ}
134
135 ƒƒpublicƒvoidƒaddMessage(Messageƒm)
136 ƒƒ{ƒifƒ(this.sizeƒ==ƒthis.msgs.length)

This method is too long and complex.
Much of the code belongs elsewhere.

More repeated code.

No documentation.

604
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

Listing 11-2: A very poor implementation of the Mailbox class for an e-mail program (continued)

137 ƒƒƒƒ{ƒthis.growArray();
138 ƒƒƒƒ}
139 ƒƒƒƒthis.msgs[this.size]ƒ=ƒm;
140 ƒƒƒƒthis.size++;
141 ƒƒ}
142
143 ƒƒpublicƒvoidƒgrowArray()
144 ƒƒ{ƒMessage[]ƒtempƒ=ƒnewƒMessage[this.msgs.lengthƒ*ƒ2];
145 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.msgs.length;ƒi++)
146 ƒƒƒƒ{ƒtemp[i]ƒ=ƒthis.msgs[i];
147 ƒƒƒƒ}
148 ƒƒƒƒthis.msgsƒ=ƒtemp;
149 ƒƒ}
150
151 ƒƒpublicƒintƒgetSize()
152 ƒƒ{ƒreturnƒthis.size;
153 ƒƒ}
154
155 ƒƒpublicƒStringƒgetMessage(intƒi)
156 ƒƒ{ƒreturnƒ"From: "ƒ+ƒthis.msgs[i].senderƒ
157 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ+ƒ"\nTo: "ƒ+ƒthis.msgs[i].recipient
158 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ+ƒ"\nDate: "ƒ+ƒthis.msgs[i].getDate().numeric()
159 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ+ƒ"\nSubject: "ƒ+ƒthis.msgs[i].getSubject()ƒ+ƒ"\n"
160 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ+ƒthis.msgs[i].getBody();
161 ƒƒ}
162
163 ƒƒpublicƒStringƒmakeDateString(Dateƒd)
164 ƒƒ{ƒifƒ(d.isEquivalent(newƒDate()))
165 ƒƒƒƒ{ƒreturnƒ"Today";
166 ƒƒƒƒ}
167
168 ƒƒƒƒintƒmonthƒ=ƒd.getMonth();
169 ƒƒƒƒintƒyearƒ=ƒd.getYear();
170 ƒƒƒƒintƒdayƒ=ƒd.getDay();
171
172 ƒƒƒƒStringƒwkDayƒ=ƒthis.dayOfWeek(year,ƒmonth,ƒday);
173 ƒƒƒƒreturnƒwkDayƒ+ƒ", "ƒ+ƒmonths[month-1]ƒ+ƒ" "ƒ+ƒdayƒ+ƒ" "ƒ+ƒyear;
174 ƒƒ}
175
176 ƒƒpublicƒStringƒdayOfWeek(intƒyear,ƒintƒmonth,ƒintƒday)ƒ
177 ƒƒ{ƒintƒaƒ=ƒ(int)ƒMath.floor((14ƒ-ƒmonth)ƒ/ƒ12);
178 ƒƒƒƒintƒyƒ=ƒyearƒ-ƒa;
179 ƒƒƒƒintƒmƒ=ƒmonthƒ+ƒ12ƒ*ƒaƒ-ƒ2;

Many methods that should
be private are public.

This kind of processing
belongs in the Message class.

These methods have little to do
with the core purpose of the
class and should be elsewhere.

605
11.3

D
ESIG

N
IN

G
 C

LASSES AN
D
 M

ETH
O
D
S

Listing 11-2: A very poor implementation of the Mailbox class for an e-mail program (continued)

180 ƒƒƒƒintƒdƒ=ƒ(dayƒ+ƒyƒ+ƒ(int)Math.floor(yƒ/ƒ4)ƒ
181 ƒƒƒƒƒƒƒƒ-ƒ(int)Math.floor(y/100)ƒ+ƒ(int)Math.floor(y/400)ƒ
182 ƒƒƒƒƒƒƒƒ+ƒ(int)ƒMath.floor((31ƒ*ƒm)/12))ƒ%ƒ7;
183
184 ƒƒƒƒreturnƒthis.days[d];
185 ƒƒ}
186 ƒƒƒ
187 ƒƒpublicƒPrintWriterƒopenOutputFile(Stringƒfilename)
188 ƒƒ{ƒtryƒ
189 ƒƒƒƒ{ƒreturnƒnewƒPrintWriter(filename);
190 ƒƒƒƒ}
191 ƒƒƒƒcatchƒ(Exceptionƒex)ƒ
192 ƒƒƒƒ{ƒex.printStackTrace();
193 ƒƒƒƒƒƒSystem.exit(1);
194 ƒƒƒƒ}
195 ƒƒƒƒreturnƒnull;
196 ƒƒ}
197 }

Listing 11-3: A very poor implementation of the Message class for an e-mail program

No attempt to handle
the error.

ch11/email/
1 /** Store one message in the mail program.
"
2 *
"

3 * @author Jack Rehder; Byron Weber Becker */
 "

4 publicƒclassƒMessageƒextendsƒObject

8 ƒƒpublicƒDateƒdate;

15 ƒƒpublicƒvoidƒsetDate(intƒy,ƒintƒm,ƒintƒd)
16 ƒƒ{ƒthis.dateƒ=ƒnewƒDate(y,ƒm,ƒd); This class should provide
17 ƒƒ} services for its clients

other than simply storing18
information.19 ƒƒpublicƒvoidƒsetDate(Dateƒd)

5 {
6 ƒƒpublicƒStringƒsender;
7 ƒƒpublicƒStringƒrecipient;

public instance variables
are open to abuse.

9 ƒƒpublicƒStringƒsubject;
10 ƒƒpublicƒStringƒbodyƒ=ƒ"";
11
12 ƒƒpublicƒMessage()
13 ƒƒ{}
14

Constructor doesn’t initialize
instance variables.

Set methods required to
overcome inadequacies in
the constructor.

606
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

Listing 11-3: A very poor implementation of the Message class for an e-mail program (continued)

20 ƒƒ{ƒthis.dateƒ=ƒd;
21 ƒƒ}
22
23 ƒƒpublicƒDateƒgetDate()
24 ƒƒ{ƒreturnƒthis.date;
25 ƒƒ}
26
27 ƒƒpublicƒvoidƒsetSubject(StringƒaSubject)
28 ƒƒ{ƒthis.subjectƒ=ƒaSubject;
29 ƒƒ}
30
31 ƒƒpublicƒStringƒgetSubject()
32 ƒƒ{ƒreturnƒthis.subject;
33 ƒƒ}
34
35 ƒƒpublicƒvoidƒsetBody(StringƒaBody)
36 ƒƒ{ƒthis.bodyƒ=ƒaBody;
37 ƒƒ}
38
39 ƒƒpublicƒStringƒgetBody()
40 ƒƒ{ƒreturnƒthis.body;
41 ƒƒ}
42 }

11.3.1 Rules of Thumb for Writing Quality Code

In this section we will discuss a number of rules of thumb for writing quality code. In
Section 11.3.2 we will put them into a larger framework.

Document Classes and Methods

You probably noticed that the Mailbox and Message classes have almost no docu
mentation. If you read the code for comprehension, you probably wished that it had
more documentation to help you understand it.

Documentation, or the lack of it, obviously affects how easily a class or method can be
understood. That, in turn, affects how easily the code can be maintained and, to some
extent, tested.

607

KEY IDEA

Document what the
method should do,

then write the code.

Writing documentation is one of a programmer’s more dreaded jobs, but it definitely
pays dividends later when someone needs to read and understand the code. An accept
able practice is to write the documentation and code in parallel, while both are still
fresh in your mind. Don’t write more code until the code you have is documented.
However, many people agree that the best practice is to write the documentation
before writing the code. Writing the documentation first can often help clarify in your
mind what the code is supposed to do, making the code easier to write and more likely
to be correct.

Avoid Nested Loops

The Mailbox constructor contains a loop within a loop. Such structures are difficult
for programmers to understand. Simplify them by putting the inner loop into an
appropriately named helper method. Naming the task helps you clarify the responsi
bilities of both the outer loop and the inner loop.

Keep Methods Short

Research published by psychologist George A. Miller in 1956 shows that people can
only store and process a limited amount of information in short term, or working,
memory. The limit is often given as seven chunks of information, plus or minus two.

This research supports writing short methods. Methods are more likely to be written and
understood correctly if they have fewer chunks of information. The most appropriate
way to write such methods is using stepwise refinement, as discussed in Chapter 3.

The Mailbox class has at least two methods that are too long: the constructor and
replyToMessage. Instead of a constructor that is 32 lines long, consider one that uses
a helper method to read one message:

publicƒMailbox(Stringƒfilename,ƒStringƒownerInfo)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthrowsƒFileNotFoundException
{ƒsuper();
ƒƒthis.ownerƒ=ƒownerInfo;

ƒƒthis.currentMboxFileƒ=ƒfilename;
ƒƒScannerƒinƒ=ƒnewƒScanner(newƒFile(filename));

ƒƒwhileƒ(in.hasNextLine())
ƒƒ{ƒMessageƒmsgƒ=ƒthis.readOneMessage(in);
ƒƒƒƒthis.addMessage(msg);
ƒƒ}
ƒƒin.close();
}

11.3
D

ESIG
N
IN

G
 C

LASSES AN
D
 M

ETH
O
D
S

608
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

In this version, all the details of reading a message, lines 30–49 in Listing 11-2, are col
lapsed into readOneMessage. That method might be further refined using two more
helper methods, readHeader and readBody.

Using helper methods provides at least three benefits. First, each helper method gives
the code it contains a name. A well-chosen name helps identify what the code does,
making the helper method easier to understand. Second, the name summarizes the
code, making the client that calls it easier to read and understand. Third, helper meth
ods make testing easier. The code in each helper method can often be tested separately,
which is easier than testing the same code written as a single method.

Make Helper Methods Private

Methods that do not need to be called from outside their containing class should be
declared private. For example, there is no reason to call readOneMessage from out
side the Mailbox class. The same is true for growArray and probably for
makeDateString and dayOfWeek.

Making these methods private offers two advantages. First, it prevents programmers
from using them inappropriately, either maliciously or by mistake. For example, a pro
grammer may think it is his responsibility to call growArray before adding a message
to the mailbox. Doing so could slow the program dramatically and could waste a huge
amount of memory. Taking active steps to prevent such problems can make the pro
gram as a whole more bug free.

Second, when a bug does occur, appropriate use of accessibility helps track it down by
elimination. If a problem occurs within a private method, we know with absolute cer
tainty that it was called from within the same class. With non-private methods, we
might be surprised to find that it was called from some place completely unexpected.

Put Duplicated Code in a Helper Method

The code in Listing 11-2 has five places where essentially the same code is repeated.
Take a moment to find them. The code itself isn’t exactly the same, but the results are.

The repeated code assembles an e-mail message into a string to be saved or displayed in
the user interface and occurs in lines 67–69, 75–79, 89–91, 120–123, and 156–160.
This is undesirable for a number of reasons:

➤	 It makes the class longer, with more code for programmers to read and
understand.

➤	 If a change to the way messages are represented is required, there are five
copies of the code that need to change.

609

LOOKING AHEAD

Later, we consider the
question “Which class

should contain the
helper method?” It

will lead to an even
better solution.

➤	 If a bug is found, parallel changes must be made in five places. It will be easy
to overlook at least one of them—maybe all except for one!

➤	 All of the repeated code must be tested. That’s a silly waste of time and energy
if the code is essentially the same.

The solution is to make a helper method that can be called from many places in the pro
gram rather than duplicating the code itself. In fact, it may appear that getMessage is
precisely the helper method we need:

155 ƒƒpublicƒStringƒgetMessage(intƒi)

156 ƒƒ{ƒreturnƒ"From: "ƒ+ƒthis.msgs[i].senderƒ

157 ƒ +ƒ"\nTo: "ƒ+ƒthis.msgs[i].recipient

158 ƒ +ƒ"\nDate: "ƒ+ƒthis.msgs[i].getDate().numeric()ƒ

159 ƒ +ƒ"\nSubject: "ƒ+ƒthis.msgs[i].getSubject()ƒ

160 ƒ +ƒ"\n"ƒ+ƒthis.msgs[i].getBody();

161 ƒƒ}

This method can be used to replace code in saveMessage (lines 75–79) and save

(lines 89–91), but is much more difficult for sendMessage (lines 67–69) and
replyToMessage (lines 120–123). Passing an index as the argument works for the
first two methods, but the last two work with Message objects that are not yet in an
array and thus can’t be accessed with an index.

One solution is writing a helper method, formatMessage, with a Message object as
a parameter. Then getMessage, above, can be written as follows:

155 ƒƒpublicƒStringƒgetMessage(intƒi)
156 ƒƒ{ƒreturnƒthis.formatMessage(this.msgs[i]);
161 ƒƒ}ƒ

and lines 89–91 can be rewritten as follows:

89 ƒƒƒƒout.print(this.formatMessage(m)ƒ+ƒ"EOM\n");

In addition to reducing wasted time and energy, putting duplicate code into a method
gives you an added abstraction to work with. If you’ve already used the same code sev
eral times, chances are good that it represents a higher-level idea, or abstraction, within
your code. Putting it in a method increases the chances that you’ll recognize when it is
appropriate to use it, and makes using it trivial—just call the method.

Make Instance Variables Private

Mailbox and Message both have many public instance variables. This is unfortunate
for several reasons. First, it makes the classes more difficult to change. For example,
the Message class uses Strings to store the sender and receiver. They both have two

11.3
D

ESIG
N
IN

G
 C

LASSES AN
D
 M

ETH
O
D
S

610
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

distinct parts, the real name and the e-mail address in angle brackets, as in the follow
ing example:

ByronƒWeberƒBeckerƒ<bwbecker@email.com>

It may be decided later that it would be better to define a class named Contact for this
information. Instances could store the real name in one field and the e-mail address in
another. Other information might be added such as nicknames, telephone numbers, or
mailing addresses.

If the instance variables were private, making this change would be straightforward.
We would have to find all the places inside the Message class that accessed either
sender or recipient and change them to use the new Contact class. However, if
the instance variables are public our search must expand beyond the containing class
to include the entire program. In fact, it is possible for many programs to use a given
class—and any of them might need changing if they used the instance variable instead
of an appropriate method.

A second reason to keep instance variables private is to prevent misuse, either acciden
tally or maliciously. For example, a programmer writing the user interface may need to
know the number of messages in an instance of Mailbox. He might write
this.mBox.msgs.length, failing to realize that msgs is a partially filled array and
that the number of messages does not correspond to the space in the array. Or perhaps
you wrote the Mailbox class and the programmer working on the user interface has
either a grudge against you or a really wacky sense of humor and adds the following in
an obscure part of the user interface code:

ifƒ(Math.random()ƒ<ƒ0.01)
{ƒthis.mBox.size--;
}

The effect of this insertion is that one message is lost from the mailbox 1% of the times
the above code executes. It seems like a bug in the Mailbox class, but who would think
to look in a completely unrelated part of the user interface? You could spend a lot of
time tracking down this “bug” and face a lot of pressure from management while
you’re doing it! The best policy is to simply avoid the issue by making instance vari
ables private.

Write Powerful Constructors

The previous advice to make instance variables private is largely circumvented if
instance variables have set methods. Public get and set methods allow a client to
change a private instance variable just as if it were public.

http:if�(Math.random()�<�0.01
mailto:Byron�Weber�Becker�<bwbecker@email.com

611

KEY IDEA

A constructor should
return an object that

is ready to use.

KEY IDEA

The class with the
data should do the

processing.

In the Message class, the only reason to have set methods is to give the instance vari
ables their initial values—the constructor’s job. By the time the constructor has finished
executing, the object should be ready to use. All the instance variables should have
meaningful initial values. Because all of the values are available at once in a well-
written constructor, more stringent checking for inconsistent data can be performed.

In the case of the Message class, two constructors might be appropriate. The first
would be used in the Mailbox constructor to read one message from a file. It would
take a single argument, an open Scanner object. The second could be used by the
replyToMessage and sendMessage methods to construct an object from the con
stituent pieces.

Powerful constructors make the Message class more understandable because it elimi
nates the need for many set methods. Many bugs arise from variables being given
incorrect values. By minimizing the places where new values are given, bugs are made
less likely and those that do exist are easier to find.

Powerful constructors also eliminate the problem of incompletely initialized objects.
With an appropriate constructor it is impossible for a programmer to overlook setting
an instance variable. This might occur, for example, when a new instance variable is
added to the class. In the current program all the places where an instance is con
structed must be found and modified. This is a much easier maintenance task if all the
initialization is done in the constructors.

Keep Data and Processing Together

The largest change, and the biggest benefit, to the Mailbox and Message classes
comes from keeping data and processing together. The major clues that these classes
don’t keep them together are:

➤	 Message is a “container” class. It contains information, but doesn’t have any
methods that actually process that information.

➤	 Mailbox gets many individual pieces of data from instances of Message and
then processes them in some way.

A better approach is to have the class with the data do the processing. For example, the
formatMessage helper method we described earlier really belongs in the Message

class, not the Mailbox class. By moving it, you can avoid passing an argument and use
the instance variables directly instead of using the get methods.

A more dramatic example comes from moving much of replyToMessage to the
Message class. Because much of the information for a reply comes from the original
message, it makes sense to keep the data and processing together by asking the message
to construct the reply. Using this approach, the replyToMessage method in Mailbox

could become only three lines of code, as shown in Listing 11-4.

11.3
D

ESIG
N
IN

G
 C

LASSES AN
D
 M

ETH
O
D
S

612
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

Listing 11-4: The replyToMessage method, written assuming a constructReply method

exists in the Message class

ƒƒƒ/** Reply to the given message with the given body.
ƒƒƒ * @param i the index of the message to reply to
ƒƒƒ * @param body the body of the reply
ƒƒƒ * @param outBox the mailbox instance collecting sent mail. */
ƒƒƒpublicƒvoidƒreplyToMessage(intƒi,ƒStringƒbody,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒMailboxƒoutBox)
ƒƒƒ{ƒMessageƒreplyƒ=ƒthis.msgs[i].constructReply(body);
ƒƒƒƒƒoutBox.addMessage(reply);
ƒƒƒƒƒreply.save(Mailbox.SEND_BOX);
ƒƒƒ}

This code also strongly hints that a message should save itself to a file rather than
expecting the Mailbox class to do it. After all, the message is where the data that
requires saving is located.

It should be obvious that understanding and maintaining replyToMessage has
become much easier with this change. It is true that programmers may need to find
three additional methods (constructReply, addMessage, and save) and under
stand them. On the other hand, each of these methods has a clear focus that is clearly
indicated by its name. That may be enough to allow the programmer to avoid needing
to understand their details. If the programmer does need to understand them, the fact
that they are focused on a single task and have a clear name will make understanding
them much easier.

Write Immutable Classes

A class is mutable if its instances can be changed after they are constructed. A class is
immutable if instances can not be changed after construction. An example of an
immutable class is String. There are no methods to change a string once it has been
created, only methods that create a new string that is similar to the old one in some
way. For example, the name.toUppercase() method does not change the string
name; it creates a new string like name except that lowercase characters are converted
to uppercase.

Immutable classes are simple. Their objects have only a single state—the state in which
they were created. If the state is correct when it’s created, it will be correct for all time
without any further work by you or the programmers using the class. References to
immutable classes can be shared freely because there is no way to change the object’s
state. Mutable classes, on the other hand, can have objects in a wide variety of states

613

LOOKING BACK

This issue is
discussed in more

detail beginning in
Section 8.2.

that change over time. That makes them harder to use and understand than immutable
classes.

Classes that represent a value, like Date or String, should almost always be made
immutable. All other classes should be made as immutable as possible. It obviously
isn’t possible to make Mailbox immutable because messages need to be added and
deleted from it. But Message can be made immutable. Once created, there is no reason
to change a message.

There are a few simple rules to make a class immutable:

➤	 Don’t provide methods that modify the object.

➤	 Make all the instance variables private. This prevents anyone from changing
them directly.

➤	 Make sure that you don’t allow aliases to mutable components. For example,
instances of Message have references to a Date object. Because a getDate

method is provided, the designer of Message must ensure that either Date is
immutable or that getDate makes a copy of the date object to return.
Another option is to provide queries such as getYear to answer questions
about the mutable component. It’s also important the other way. If a client
passes a reference to a mutable object, make a copy of that object before stor
ing it in an instance variable.

If you want to really go the extra mile for your immutable classes, you need to follow
two more rules:

➤	 Use the final keyword for instance variables. For example, private final

String subject in the Message class emphasizes that subject’s value
should not change after the first assignment. This is enforced by the compiler.

➤	 Use the final keyword for the class as a whole. For example, public final

class Message prevents someone from overriding the methods in the
Message class and changing their behaviors.

The DateTime class is mutable, even though it represents a value and should be
immutable according to the criteria given earlier. Suppose you wanted an immutable
Date class. Extending DateTime doesn’t work because methods like addDays would
still be available via inheritance. But DateTime has a lot of functionality that would be
good to reuse.

The solution is for the Date class to have an instance of DateTime as a private
instance variable. It can then provide exactly the methods it requires and omit the
problematic ones. For example, see Listing 11-5. Of course, nothing prevents you from
adding new methods to the class as well.

11.3
D

ESIG
N
IN

G
 C

LASSES AN
D
 M

ETH
O
D
S

614
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

Listing 11-5: Making an immutable class using a mutable class

1 publicƒfinalƒclassƒDateƒextendsƒObject
2 {
3 ƒƒprivateƒfinalƒDateTimeƒmyDate;
4
5 ƒƒpublicƒDate(intƒyear,ƒintƒmonth,ƒintƒday)
6 ƒƒ{ƒsuper();
7 ƒƒƒƒthis.myDateƒ=ƒnewƒDateTime(year,ƒmonth,ƒday);
8 ƒƒ}
9

10 ƒƒ// For internal use only. Assumes that the caller does NOT keep a reference to d.
11 ƒƒprivateƒDate(DateTimeƒd)
12 ƒƒ{ƒsuper();
13 ƒƒƒƒthis.myDateƒ=ƒd;
14 ƒƒ}
15
16 ƒƒpublicƒintƒgetYear()ƒƒ{ƒƒreturnƒthis.myDate.getYear();ƒƒ}
17 ƒƒpublicƒintƒgetMonth()ƒ{ƒƒreturnƒthis.myDate.getMonth();ƒ}
18
19 ƒƒ// Return a new date, adding the given number of days.
20 ƒƒpublicƒDateƒaddDays(intƒhowMany)
21 ƒƒ{ƒDateTimeƒcopyƒ=ƒnewƒDateTime(this.myDate);
22 ƒƒƒƒcopy.addDays(howMany);
23 ƒƒƒƒreturnƒnewƒDate(copy);ƒ
24 ƒƒ}
25 ƒƒ// etc.
26 }

Delegate Work to Helper Classes

A class should represent a single abstraction. The Message class should model an
e-mail message and the Mailbox class should be focused only on managing a group of
messages. Mixing in peripheral concepts makes a class harder to understand, test, and
maintain. However, in Listing 11-2, the Mailbox class does just that.

The problem is that, in addition to its core responsibility of managing messages, the
Mailbox class also has responsibilities for formatting dates. The major clues are
instance variables storing the names of days and months along with methods to turn a
date into a formatted string and calculate the day of the week.

Particularly in a program where a Date class already exists, these instance variables and
methods should be moved there. In general, a class should delegate work to “helper

615

KEY IDEA

Managing complexity
is one of the hardest

parts of writing
software.

classes” using the “has-a” or containment relationship discussed in Section 8.1.3 so that
each class remains focused on a single idea.

Limiting each class to one cohesive set of responsibilities makes the class easier to
understand. It’s easier to test one set of responsibilities than to test two or more that
are intertwined in the same class. Finally, if changes need to be made, it’s easier to fig
ure out where and actually make the changes in well-focused classes.

11.3.2 Managing Complexity

Many of these coding heuristics relate to four features that have been long recognized
as crucial to quality code. These four features have stood the test of time, across many
different programming languages and development methodologies. They seem to be
invariant. Defined in terms of Java, they are:

➤	 Encapsulation—Grouping data and related services into a class.

➤	 Cohesion—The extent to which each class models a single, well-defined
abstraction and each method implements a single, well-defined task.

➤	 Information hiding—Hiding and protecting the details of a class’s operation
from others.

➤	 Coupling—The extent to which interactions and dependencies between classes
are minimized.

Each of these relates to a fundamental problem in constructing software: managing
complexity. Most programs have a huge number of details, each affecting the overall
correctness of the system. Managing them so that a change to one detail does not cre
ate a problem with another is difficult!

Let’s define detail, for the moment, as either a method or an instance variable, and define
interaction as a method calling another method or accessing an instance variable.

We can get an idea of the complexity of a program by making a diagram with circles
representing details and lines representing interactions. For example, consider a class
with one instance variable and three methods. Two methods access the instance vari
able and one method calls the third as a helper method. The complexity diagram
would appear as shown in Figure 11-9. The instance variable is shown with crossed
lines within it.

11.3
D

ESIG
N
IN

G
 C

LASSES AN
D
 M

ETH
O
D
S

(figure 11-9) Instance variable detail

Complexity diagram for a
Interaction very simple class Method detail

616
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

Figure 11-10 shows a diagram for a considerably more complex program. We will use
it to show how the ideas of encapsulation, cohesion, information hiding, and coupling
can help us manage complexity.

(figure 11-10)

Unconstrained

interactions between

details

The best solution to date for managing complexity is to impose voluntary constraints
on how we write programs so that some interactions can’t happen, and to organize the
other interactions so that they are easier to think about. Encapsulation, cohesion,
information hiding, and coupling all have a role to play in managing complexity
through voluntary constraints.

Encapsulation

Think of a class as a capsule—something that encapsulates or encloses a number of
related instance variables and methods (details). By putting them into the same capsule,
we clearly indicate that they belong together.

KEY IDEA

Java allows us to write
poorly designed
programs. As
programmers, we
must choose to write
excellent programs.

617

Encapsulation is illustrated in Figure 11-11. It’s the same as Figure 11-10 except that
details have been grouped and encapsulated using ovals. Encapsulation makes it easier
to see how interactions are organized because now they fall into two groups.

(figure 11-11)

Classes that are

encapsulated, but do meet

the ideal for cohesion,

information hiding, or

coupling

11.3
D

ESIG
N
IN

G
 C

LASSES AN
D
 M

ETH
O
D
S

KEY IDEA

Encapsulation divides
interactions into

those within a class
and those between

classes.

The first group are interactions between details within the same class. Of all the possi
ble interactions in our program, encapsulation focuses our attention on a group that
works together using closely related details. These details, and the interactions between
them, are the primary concern of the programmer or small group of programmers
responsible for implementing and maintaining the class.

The second group of interactions are the primary concern of programmers using the
class—the interactions between details in different classes. Of all the possible interactions
within a program, encapsulation helps these programmers focus on the most relevant ones.
By grouping interactions inside classes and between classes, we help manage complexity.

Java’s class mechanism provides a natural way to group details. Unfortunately, Java
does not force them to be grouped—that requires good design decisions on our part.
The heuristics noted earlier that support encapsulation include the following:

➤ Keep Data and Processing Together

➤ Delegate Work to Helper Classes

618
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

Cohesion

Cohesion emphasizes the “relatedness” of the details that we encapsulate. We should
not encapsulate just any details that happen to interact. We should make sure those
details represent a cohesive whole. In concrete terms, a class should model a single,
well-defined entity. A method should have one, and only one, task.

In the mail program presented earlier in this chapter, one could imagine the Message KEY IDEA

class containing instance variables and methods related to both dates and contacts In a highly cohesive
(senders and receivers). This would represent “low cohesion.” The ideal is “high cohe- program, each class is

focused on onesion” in which details related to dates are split into their own class, as are the details
abstraction.

related to contacts. This kind of change is illustrated in Figure 11-12.

(figure 11-12)

Encapsulated, cohesive

classes that do not yet

meet the ideal for

information hiding and

coupling

Cohesive classes and methods make it easier for us to understand them. It’s easier to
focus on just one abstraction or one task than to understand two or more that are
mixed together.

Heuristics related to cohesion include:

➤ Delegate Work to Helper Classes

➤ Keep Methods Short

➤ Put Duplicated Code in a Helper Method

619

Information Hiding

Encapsulation groups details of a program together in a class so that a programmer
can focus primarily on them. Information hiding says which of those details are impor
tant to programmers using the class and hides the rest behind the capsule wall, as
shown in Figure 11-13. Note the dark wall around each oval and that public details
have moved to straddle the capsule wall.

(figure 11-13)

Information hiding

emphasizes some

details and hides the rest

from view

11.3
D

ESIG
N
IN

G
 C

LASSES AN
D
 M

ETH
O
D
S

KEY IDEA

Information hiding
removes many

possible interactions
from a programmer’s

consideration.

Information hiding distinguishes what a class can do from how it does it. The parts
that are left exposed (declared public) are always methods. Their names and docu
mentation indicate what can be done with the class. The details of the instance vari
ables required and the helper methods used are all hidden inside the class.

For programmers who want to use a class, information hiding eliminates many possi
ble interactions from their consideration and helps manage the complexity.

Another advantage, as noted before, is that hiding details allows us to change how the
class operates without affecting the code that uses the class. As long as the public meth
ods continue to behave as before, the details of just how they work can change to
accommodate better approaches.

Information hiding also allows us to limit our testing to only the public parts. If they
are tested thoroughly, we can be more relaxed about testing internal details.

Heuristics that are related to information hiding include:

➤ Make Instance Variables Private

➤ Make Helper Methods Private

➤ Write Powerful Constructors

➤ Keep Data and Processing Together

620
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

Coupling

Ideally, we would like to be able to understand or change one class with only minimal
knowledge or changes of other classes. When this is true, we say the classes are
“weakly coupled.” See Figure 11-14.

(figure 11-14)

Weakly coupled classes

have few dependencies on

each other

Information hiding already reduces the coupling between classes by forcing the classes
to interact only through public methods. We can go one step further, however, and ask
ourselves whether we have the right public methods.

For example, the Message class in Listing 11-3 has public instance variables but no
methods that really do anything, resulting in strong coupling. The Mailbox class is
forced to interact often with the Message class in order to do its work.

Simply hiding the instance variables and making public accessor methods would not
improve the coupling, however. The Mailbox class would still need many interactions
with the Message class. The coupling between these two classes improved dramati
cally, however, when we wrote higher-level methods like constructReply and save,
substantially reducing the dependency on accessor methods like getSubject.

Heuristics that affect coupling include:

➤ Keep Data and Processing Together

➤ Make Instance Variables Private

➤ Write Powerful Constructors

➤ Write Immutable Classes

KEY IDEA

Weakly coupled
classes use powerful
methods to minimize
dependencies
between classes.

621

Working together, the heuristics in Section 11.3.1 and the overall goals of encapsula
tion, high cohesion, information hiding, and weak coupling yield classes and programs
that are easier to understand, easier to test, and easier to change. All of these are attrib
utes contributing to quality code, from a programmer’s perspective.

11.4 Programming Defensively

11.4
P

RO
G
RAM

M
IN

G D
EFEN

SIVELY

The quality of software generally increases with the disciplined use of a development
methodology. Quality also increases dramatically through good design. But even with
these efforts, users may still enter erroneous input, a necessary file may still be acciden
tally deleted, or a program bug may still bring the program to an abrupt halt. Quality
software will proactively attempt to detect and, if possible, handle such errors. This
section discusses important techniques for doing so, including exceptions, design by
contract, and assertions.

11.4.1 Exceptions

We learned about exceptions in Section 8.4. We learned that exceptions are thrown
when an exceptional circumstance arises. The exception interrupts the program’s nor
mal flow of control and if nothing is done to intervene, the program will stop with an
error message displayed on the console. Programmers can intervene in this process
with the try-catch statement. Statements that may throw an exception are placed in
the try clause. A series of catch clauses after it can include code to handle exceptions
that are thrown.

Using exceptions effectively is an important part of writing quality software for a num
ber of reasons. First, exceptions provide a uniform approach to reporting and handling
errors. Languages that do not support exceptions force programmers to adopt ad hoc
methods for reporting errors using an instance variable to signal that an error occurred
or returning an error code from a method. Figuring out a variety of error reporting
methods takes time and increases the probability of mistakes being made.

When using ad hoc methods to report errors, programmers often do not bother to
check the error indicators, resulting in software that sometimes fails. Forcing program
mers to confront possible errors and decide how to handle them is the second advan
tage of exceptions. For example, Java forces the programmer to think about how to

622
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

handle a FileNotFoundException. The programmer could decide to simply report
the error and stop, ask the user to enter the filename again, or read an alternate file—
but the error can’t simply be ignored with the hope that it won’t happen.

Third, exceptions separate error-handling code from the code for normal processing.
This separation makes the logic for both the normal processing and handling errors
easier to understand.

Fourth, an exception’s stack trace provides valuable information for programmers
when debugging a program.

Many beginning programmers dread exceptions because they are often the first sign of
an unwelcome debugging session. This is the wrong attitude. Instead, exceptions
should be welcomed as a programmer’s friends. They tell us as soon as possible, with
helpful debugging information, what went wrong. Finding a bug that is exposed right
away, with helpful information, is much easier than debugging in languages without
exceptions. In those languages, an error may go undetected until much later in the pro
gram’s execution. When it is finally noticed, finding its cause may be very difficult.

11.4.2 Design by Contract

One excellent use for exceptions is to inform programmers when a method has been
called with inappropriate arguments. For example, consider the deleteMessage

method in the e-mail program. It takes a single argument, the number of the message
to delete. This number is really the index into the partially filled array of messages and
must be between 0 and this.getSize()-1, inclusive. If the message number is out
side of this range, it represents a bug and an exception, typically
IllegalArgumentException, should be thrown:

publicƒvoidƒdeleteMessage(intƒmsgNum)
{ƒifƒ(msgNumƒ<ƒ0ƒ||ƒmsgNumƒ>ƒthis.getSize()-1)
ƒƒ{ƒthrowƒnewƒIllegalArgumentException("msgNum = "ƒ+ƒmsgNum
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ+ƒ"; must be 0.."ƒ+ƒ(this.getSize()-1));
ƒƒ}

ƒƒ// existing code to delete the message
"
}

The requirement that msgNum be between 0 and this.getSize()-1 is called a
precondition. More generally, a precondition is anything that must be true when the
method is called for it to execute correctly. It is the responsibility of the method’s client
to ensure that the preconditions are met. Checking the preconditions inside the method
is simply a favor to those using the method: the method fails quickly with an appropri
ate exception that helps them find their bugs more easily. But it is a favor that should

KEY IDEA

Verifying
preconditions is a
huge favor to those
using the method—
which usually
includes the
programmer who
wrote it.

623

always be extended. Consider what might happen if an invalid argument slips through
and is used in a method:

➤	 The method might fail in the middle of its processing with a confusing exception.

➤	 The method might complete normally but compute a wrong result that affects
the correctness of the program.

➤	 The method might complete normally but leave the object in an invalid state,
causing an error later in the program in an unrelated part of the code.

All of these results are undesirable and easily prevented by checking parameters for
validity.

If the method’s client has met the preconditions, the method is obligated to meet its
postconditions. A postcondition is what should be true after the method executes. If
the preconditions have not been met, the postconditions likely won’t be met either.

The postcondition for deleteMessage is that the given message, n, has been removed
from the list and all the remaining messages are renumbered to fill the “hole.”

Both pre- and postconditions should be documented. Unfortunately, the standard
JavaDoc tool does not support them explicitly. It does have a @throws tag which can
be used instead. An appropriate comment for deleteMessage might be

/** Delete message number n from this mailbox, renumbering all messages from
* n+1..this.getSize()-1 to have numbers n...this.getSize()-2. The renumbering
* preserves the order of the messages.
* @param n The number of the message to delete
* @throws IllegalArgumentException if n is outside the range 0..this.getSize()-1 */

The word after @throws is expected to be the name of an exception class.

Pre- and postconditions are often viewed as contracts between the client and the
method and using them consistently is called design by contract 1. The core idea of this
phrase is that each interaction between a client and a method is bound by a contract.
The contract specifies what the client and the server can each expect of the other.

The contract between a client and method is similar to the contracts we encounter in
everyday life. For example, a cell phone provider may have a contract that says if you
(the client) pay $20.00 per month, they (the server) will provide up to 500 minutes of
cell phone service per month. If you sign the contract and live up to your responsibili
ties of paying $20.00 per month, they are obligated to provide the service. If they
don’t, you could take them to court and sue for breach of contract. On the other hand,

11.4
P

RO
G
RAM

M
IN

G D
EFEN

SIVELY

1 This phrase was trademarked by Bertrand Meyer, the developer of the Eiffel programming language.
Eiffel makes extensive use of the ideas behind “Design by Contract.”

624
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

if you don’t pay the $20.00, they are under no obligation to provide the cell phone ser
vice. They might, but they certainly don’t have to.

11.4.3 Assertions

An assertion is something the programmer believes will always be true at a certain
point in the code. Starting with Java 1.4, the keyword assert is available to test asser
tions. It is followed by a Boolean test that should be true at that point in the program.
For example, in the e-mail program, growArray should only be called if the partially
filled array of messages is full. Thus, growArray should have an assertion:

privateƒvoidƒgrowArray()
{ƒassertƒthis.sizeƒ==ƒthis.msgs.length;
ƒƒ...

If the assertion fails, the program behaves as if an exception named AssertionError

were thrown. If the behavior is the same, what advantages do assertions have over
using an exception? There are two advantages. First, assertions are easier and faster to
write because they combine the test with implicitly creating and throwing the excep
tion object.

Second, assertions can be turned off easily. Some assertions might slow the program
down unacceptably. For example, some searching techniques require the array being
searched to be sorted. Checking that precondition takes longer than doing the actual
search. Such a precondition can be used during development and debugging, but then
turned off so they have no effect on the program when deployed to users. To turn
assertion checking on, execute the program using the following command line:

javaƒ–enableassertionsƒ«ClassName»

If you use an IDE, find the place where command line arguments are set and add
–enableassertions.

It may seem natural to use assert to check preconditions as well. Throwing a speci
fied exception, however, is a better solution in this case because it can document the
error more accurately in terms the method’s user can understand.

11.5 GUIs: Quality Interfaces

Just as the notion of quality applies to programs as a whole, it also applies to the user
interface in particular. This has been driven home to me personally in a program I use
to access information about students. For example:

➤	 The information I need 90% of the time is buried in four levels of menus.
Most of those menus have a single selection.

625

➤	 The information I most often need is at the top of the screen but to search for
another student I need to scroll through several pages of text to reach the
“New Search” button.

➤	 The program presents a substantial amount of unimportant information. The
useful information is harder to use because of the clutter.

As you can tell, I am not a happy user!

11.5.1 Iterative User Interface Design

Like developing a program, developing a user interface should follow a development
process. It shouldn’t be surprising that excellent user interfaces are rarely achieved on
the first try, so iteration is important. A simplified approach is shown in Figure 11-15.

(figure 11-15)

Iterative user

interface design and

evaluation process

11.5
G
U
IS: Q

UALITY IN
TERFACES

Design

Prototyping

User Testing
and Evaluation

Prototyping refers to making a model of the completed design. It may be a low-fidelity
prototype drawn on paper index cards or a high-fidelity prototype that actually per
forms many of the operations of the finished program—or anywhere between these
two extremes.

In the user evaluation and testing phase, users work with the prototype to evaluate it.
Evaluation often involves the five E’s:

➤	 Effective—The completeness and accuracy with which users achieve their goals.

➤	 Efficient—The speed and accuracy with which users can complete their tasks.

➤	 Engaging—The degree to which the tone and style of the interface makes the
product pleasant or satisfying to use.

626
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

➤	 Error tolerant—How well the design prevents errors or helps with recovery
from those that do occur.

➤	 Easy to learn—How well the product supports both initial orientation and
deepening understanding of its capabilities.

Ideally, each of the five E’s is objectively measured and compared to a stated goal. For
example, effectiveness might be measured by having a group of users complete a pre
scribed set of tasks, measuring their error rate. Efficiency might be measured by count
ing keystrokes and mouse clicks on a set of realistic tasks. Whether the user interface is
engaging might be measured with user interviews or questionnaires. Counting the
“false starts” users make would be one way to measure whether the user interface is
easy to learn.

Obviously, evaluation of a user interface requires users. Having the developers act like
users is not good enough—they know too much about the application and how it works.

11.5.2 User Interface Design Principles

Just as the principles of encapsulation, cohesion, information hiding, and coupling
have emerged as being important to quality software, a number of design principles are
important to quality user interfaces. Well-designed user interfaces are:

➤	 Controlled by the user

➤	 Responsive

➤	 Understandable

➤	 Forgiving

Controlled by the User

Modern user interfaces should give the user as much control over the process as is con
sistent with the user’s knowledge and skill level. Whenever possible, allow the user to
choose the ordering of tasks and subtasks. Allow the user to choose between using the
keyboard or a mouse. Assume that the user will be interrupted and need to come back
to the task later. Allow the user to customize the interface to suit his own preferences.

Responsive

Users need constant feedback to tell them how the system has interpreted their com
mands. To understand why, put on a blindfold and attempt to send an e-mail message.
How far can you get (without specialized tools to give you feedback)?

627

Feedback happens in many ways: echoing characters typed by the user, highlighting
buttons to show they have been “activated” but can still be aborted, disabling controls
that are not appropriate in the current context, providing progress bars during long-
running tasks, and so on.

Another side of a responsive system is that the feedback comes fast enough to keep the
user working at full speed, whenever possible.

Understandable

A quality user interface will be as understandable as possible.

Consistency is one way to keep a user interface understandable. Users will be able to
transfer what they have learned in one part of the application to another, and probably
even from one application to another. Examples of consistency include using the same
language to describe the same concepts, organizing the controls on dialog boxes in the
same way, using the same kinds of controls to achieve distinct but similar tasks, and so
on. A set of design guidelines helps achieve consistency, as does using a standard
library of user interface controls (such as javax.swing).

Structuring information and controls also helps promote understandability. For exam
ple, the print dialog box shown in Figure 11-16 has information grouped into three
areas: Printer, Print Range, and Copies. All of the information in the Printer area is
about the physical printer—which one to use, its type, whether it’s ready, and so on.
Many psychology studies have shown that such structure makes it easier for users to
find, organize, and use the information presented to them.

11.5
G
U
IS: Q

UALITY IN
TERFACES

(figure 11-16)

Print dialog box showing

structured information

and controls

Finally, make use of the fact that people recognize information much more easily than they
recall it. For example, the drop-down list of printer names contains two names not shown

628
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

in Figure 11-16, \\smb-unix.cs-uwaterloo.ca\ljp_dc3109 and SplashƒG620

DocuColorƒ12PM. Recognizing which of these three printers is desired is much easier
than recalling 35 or more characters and typing them into a text field.

Forgiving

Finally, a quality user interface should be forgiving of user mistakes. Ideally, the inter
face should prevent as many mistakes as possible by, for example, disabling commands
that are not applicable in the current context. But users will still make mistakes due to
fatigue, distraction, uncertainty, and so on. The user interface should make it easy to
correct these mistakes. It might do this by allowing the user to undo commands, or by
allowing users to correct their input and reissue commands.

11.6 Summary and Concept Map

Quality software is a pleasure to work with, both as a user and as a programmer.
Quality is generally increased by using an iterative development methodology and pay
ing particular attention to the design. The concepts of encapsulation, cohesion, infor
mation hiding, and coupling all play a significant role in maintaining the internal
quality of software. Similar kinds of principles apply to user interface design as well.
Finally, proactively detecting and reporting bugs and exceptional events via exception
objects also increases the quality of the software we write.

629
P

RO
BLEM

 S
ET

includes

includes
includes

can be evaluated from

is
 e

nh
an

ce
d

by
 u

si
ng

defines

designs

repeatedly

is improved byis improved by

defines

help discover

refine

use
record

software
quality

a programmer's
perspective of

quality

understandable
programs

testable
programs

maintainable
programsa user's perspective

an iterative
development

 process

requirements

implements and
evaluates scenarios

encapsulation

high cohesion

information hiding

weak coupling

proactively
responding to

exceptions

important
classes and
methods

nouns and
verbs

walk
throughs CRC cards

classes,
responsibilities

and collaborators

the architecture

can be evaluated from

11.7 Problem Set

Written Exercises

11.1 Make CRC cards based on the transcript in Section 11.2.2. For each subprob
lem, a–d, hand in updated CRC cards and a transcript of the walk-through.

a. Finish walking through the scenario of renting one video. For example, how
does the system’s user know how much to charge the customer?

b. Walk through adding a new customer.

c. Walk through the scenario of returning a video on time.

d. Walk through producing a report of all customers with videos more than
one week late.

630
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

11.2 The alarm clock case study in Section 8.3 uses the newAudioClip method in
the Applet class to load a sound file from the disk drive. If the sound file does
not exist or is in the wrong format, the newAudioClip method doesn’t do
anything at all. Is this a good idea? Defend your answer.

11.3 Is the Video class shown in Figure 11-6 immutable? Why or why not?

11.4 Explain why the Customer class, as shown in Figure 11-6, is mutable. Is this
class a good candidate for an immutable class? Why?

11.5 Expand the list of scenarios for the video store given in Section 11.2.1. (Hint: It
would be fruitful to imagine the program having just been installed in a store.
What must be done before it can be used to rent a video?) Now consider the
iterative nature of the software development process, as shown in Figure 11-1.
Organize the scenarios into three groups: the set to implement first, the set to
implement next, and the set to implement last. Give a brief rationale describing
why you grouped the scenarios as you did.

11.6 For each of the following requirements documents, hand in the following:

a. Rewritten requirements (see Figure 11-4)

b CRC cards that result from the rewritten requirements

c. List of scenarios

d. Transcript of walking through one scenario

e. CRC cards as refined by the walk-through

f. Class diagram constructed from the CRC cards

Requirements Document 1: The concert hall’s ticketing system is used to sell
concert tickets to concert hall patrons. The system has a list of patrons who
have previously purchased tickets as well as a list of upcoming concerts. It also
has a map of the concert hall showing how many rows of seats there are and

how many seats are in each row.

Users must be able to add new patrons, add newly scheduled concerts, and sell

tickets to a particular concert to patrons. Patrons may request of block of adja
cent seats in the same row.

The hall’s manager will want periodic reports of how many tickets have been

sold for each upcoming concert as well as patrons who have purchased tickets

to more than four concerts in the last 18 months.

Requirements Document 2: A program is required to synchronize the files in

two directories. This is useful, for example, to synchronize a person’s laptop

computer with files on their primary desktop computer.

Each file has a name and a modification date (the date and time when it was

last changed). Each directory has a list of files it contains.

Input to the program are the paths to the two directories to synchronize. The

program also has a list of the files that existed the last time the directories were

synchronized. Let’s refer to the two directories as A and B and to the list as L.

631
P

RO
BLEM

 S
ET

For each file f in directory A, the program will copy f to B if it does not appear

in either B or L (it’s a newly created file). It will delete f from A if f appears in L

but not in B (it was previously deleted from B). It will copy f to B if it appears

in B and L, and the modification date of f is newer than the modification date

of the copy in B and the copy in B is older than L (it was changed in A but not

B). It will ask the user what to do if f and the corresponding copy in B are both

newer than L.

Similar processing also occurs for each file in B.

After both directories have been processed, they should both have exactly the

same files. Write the list of those files out to use the next time the directories

are synchronized.

Requirements Document 3: The game of Adventure has a series of rooms in a

cave. Each room has a passage to at least one other room. Rooms may also

have treasures such as lamps, keys, gold, and so on. Each treasure has an asso
ciated weight and value. A player moves between rooms with commands such

as “north,” “west,” and “down.” Each room is described when the player

enters it.

A player can pick up treasures (but the player has a limit to how much he can

carry—it can’t carry all of the treasures). The player can also put down trea
sures it has previously picked up.

The game is over when the player enters the “quit” command. If the value of

the player’s accumulated treasures is high enough, the player is added to the

game’s top ten players list.

(For more information on the original adventure game, search the Web for

“Colossal Cave Adventure.”)

Requirements Document 4: An online auction service has a list of items for

sale. Each item has a description, a seller, a current bid, and an auction close

date. Buyers may search the list for items with descriptions that contain the

search terms they enter. If buyers see an item they want to buy, they may bid on

the item, provided the auction close date has not passed and their bid is higher

than all previous bids for the item.

Once per day, the system notifies buyers and sellers of auctions that closed

that day.

11.7 This chapter mentions the term refactor but does not describe it extensively.
Research this term on the Web and write a short essay on what the term
means. Some sites give concrete refactoring patterns. Describe two or three of
these patterns and how they can improve code quality.

632
CH

AP
TE

R
11

 |
BU

IL
D
IN

G
 Q

UA
LI

TY
 S

O
FT

W
AR

E

Programming Exercises

11.8 Listing 11-4 shows how replyToMessage could be written if there was a

constructReply method in the Message class. Write constructReply.

Programming Projects

11.9	 Find the code to the e-mail program shown in Listings 11-2 and 11-3. Rewrite
the program using the heuristics in Section 11.3 and adding exceptions where
appropriate. You should not need to modify MailUI.java, but other classes
may need changing and new classes may be added. The user of your rewritten
program should not be able to detect any differences between it and the origi
nal. Only the programmers working with it will know how much the quality
has improved.

11.10 Consider the video store program discussed in Section 11.2.

a. Write code so that the tests given in Listing 11-1 will pass.

b. Walk through the scenario of adding a customer. Develop tests for this sce
nario and implement the code required to pass the tests. Assume that a user
interface gathers the required information about the customer and provides
it to your code.

c. Walk through the scenario of renting a video to an existing customer.
Develop tests and implement the code to pass the tests. Assume that a user
interface gathers a customer identification number and a video identification
number and provides them to your code.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 633

Chapter 12 Polymorphism

Chapter Objectives

After studying this chapter, you should be able to:

➤ Write a polymorphic program using inheritance

➤ Write a polymorphic program using an interface

➤ Build an inheritance hierarchy

➤ Use the Strategy and Factory Method patterns to make your programs more flexible

➤ Override standard methods in the Object class

In science fiction movies, an alien sometimes morphs from one shape to another, as the
need arises. Someone shaped like a man may reshape himself into a hawk or a panther
or even a liquid. Later, after using the advantages the new shape gives him, he changes
back into his original shape.

Morph is a Greek word that means “shape.” The prefix poly means “many.” Thus,
polymorph means “many shapes.” The movie alien is truly polymorphic. However,
even though he has many outward shapes, the core of his being remains unchanged.

Java is also polymorphic. A class representing a core idea can morph in different ways
via its subclasses. After studying inheritance in Chapter 2, this may sound like nothing
new. However, in that chapter, we usually added new methods to a subclass. In this
chapter, we will focus much more on overriding methods from the superclass. The
power of this technique will become evident when we are free from knowing whether
we’re using the superclass or one of its subclasses.

We will also find similar benefits in using interfaces.

633

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 634

634

12.1 Introduction to Polymorphism

CH
AP

TE
R

12
 |

PO
LY

M
O
RP

H
IS

M

Java provides two ways to implement polymorphism. One uses inheritance and the KEY IDEA

other uses interfaces. Both depend on having two or more classes that either extend the Polymorphism can be
same class or implement the same interface. We will return to the robot world to illus- implemented with

inheritance ortrate the core ideas and then move to other examples.
interfaces.

12.1.1 Dancing Robots

Let’s define two rather fanciful robots that dance, one to the left and one to the right,
as they move to the next intersection. The arrows in Figure 12-1 show the paths they
take as they move from their initial position (shown in black) to their final position
(shown in white). LeftDancer is labeled with an “L” and RightDancer is labeled
with an “R”.

RL

L R
(figure 12-1)

Paths that dancing robots

take as they move to the

next intersection

The code implementing LeftDancer is shown in Listing 12-1. RightDancer is similar.

Listing 12-1: A robot that dances to the left as it moves forward

ch12/dancers/
1 importƒbecker.robots.*;

2

3 /** LeftDancers dance to the left as they move forward.

4 *

5 *ƒ@author Byron Weber Becker */

6 publicƒclassƒLeftDancerƒextendsƒRobotSE

7 {

8 ƒƒpublicƒLeftDancer(Cityƒc,ƒintƒstr,ƒintƒave,ƒDirectionƒdir)

9 ƒƒ{ƒsuper(c,ƒstr,ƒave,ƒdir);

10 ƒƒƒƒthis.setLabel(“L”);
11 ƒƒ}
12
13 ƒƒ/** Dance to the left. */
14 ƒƒpublicƒvoidƒmove()
15 ƒƒ{ƒthis.turnLeft();
16 ƒƒƒƒsuper.move();
17 ƒƒƒƒthis.turnRight();

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 635

635
12.1

IN
TRO

D
U
CTIO

N
 TO

 P
O
LYM

O
RPH

ISM

Listing 12-1: A robot that dances to the left as it moves forward (continued)

18 ƒƒƒƒsuper.move();
19 ƒƒƒƒthis.turnRight();
20 ƒƒƒƒsuper.move();
21 ƒƒƒƒthis.turnLeft();
22 ƒƒ}
23 }

LOOKING AHEAD

What would happen
if line 16 was

this.move()? See
Written Exercise 12.1.

Method Resolution Review

How Java determines which method to execute is called method resolution. This con
cept was first discussed in Section 2.6.2, but it is worth reviewing because it is impor
tant to understand how these classes work.

When a method is invoked, say karel.move(), Java looks for the move method
beginning with the object’s class. If the object was originally created with the phrase
newƒLeftDancer(...), Java will look for the move method beginning with the
LeftDancer class. That class has a move method, so it’s executed.

On the other hand, suppose that the turnLeft method was invoked. Once again, the
search for the method begins with the object’s class, LeftDancer. That class, however,
doesn’t have a turnLeft method. The search continues in its superclass, RobotSE. It
doesn’t have a turnLeft method either and so the search continues in its superclass.
Robot has a turnLeft method; that’s the method that is executed. The search for the
method to execute starts with the object’s actual class and proceeds up the inheritance
hierarchy until it is found. If no such method exists, that fact is determined when the
program is compiled and an error message is issued.

When the statement uses super to call the method, the search starts at a different
place—the superclass of the class containing the method. Thus, the statement
super.move() at lines 16, 18, and 20 in Listing 12-1 begins to search for move in the
RobotSE class, executing the first move method found as it moves up the inheritance
hierarchy. In this case, it executes the move method in the Robot class, resulting in the
familiar movement from one intersection to another.

12.1.2 Polymorphism via Inheritance

So far we haven’t seen anything new. LeftDancer could have been an assignment in
Chapter 2. So where is the polymorphism? It’s in how these classes are used.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 636

636
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

Let’s use these classes in a way that appears silly at first: Let’s assign a LeftDancer to
a RobotSE reference variable, as follows:

RobotSEƒkarelƒ=ƒnewƒLeftDancer(...);

Java allows this kind of assignment, as long as the reference on the right is a subclass of
the reference on the left. It would not work to assign a LeftDancer to a City variable
or even to a RightDancer variable because neither is a superclass of LeftDancer.

If we can do this, we can also put several LeftDancers and RightDancers into a sin
gle array. Imagine a chorus line of dancing robots, as implemented in Listing 12-2. The
core feature is an array that contains all the robots, no matter what their type.

Listing 12-2: An array filled with different kinds of robots

ch12/dancers/
1 importƒbecker.robots.*;

2

3 /** Run a chorus line of dancing robots.

4 *

5 *ƒ@author Byron Weber Becker */

6 publicƒclassƒDanceHallƒ

7 {
 Polymorphic Call
8 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
9 ƒƒ{ƒCityƒstageƒ=ƒnewƒCity();

10 ƒƒƒƒRobotSE[]ƒchoruslineƒ=ƒnewƒRobotSE[5];
11
12 ƒƒƒƒ// Initialize the array.
13 ƒƒƒƒchorusline[0]ƒ=ƒnewƒLeftDancer(
14 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstage,ƒ1,ƒ0,ƒDirection.EAST);
15 ƒƒƒƒchorusline[1]ƒ=ƒnewƒRightDancer(
16 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstage,ƒ2,ƒ0,ƒDirection.EAST);
17 ƒƒƒƒchorusline[2]ƒ=ƒnewƒLeftDancer(
18 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstage,ƒ3,ƒ0,ƒDirection.EAST);
19 ƒƒƒƒchorusline[3]ƒ=ƒnewƒRightDancer(
20 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstage,ƒ4,ƒ0,ƒDirection.EAST);
21 ƒƒƒƒchorusline[4]ƒ=ƒnewƒRobotSE(
22 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstage,ƒ5,ƒ0,ƒDirection.EAST);
23
24 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒchorusline.length;ƒi++)
25 ƒƒƒƒ{ƒchorusline[i].move();
26 ƒƒƒƒ}
27 ƒƒ}
28 }

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 637

637
12.1

IN
TRO

D
U
CTIO

N
 TO

 P
O
LYM

O
RPH

ISM

KEY IDEA

Polymorphism uses a
subclass as if it were
a superclass, relying

on the subclass to
override methods

appropriately.

KEY IDEA

Polymorphic
programs have key

identifying features.

(figure 12-2)

Class diagram for a

polymorphic robot

program

For now, remember that all of the objects in the array have a move method. We can tell
each of the robots to move with the loop in lines 24–26. But how do these robots
move? Do they move like instances of RobotSE because the array is declared that way,
or do they each move like the LeftDancer, RightDancer, or RobotSE that they
really are?

The answer is that each object executes the move method in its own class. That is, a
LeftDancermoves to the left because that’s how that kind of robot was defined to move.
RightDancers move to the right, as their move method says they should. The lone
RobotSE at the end of the line moves as any other instance of RobotSE would move.

This is polymorphism in action: the statement chorusline[i].move() tells a robot
to move, but this particular statement does not need to know or care what kind of
robot it is. For example, it doesn’t need to tell the LeftDancers to move to the left. It
just tells each robot to move and that robot moves in the way it is defined to move.
This is like a choreographer telling a dance troupe to “begin on the count of three: one,
two, three.” All the dancers begin dancing their parts without individual instruction
from the choreographer.

A class diagram for what we have just done is typical of polymorphic programs and is
shown in Figure 12-2. The characteristic feature is a superclass (RobotSE) that is
extended with at least two subclasses. Another class—DanceHall in this case—uses
instances of the subclasses as if they were the superclass.

RobotSE

methods omitted

LeftDancer

+LeftDancer(...)
+void move()

RightDancer

+RightDancer(...)
+void move()

DanceHall
-RobotSE[] chorusLine

methods omitted

*

Adding a New Method

Consider adding a pirouette method to both LeftDancer and RightDancer.
When a dancer pirouettes, she turns completely around. A LeftDancer turns to the
left, as follows, whereas a RightDancer turns to the right.

publicƒclassƒLeftDancerƒextendsƒRobotSE

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 638

638

{ƒ// Constructor and move method omitted.

CH
AP

TE
R

12
 |

PO
LY

M
O
RP

H
IS

M

ƒƒ/** Turn completely around. */

ƒƒpublicƒvoidƒpirouette()

ƒƒ{ƒthis.turnLeft();

ƒƒƒƒthis.turnLeft();

ƒƒƒƒthis.turnLeft();

ƒƒƒƒthis.turnLeft();

ƒƒ}

}

With this change, can we tell the dancers in chorusline to pirouette?

1 RobotSE[]ƒchoruslineƒ=ƒnewƒRobotSE[5];
2 // Initialization of chorusline is omitted.
3 forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒchorusline.length;ƒi++)
4 {ƒchorusline[i].pirouette();
5 }

We cannot. This code will not even compile because line 1 declares that each element of
chorusline will refer to a RobotSE object or one of its subclasses. Most kinds of
robots do not have a pirouette method and so the compiler assumes the worst—that
in line 4, chorusline[i] refers to an ordinary robot that lacks a pirouette method.

The rule is this: The type of the reference variable determines the names of the methods that
can be called; the type of the actual object determines which code is executed. In this exam
ple, chorusline[i] is the reference variable and its type is RobotSE. Therefore, the only
methods you can call are methods that appear in the RobotSE class. On the other hand,
when you call one of those methods (like chorusline[i].move()), the type of the actual
object (for example, LeftDancer) is what determines how the robot moves.

To include the pirouette method in a dancer’s repertoire, we need to add a new class,
as shown in Figure 12-3. The Dancer class extends RobotSE and adds a pirouette
method. The DanceHall class is changed to use an array of Dancer objects rather than
RobotSE. This implies that the single RobotSE object shown at line 17 of Listing 12-2
can no longer be included in the array because it is not a subclass of Dancer.

ch12/dancers2/

KEY IDEA

The reference’s type
determines which
methods can be
called; the object’s
type determines
which code is
executed.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 639

639

(figure 12-3)

Using an abstract class;

abstract classes and

methods are labeled

in italics

12.1
IN

TRO
D
U
CTIO

N
 TO

 P
O
LYM

O
RPH

ISM

KEY IDEA

An abstract
method enables

polymorphism even
when implementation
details are not known.

RobotSE

methods omitted

DanceHall
-Dancer[] chorusLine

methods omitted

* Dancer

+Dancer(...)
+void pirouette()

LeftDancer

+LeftDancer(...)
+void move()

RightDancer

+RightDancer(...)
+void move()

+void pirouette() +void pirouette()

Abstract Classes

When we write the code for the Dancer class, should pirouette turn to the left like
a LeftDancer or turn to the right like a RightDancer? No matter which choice we
make, it will be wrong for at least one of the subclasses.

The best option is to make pirouette an abstract method. Such a method includes
only the access modifier, return type, and signature (method name and parameter list).
The method body is replaced with a semicolon. For example:

/** Turn this dancer around 360 degrees in its preferred direction. */
publicƒabstractƒvoidƒpirouette();

The purpose of an abstract method is to declare a name that can be used polymorphi
cally, even though it does not declare how the method will be implemented.

Abstract methods must be overridden in a subclass to supply a method body. For
example, pirouette is overridden in LeftDancer with a method that turns to the
left; in RightDancer, it is overridden with a method that turns to the right.

A class that declares or inherits a method without a body is called an abstract class and
must be declared with the keyword abstract, as follows:

publicƒabstractƒclassƒDancerƒextendsƒRobotSE

An abstract class such as Dancer can be extended by another class, X, even though X

does not supply a body for pirouette. However, X must also be declared abstract.

An abstract class cannot be used to instantiate an object.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 640

640
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

When an abstract method or class is shown in a class diagram, its name will be in ital
ics, as shown in Figure 12-3.

12.1.3 Examples of Polymorphism

Let’s take a brief break from robots to examine a number of other examples where
polymorphism may be appropriate. All of these cases have the same basic structure as
the DanceHall example shown in Figure 12-2. In Figure 12-4, we give the participat
ing classes more general names so that in the examples that follow, we can identify
how the classes interact. We will use the names as follows:

➤	 The client class uses the services of another class. In the previous example,
DanceHall is the client that uses the services (move) of another class—it just
happens to use them polymorphically.

➤	 The abstract class is used to declare variables in the client. It also lists the methods
that can be used by the client. In Figure 12-2, RobotSE is the abstract class; in
Figure 12-3, it’s Dancer. (The class that defines the names used polymorphically
is called “abstract” even though it might not use the abstract keyword.)

➤	 A concrete class implements the methods named in the abstract class. In the pre
vious example, LeftDancer and RightDancer are both concrete classes.

Client * Abstract

-Abstract[] list

Concrete1 Concrete2

KEY IDEA

Names of abstract
methods and classes
are shown in italics in
class diagrams.

(figure 12-4)

Common pattern for

inheritance-based

polymorphism

Example: Bank Accounts

A Bank class (the client) has many Accounts (the abstract class). The Account class
has both an instance variable to maintain the account’s balance and methods to deposit
money, withdraw money, and transfer money to another account. It also has methods
to get the balance and to charge a service fee at the end of the month. See Figure 12-5.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 641

641

(figure 12-5)

Class diagram for a bank

MinBalanceAccount
-boolean wentBelowMin

+MinBalanceAccount(...)
+void withdraw(...)
+void serviceFee(...)

PerUseAccount
-int numWithdrawals

+PerUseAccount(...)
+void withdraw(...)

Bank
-Account[] accounts

methods omitted

* Account

-double balance
+Account(...)
+void deposit(...)
+void withdraw(...)
+void transfer(...)
+void getBalance()
+void serviceFee()

+void serviceFee(...)

12.1
IN

TRO
D
U
CTIO

N
 TO

 P
O
LYM

O
RPH

ISM

Polymorphic Call

However, each account is really an instance of MinBalanceAccount or PerUseAccount,
both concrete classes. A MinBalanceAccount is a kind of account that is free as long as
the customer maintains a minimum balance of $1,000. The withdraw method is overrid
den to set an instance variable if the balance ever goes below the minimum. The service fee
method is also overridden to charge (or not charge) the service fee.

Similarly, PerUseAccount overrides the withdraw method to count the number of
withdrawals. It also overrides the serviceFee method to charge the appropriate fee
based on the number of withdrawals.

With this design, the Bank class can process every transaction in the same way. It doesn’t
need to know or care what kind of account the customer has because each account will
handle the transaction in a manner that is appropriate for that account.

Example: Drawing Program

A drawing program constructs a drawing out of different kinds of shapes: ovals, rec
tangles, lines, polygons, characters, and so on. In this case, Drawing would be the
client class. It has an array of Shape objects. Shape is the abstract class. It’s most cru
cial method is draw.

Classes like Oval, Rectangle, and Line are the concrete classes that extend Shape.
Each of them override the draw method to draw the appropriate shape: an Oval draws
an oval, a Rectangle draws a rectangle, and a Line draws a line.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 642

642

With this design, the Drawing class can draw the entire image with a simple for loop,
which tells each Shape object in its array to draw itself, as follows:

CH
AP

TE
R

12
 |

PO
LY

M
O
RP

H
IS

M

forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.numShapes;ƒi++)
{ƒthis.shapes[i].draw(...);
}

Polymorphic Call

Example: Computer-Game Strategies

Computer versions of chess, Monopoly, and various card games have two or more
players. Sometimes the players are people and sometimes the computer controls the
extra players. Sometimes the computer has several skill levels.

Each Player object must have a strategy for generating its next move. There might be
several ways to do this: ask a human for the next move, find the first legal move, gen
erate a random move, or invoke some sophisticated “artificial intelligence.”

The idea of polymorphism is useful here. Player is the client class. Rather than an array,
it has a single instance variable holding a MoveStrategy object. This class is the abstract
class shown in Figure 12-4. Its most important method is getNextMove. MoveStrategy Strategy
is extended by several concrete classes: AskUserStrategy, FirstLegalStrategy,
RandomStrategy, and AIStrategy. They each override getNextMove to get the next
move for the player in their own particular way (see Figure 12-6).

MoveStrategy

+int getNextMove()

AskUserStrategy

FirstLegalStrategy

Player
-MoveStrategy mStrategy

RandomStrategy

AIStrategy

+int getNextMove() +int getNextMove()

+int getNextMove() +int getNextMove()

(figure 12-6)

Class diagram of a

Player class that uses a

polymorphic move

strategy

When the game program is set up this way, a Player object can ask for its next move
without knowing or caring which particular strategy is being used to generate the
move. The strategy can even be changed mid-game by simply assigning a new subclass
of MoveStrategy to the Player object’s instance variable.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 643

643

KEY IDEA

Java interfaces
separate what an

object can do from
how it can be

implemented.

12.1.4 Polymorphism via Interfaces

In a polymorphic program, the client says what it wants done (move) but not how.
How the task is accomplished is determined by the details of the concrete classes.

When polymorphism is achieved via inheritance, the abstract class and the superclass
are the same. That combination constrains both what can be done and how it can be
implemented. The superclass already contains the methods that can be called, limiting
what can be done by the client. The fact that the concrete classes extend the abstract
class means that they are not free to extend another class, thus limiting how tasks are
accomplished.

Java interfaces provide another way to implement polymorphism that cleanly separates
what can be done from how it can be implemented. Recall from Section 7.6 that inter
faces list method signatures and return types, but do not provide the method bodies.
For example, the following is an interface for classes that can move:

publicƒinterfaceƒIMove
{
ƒƒ/** Move this object. */
ƒƒpublicƒvoidƒmove();
}

We can use this interface with LeftDancer and RightDancer by including the
implements keyword and the interface name in the class declaration, as follows:

publicƒclassƒLeftDancerƒextendsƒRobotSEƒimplementsƒIMove
{ƒ// Constructor omitted.
ƒƒpublicƒvoidƒmove()
ƒƒ{ƒ// Same as the move method in Listing 12-1.
ƒƒ}
}

The implements clause causes the compiler to verify that LeftDancer, or one of its
superclasses, implements all of the methods listed in the IMove interface.

DanceHall, the client class, can use the interface to declare the array of dancers, as
follows:

IMove[]ƒchoruslineƒ=ƒnewƒIMove[5];
chorusLine[0]ƒ=ƒnewƒLeftDancer(stage,ƒ1,ƒ0,ƒDirection.EAST);

However, an instance of RobotSE cannot be inserted into the array because it does not
implement IMove.

It may seem that we haven’t gained anything by introducing IMove. But imagine a
parade of robots where a LeftDancer and a RightDancer are carrying a banner. We
want the banner to float above everything in the city and display the text “Robot

12.1
IN

TRO
D
U
CTIO

N
 TO

 P
O
LYM

O
RPH

ISM

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 644

644

Parade”. The banner should move as the robots move. Figure 12-7 shows two screen
captures of such a program.

CH
AP

TE
R

12
 |

PO
LY

M
O
RP

H
IS

M

(figure 12-7)

Before and after moving

robots and their banner

A class implementing such a banner is shown in Listing 12-3. It displays a small win
dow that floats above all other windows. It has a move method to move it a given dis
tance. It extends JDialog but also implements the IMove interface and can therefore
be put in the same array as the robots that carry it, as follows:

ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒ{ƒCityƒcƒ=ƒnewƒCity();

Polymorphic Call ƒƒƒƒIMove[]ƒmoversƒ=ƒnewƒIMove[3];

ƒƒƒƒmovers[0]ƒ=ƒnewƒLeftDancer(c,ƒ1,ƒ1,ƒDirection.EAST);

ƒƒƒƒmovers[1]ƒ=ƒnewƒRightDancer(c,ƒ3,ƒ1,ƒDirection.EAST);

ƒƒƒƒmovers[2]ƒ=ƒnewƒBanner(80,ƒ165,ƒ40,ƒ"Robot Parade");

ƒƒƒƒforƒ(intƒnumMovesƒ=ƒ0;ƒnumMovesƒ<ƒ2;ƒnumMoves++)

ƒƒƒƒ{ƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒmovers.length;ƒi++)

ƒƒƒƒƒƒ{ƒmovers[i].move();

ƒƒƒƒƒƒ}

ƒƒƒƒ}

ƒƒ}

For both the banner and the robots, the client can say what to do (move), but the
details of how they move are very different. This is the essence of polymorphism, but
using an interface instead of extending a class.

Listing 12-3: A banner that floats above a city and everything in it

ch12/iMove/
1 importƒjavax.swing.*;

2

3 /** A "banner" that passes over a robot city.

4 *

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 645

645
12.1

IN
TRO

D
U
CTIO

N
 TO

 P
O
LYM

O
RPH

ISM

Listing 12-3: A banner that floats above a city and everything in it (continued)

5 *ƒ@author Byron Weber Becker */
6 publicƒclassƒBannerƒextendsƒJDialogƒimplementsƒIMove
7 {ƒprivateƒintƒx;
8 ƒƒprivateƒintƒy;
9 ƒƒprivateƒintƒdeltaX;

10
11 ƒƒ/** Display a message in a floating window.
12 ƒƒ*ƒ@param initX The initial x position of the banner.
13 ƒƒ*ƒ@param initY The initial y position of the banner.
14 ƒƒ*ƒ@param moveX The distance to move.
15 ƒƒ*ƒ@param msg The msg to display. */
16 ƒƒpublicƒBanner(intƒinitX,ƒintƒinitY,ƒintƒmoveX,ƒStringƒmsg)
17 ƒƒ{ƒsuper();
18 ƒƒƒƒthis.deltaXƒ=ƒmoveX;
19 ƒƒƒƒthis.xƒ=ƒinitX;
20 ƒƒƒƒthis.yƒ=ƒinitY;
21 ƒƒƒƒthis.setSize(20,ƒ60);
22 ƒƒƒƒthis.setLocation(this.x,ƒthis.y);
23 ƒƒƒƒthis.setAlwaysOnTop(true);
24 ƒƒƒƒthis.setContentPane(newƒJLabel(msg));
25 ƒƒƒƒthis.setVisible(true);
26 ƒƒ}
27
28 ƒƒ/** Move the banner. */
29 ƒƒpublicƒvoidƒmove()
30 ƒƒ{ƒthis.xƒ+=ƒthis.deltaX;
31 ƒƒƒƒthis.setLocation(this.x,ƒthis.y);ƒ
32 ƒƒ}
33 }

12.1.5 The Substitution Principle

A key to understanding polymorphism is the substitution principle, introduced by
Barbara Liskov. It says that an object of one type, A, can substitute for an object of
another type, B, if A can be used any place that B can be used.

For example, consider an automobile rental agency that has vans, sports cars, and
sedans. If a customer calls a week ahead to reserve an automobile, the agency can sub
stitute a van if that’s what is most available. A van is a kind of automobile and can do
everything an automobile can do. On the other hand, if the customer called to reserve

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 646

646
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

a van, the agency cannot substitute a sports car. Maybe the customer specifically needs
the extra passenger space provided by the van.

In Java, a subclass can always be used anywhere the superclass can be used. A
LeftDancer (the subclass) can always be substituted for a Dancer (the superclass)—
just like a van (the subclass) can be substituted for an automobile (the superclass).
Why? Inheritance guarantees that a LeftDancer has all of the methods that a
RobotSE has.

Similarly, a class such as Banner can be substituted for its interface because the com
piler guarantees that every method named in the interface will be implemented in the
concrete class.

A polymorphic program exploits the fact that even though a concrete class may be sub
stituted for the abstract class, they do not necessarily act the same way. The key feature
of a polymorphic program is setting up the classes so that some operations can be per
formed without knowing the actual types of the objects being used.

12.1.6 Choosing between Interfaces and Inheritance

We’ve seen that a polymorphic program can be written using either interfaces or inher
itance. On what basis do we choose one approach over the other?

The simple rule is to use an interface unless there is some commonality between all the
concrete classes that can be implemented in a superclass.

In the first example, LeftDancer and RightDancer have many common details that
are implemented in RobotSE and its superclasses. These include the ability to move the
usual way, turn left or right, and display itself in the city. In the second example, there
are no such commonalities. The robots and the banner are implemented completely
differently with different superclasses—and thus an interface was appropriate.

In Chapter 11 we talked about loose coupling being a good design decision. That is,
classes should depend on each other as little as possible. Modern object-oriented
design makes extensive use of interfaces to cleanly separate what classes do from how
they do them. That is, a client that uses interfaces is less dependent than one that does
n’t. If another concrete class becomes available that implements the interface, it can be
substituted with no change to the client. That’s loose coupling!

KEY IDEA

A subclass that does
things differently can
be substituted for the
superclass.

KEY IDEA

Classes can be
substituted for the
interfaces they
implement.

KEY IDEA

Use interfaces for
polymorphism unless
there is a reason to
use inheritance.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 647

647

12.2 Case Study: Invoices

12.2
C

ASE S
TU

D
Y: IN

VO
ICES

In Sections 8.3 and 11.2.2 we studied a simple design methodology to help us start writing
an object-oriented program. We now extend that methodology for the last time to incor
porate polymorphism. The changes from Section 8.3 are shown in italics in Figure 12-8.

(figure 12-8) 1. Read the description of what the program is supposed to do, highlighting the nouns
and noun phrases. These are the objects your program must declare. Object-oriented design
a.	 If there are any objects that cannot be directly represented using existing types,

methodology define classes to represent such objects.
b.	 If two or more classes have common attributes and pass the ‘is-a’ test, consolidate

those attributes into a superclass, and extend the superclass to define the classes.
2. Highlight the verbs and verb phrases in the description. These are the services.

If a service is not predefined:
a.	 Define a method to perform the service.
b.	 Place it in the class responsible for providing the service.
c.	 Where necessary, override methods in subclasses.
d.	 If a class is responsible for a service but cannot implement it, declare an

abstract method.
3. Apply the services from Step 2 to the objects from Step 1 in a way that solves

the problem.

In this section, we’ll see how this methodology works by applying it to an invoicing
application. The problem statement (or specification) and a sample invoice are shown
in Figure 12-9.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 648

648
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

Print an invoice to request payment for items provided to a customer by the company.
The invoice shows the customer’s name and address, and the total invoice amount.

In addition to the above, add one line item for each group of identical items sold.
Each line item shows the quantity of items sold, a description, the unit cost, and the
total amount charged for items in the group.

The company provides three kinds of items:

Goods (like computers or software): calculate the amount charged as the
quantity times the unit cost.

Services (such as providing an Internet connection or a service contract
on a computer): calculate the amount charged as the quantity
(number of connections or contracts) times the unit cost per month
times the number of months.

Consulting: calculate the amount charged as the hourly rate times the
time spent.

A sample invoice is shown below. Notice that some of the variation between different
kinds of items is shown in the description.

(figure 12-9)

Problem statement

for a simple invoicing

application

Computers To You
1 Byte Way
Waterloo, Ontario N2G 3H4

Byron Weber Becker
122 Nomad Street
Waterloo, Ontario N2L 3G1

Qty Description
Unit
Cost Amount

3 Desktop computers $1,750.00 $5,250.00
1 Premium office suite $750.00 $750.00
3 Computer service contracts (12 months) $5.95 $214.20
1 Consulting re: printer installation (0.75 hrs) $75.00 $56.25
1 Consulting re: LAN wiring (5.00 hrs) $75.00 $375.00

Total: $ 6,645.45

12.2.1 Step 1: Identifying Objects and Classes

Step 1 in the object-oriented design methodology (Figure 12-8) tells us to highlight the
nouns and noun phrases. Recall that a noun is a word that can refer to a person, place,
or thing and is often the subject or object of a verb. The nouns and noun phrases in the
problem statement are listed in Figure 12-10 in the left column.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 649

649

(figure 12-10)

Nouns and noun

phrases from the

problem statement

Nouns and Noun Phrases Types Class Names
invoice Invoice

payment for items provided
customer Customer

company Company

customer’s name String

customer’s address Address

total invoice amount double

line item LineItem

group of identical items sold
quantity of items sold int

description of items sold String

unit cost of items sold double

total amount charged for items in the group double

items Item

goods Good

amount charged double

services Service

unit cost per month double

number of months int

consulting Consulting

hourly rate double

time spent double

12.2
C

ASE S
TU

D
Y: IN

VO
ICES

LOOKING BACK

“Is-a” and “Has-a”
are two ways of

relating classes. They
were discussed in

Section 8.1.3.

Some of the nouns are not relevant and can be eliminated. For example, “payment for
items provided” is in a clause explaining the purpose of the system and represents some
thing the customer does in response to receiving an invoice. Similarly, “group of identical
items sold” seems to define the term “line item.” These two noun phrases are crossed out
in the list.

Some nouns in the list duplicate each other. For example, two entries in the table talk about
“unit cost.” Furthermore, the sample invoice shows the hourly rate for consulting in the
unit cost column. They can probably all be combined into the single term “unit cost.”

Some of these nouns can be represented with existing types such as integers and strings.
These are noted in the middle column. Other nouns will require that we define a class, as
suggested by Step 1a of Figure 12-8. Suggested class names are shown in the right column.

Class Relationships

We’ve identified a number of potential classes in Figure 12-10. How are they related to
each other? If we use the “is-a” and “has-a” tests, the sentence “An invoice has a
customer” makes much more sense than “An invoice is a customer.” Similarly, “A cus
tomer has an address” and “An invoice has a line item” make more sense than saying
“A customer is an address” or “An invoice is a line item.”

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 650

650
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

Examining the specification’s three paragraphs related to the three kinds of items indi
cates that Goods have amounts charged, quantities, and unit costs. Services, on the
other hand, have amounts charged, quantities, unit costs per month, and the number of
months. Finally, Consulting objects have hourly rates and time spent. We see that
these classes definitely have some common attributes; therefore, Step 1b of Figure 12-8
(which suggests forming a superclass) may apply. The phrase “three kinds of items”
suggests that we might name the superclass Item and already hints that inheritance
may be appropriate.

The remaining question is whether these classes pass the “is-a” test. Recall that the “is
a” test consists of forming a sentence using “is-a” or “is a kind of” with the two classes
in question. For example, “A Service is a kind of Item” or “A Consulting is a kind
of Item.”

These sentences don’t sound quite right. The problem might be that the inheritance
relationship isn’t correct. However, the specification explicitly says that there are
“three kinds of items: goods, services, and consulting.”

Perhaps the problem with these sentences is the names we’ve chosen. “Service” and “con
sulting” refer to what the company provided to the customer. In programming the invoic
ing system, we are really concerned with what goes on the invoice to represent the goods
and the consulting. That is, we’re most concerned with the line items. The sample invoice
shown in Figure 12-9 has five line items. The first line item is for three computers, the sec
ond line item is for an office suite, the third is for service contracts, and the last two line
items are for consulting.

The three “kinds of items” the specification refers to are three kinds of line items. If we
name them GoodsLineItem, ServicesLineItem, and ConsultingLineItem, then
an is-a statement like “A GoodsLineItem is a kind of LineItem” makes sense. We
can conclude that inheritance is appropriate.

These relationships are shown in Figure 12-11. Observe the striking resemblance to the
common pattern for polymorphism shown in Figure 12-4.

KEY IDEA

Choose appropriate
names for classes.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 651

651

LineItem

-int quantity
-String description
-double unitCost

Invoice

-LineItem[] items
-int numItems

1..*

Customer(figure 12-11)

Initial class diagram for

the invoicing system

Address

12.2
C

ASE S
TU

D
Y: IN

VO
ICES

GoodsLineItem ServicesLineItem

-int numMonths

ConsultingLineItem

-double hours

KEY IDEA

If an attribute is in a
superclass, it should

be applicable to all
the subclasses.

KEY IDEA

Some attributes do
not belong in the

superclass.

Assigning Attributes

Some of the nouns and noun phrases will correspond to attributes in these classes. An
initial assignment is also shown in Figure 12-11. The Customer and Address classes
are not relevant to the main topics of this chapter and are omitted from the rest of the
discussion.

We know from the specification’s second paragraph that each line item shows a quan
tity, description, unit cost, and amount. These seem like good attributes to add to the
LineItem class. Before we do that, however, we should check two things. First, is it
better to compute the value or store it in an attribute? The amount seems like a value
that is better computed by a method than stored in an attribute, especially given the
extensive explanations about how to calculate it from other values.

Second, before placing these attributes in the LineItem class we should ask whether
they apply to all of LineItem’s subclasses. A quick glance at the sample invoice shows
that each kind of line item shows all the values. Therefore we conclude that quantity,
description, and unit cost can go into LineItem.

The time spent consulting and the number of months a service is provided are obvi
ously unique to ConsultingLineItem and ServicesLineItem, respectively.

The remaining attributes all seem to be variations of attributes we have already discussed.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 652

652
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

12.2.2 Step 2: Identifying Services

Step 2 of the object-oriented design methodology in Figure 12-8 is to identify potential
services by considering the verbs in the specification. The verbs, with slight transfor
mations to show context, are shown in Figure 12-12.

print an invoice (figure 12-12)
request payment for items

Verbs from the problem’s provide items to a customer
show customer name, address, total amount billed specification
add a line item
show line item info (quantity, description, unit cost, total amount)
calculate the amount charged for goods
calculate the amount charged for services
calculate the amount charged for consulting

As with nouns, some of the verb phrases may not belong. For example, “request pay
ment” describes the purpose of the invoice and “provide items to a customer” is some
thing the company does. Neither are things that this computer system should do. Both
are crossed off the list.

Assigning Methods to Classes

Printing an invoice is an activity of the Invoice class and is assigned there, as is
adding a line item. Showing the quantity, description, unit cost, and amount are asso
ciated with all line item objects, so we will assign these to the LineItem class. They
are most likely to be used by the print method to get the associated values, so we’ll
name them getX rather than showX (where X is replaced with a name).

Each line item must calculate the amount to charge for the goods, services, or consult
ing it represents. On the other hand, we also know that these values are all calculated
differently, strongly suggesting that calcAmount should be an abstract method in
LineItem. This allows it to be called polymorphically, but defers the decision of how
to calculate the amount to the appropriate subclasses.

The sample invoice shows that the description is displayed differently for each kind of
line item. A ConsultingLineItem displays the number of hours and a
ServicesLineItem displays the number of months. This seems similar to
calcAmount, suggesting another abstract method. However, we also need an accessor
method in LineItem for description, suggesting an accessor method that is over
ridden as needed in the subclasses.

Figure 12-13 shows the class diagram with these assignments made.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 653

LineItem

-int quantity
-String description
-double unitCost

+LineItem(int aQuantity,

+int getQuantity()
+String getDescription()
+double getUnitCost()
+double calcAmount()

653
12.2

C
ASE S

TU
D
Y: IN

VO
ICES

(figure 12-13)

Methods assigned to

classes

ConsultingLineItem

-double hours

+ConsultingLineItem(...)
+double calcAmount()
+String getDescription()

GoodsLineItem

+GoodsLineItem(...)
+double calcAmount()

Invoice

-LineItem[] items
-int numItems

+Invoice(...)
+void print(...)
+void add(...)

1..*

String aDescr,
double aUnitCost)

ServicesLineItem

-int numMonths

+ServicesLineItem(...)
+double calcAmount()
+String getDescription()

Implementing Methods

Relevant portions of the LineItem class are shown in Listing 12-4. There is nothing
unusual about it except for the abstract method to calculate the line item’s amount
(line 23) and the resulting abstract keyword applied to the class (line 4).

ch12/invoice/

Listing 12-4: The LineItem class with an abstract method

1 /** A line item is one kind of thing provided by the company for the customer.
2 *
3 *ƒ@author Byron Weber Becker */
4 publicƒabstractƒclassƒLineItemƒextendsƒObject
5 {
6 ƒƒprivateƒintƒquantity;
7 ƒƒprivateƒStringƒdescription;
8 ƒƒprivateƒdoubleƒunitCost;
9

10 ƒƒ/** Construct a new line item.
11 ƒƒ*ƒ@param aQuantity ƒƒƒThe number of things provided to the customer.
12 ƒƒ*ƒ@param aDescr ƒƒƒA description of the things provided.
13 ƒƒ*ƒ@param aunitCost ƒƒƒThe cost of each of the things. */
14 ƒƒpublicƒLineItem(intƒaQuantity,ƒStringƒaDescr,ƒ
15 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒdoubleƒaUnitCost)
16 ƒƒ{ƒsuper();
17 ƒƒƒƒthis.quantityƒ=ƒaQuantity;
18 ƒƒƒƒthis.descriptionƒ=ƒaDescr;

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 654

654
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

Listing 12-4: The LineItem class with an abstract method (continued)

19 ƒƒƒƒthis.unitCostƒ=ƒaUnitCost;
20 ƒƒ}
21
22 ƒƒ/** Calculate the total amount owing due to this line item. */
23 ƒƒpublicƒabstractƒdoubleƒcalcAmount();
24
25 ƒƒ// Accessor methods omitted.
26 }

The interesting methods in ServicesLineItem are implemented as shown in
Listing 12-5. Invoicing for services requires knowing the number of months the ser
vice is provided, resulting in the instance variable numMonths in line 6. A value to
initialize numMonths is passed as an argument to the constructor, also with values to
initialize the superclass. It is common for a subclass’ constructor to have more para
meters than the superclass. It uses some of them to initialize its own instance vari
ables, and passes the rest of them to the superclass.

This class provides a body for calcAmount (lines 20–23). Because the quantity and
unit cost of the service contracts are stored in LineItem, accessor methods are used to
get their values.

The getDescription method is overridden to add the number of months to the
description.

Listing 12-5: Implementing the interesting methods in the ServicesLineItem class

1 /** Invoice the customer for 1 or more identical service contracts.
2 *
3 * @author Byron Weber Becker */
4 publicƒclassƒServicesLineItemƒextendsƒLineItemƒ
5 {
6 ƒƒprivateƒintƒnumMonths;
7
8 ƒƒ/** Construct a new line item for services provided.
9 ƒƒ*ƒ@param aQuantity The number of service contracts provided to the customer.

10 ƒƒ*ƒ@param aDescr A description of the services provided.
11 ƒƒ*ƒ@param aMthlyCost The monthly cost of each service contract.
12 ƒƒ*ƒ@param aNumMonths The number of months the service contract lasts. */
13 ƒƒpublicƒServicesLineItem(intƒaQuantity,ƒStringƒaDescr,ƒ
14 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒdoubleƒaMthlyCost,ƒintƒaNumMonths)
15 ƒƒ{ƒsuper(aQuantity,ƒaDescr,ƒaMthlyCost);

ch12/invoice/

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 655

655

Listing 12-5: Implementing the interesting methods in the ServicesLineItem class (continued)

16 ƒƒƒƒthis.numMonthsƒ=ƒaNumMonths;
17 ƒƒ}
18
19 ƒƒ/** Calculate the total amount owing due to this line item. */
20 ƒƒpublicƒdoubleƒcalcAmount()
21 ƒƒ{ƒreturnƒthis.getQuantity()ƒ*ƒthis.getUnitCost()ƒ
22 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ*ƒthis.numMonths;
23 ƒƒ}
24
25 ƒƒ/** Get the description of the services represented by this line item. */
26 ƒƒpublicƒStringƒgetDescription()
27 ƒƒ{ƒreturnƒsuper.getDescription()ƒ+ƒ
28 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ" ("ƒ+ƒthis.numMonthsƒ+ƒ" months)";
29 ƒƒ}
30 }

A12.2
C

ASE S
TU

D
Y: IN

VO
ICES

Polymorphic Call

12.2.3 Step 3: Solving the Problem

The last step in the object-oriented design methodology shown in Figure 12-8 is to
“apply the services from Step 2 to the objects from Step 1 in a way that solves the prob
lem.” We won’t solve the entire problem here. We will focus on the print method in
Invoice to show how it uses polymorphism and the inheritance hierarchy we’ve built.
We’ll also briefly discuss how to read invoices from a file.

Printing Invoices

The following pseudocode for print follows directly from the sample invoice shown
in Figure 12-9.

print the company’s address
print the customer’s address
print column headers
totalAmountBilled = 0
for each line item
{ print the quantity, description, unit cost and amount

totalAmountBilled = totalAmountBilled + amount
}
print totalAmountBilled

This code is polymorphic because it does not need to know or care what kind of line
item object is in the array of line items. Thanks to polymorphism, the print method

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 656

656
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

can simply call the calcAmount and getDescription methods and they will return
a value appropriate to their actual type.

However, we should recall the lessons learned in Chapter 11. The code inside the loop
separates the processing (printing a line item) from the data (information stored in the
line item). A better design would keep the data and processing together by placing a
print method in the LineItem class. The print method in the Invoice class calls
LineItem’s print polymorphically, as shown in Listing 12-6.

Listing 12-6: The simplified print method in the Invoice class

1 publicƒclassƒInvoiceƒextendsƒObject
2 {
3 ƒƒprivateƒLineItem[]ƒitemsƒ=ƒnewƒLineItem[1];
4 ƒƒprivateƒintƒnumItemsƒ=ƒ0;
5 ƒƒ// Constructors, methods, and some instance variables omitted.
6
7 ƒƒpublicƒvoidƒprint(PrintWriterƒout)
8 ƒƒ{ƒthis.printCompanyAddress(out);
9 ƒƒƒƒthis.printCustomerAddress(out);

10 ƒƒƒƒthis.printColumnHeaders(out);
11
12 ƒƒƒƒdoubleƒtotalAmountBilledƒ=ƒ0.0;
13 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.numItems;ƒi++)
14 ƒƒƒƒ{ƒLineItemƒitemƒ=ƒthis.items[i];
15 ƒƒƒƒƒƒitem.print(out);ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// polymorphism
16 ƒƒƒƒƒƒdoubleƒamtƒ=ƒitem.calcAmount();ƒƒƒ// polymorphism
17 ƒƒƒƒƒƒtotalAmountBilledƒ=ƒtotalAmountBilledƒ+ƒamt;
18 ƒƒƒƒ}
19
20 ƒƒƒƒthis.printTotal(out,ƒtotalAmountBilled);
21 ƒƒ}
22 }

ch12/invoice/

The print method itself is shown in Listing 12-7.

Listing 12-7: A method to print one LineItem

ch12/invoice/
1 publicƒabstractƒclassƒLineItemƒextendsƒObject

2 {

3 ƒƒprivateƒstaticƒfinalƒNumberFormatƒmoneyƒ=ƒ

4 ƒƒƒƒƒƒƒƒƒNumberFormat.getCurrencyInstance();

5 ƒƒ// Some instance variables, constructors, and methods omitted.

6

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 657

657
12.2

C
ASE S

TU
D
Y: IN

VO
ICES

Listing 12-7: A method to print one LineItem (continued)

7 ƒƒ/** Print this line item to the specified file. */
8 ƒƒpublicƒvoidƒprint(PrintWriterƒout)
9 ƒƒ{ƒout.printf("%3d %-50s%10s%10s%n",

10 ƒƒƒƒƒƒƒƒƒƒthis.getQuantity(),ƒ
11 ƒƒƒƒƒƒƒƒƒƒthis.getDescription(),ƒ
12 ƒƒƒƒƒƒƒƒƒƒthis.money.format(this.unitCost),
13 ƒƒƒƒƒƒƒƒƒƒthis.money.format(this.calcAmount()));
14 ƒƒ}
15 }

KEY IDEA

Polymorphism can
also occur when an

overridden method is
called from a

superclass.

KEY IDEA

Include data in the
file that says what
kind of subclass to

construct.

Polymorphism is at work in this example in two ways. The first is calling print poly
morphically from the Invoice class. The second is that each use of the keyword this
inside LineItem’s print method refers to one of the three concrete classes. Therefore,
this.getDescription() will search for the method getDescription beginning
with the concrete class, one of GoodsLineItem, ServicesLineItem, or
ConsultingLineItem. If getDescription was overridden, the more specialized
version will be called. Furthermore, when calcAmount is called in line 13, the version
in this line item’s concrete class will be called. This is polymorphism because the client,
LineItem, doesn’t need to know or care what kind of line item it is. Because it is call
ing methods that may be overridden, this method has a lot in common with the
Template Method pattern studied in Section 3.5.3.

Reading an Invoice from a File

Reading an invoice from a file is trickier than the examples covered in Chapter 9
because of polymorphism. The file must contain all the information needed to recon
struct the different kinds of line items. This has two implications. First, the file must
indicate which of the various subclasses of LineItem to construct; second, the file
must store more data for some line items than for others.

One possible file format is shown in the example in Figure 12-14. It contains customer
information followed by the line items. Each line item uses two or more lines. The first
line in each group is a string indicating which class to construct. The remaining lines in
the group contain the data used to initialize the objects.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 658

Byron Weber Becker
122 Nomad Street
Waterloo, ON N2L 3G1
GoodsLineItem
3 1750.00 Desktop computers
ConsultingLineItem
1 75.00 Consulting re: LAN wiring
5.00
ServicesLineItem
3 5.95 Computer service contracts
12
ConsultingLineItem
1 75.00 Consulting re: printer installation
0.75
GoodsLineItem
1 750.00 Premium office suite

Customer information

One line item

Another line item

Type of line item

Information common to all line items
(quantity, unit price, description)

Information specific to
ConsultingLineItem
(number of hours)

658
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

(figure 12-14)

One possible file format

for storing line items

An Invoice constructor that reads this file is shown in Listing 12-8. It repeatedly
reads a line identifying the type of line item required (line 13). The cascading-if state
ment in lines 14–22 calls the appropriate constructor based on the name that was read.
By the time control returns to line 12, all of the data for that line item has been read,
and the program is ready to read the name of the next subclass.

Listing 12-8: A constructor for the Invoice class

ch12/invoice/
1 publicƒclassƒInvoiceƒextendsƒObject

2 {

3 ƒƒprivateƒLineItem[]ƒitemsƒ=ƒnewƒLineItem[1];

4 ƒƒprivateƒintƒnumItemsƒ=ƒ0;

5 ƒƒ// Some constructors, methods, and instance variables omitted.

6

7 ƒƒ/** Read an invoice from a file. */

8 ƒƒpublicƒInvoice(Scannerƒin)

9 ƒƒ{ƒthis.customerƒ=ƒnewƒCustomer(in);

10

11 ƒƒƒƒ// Read and construct the line items, putting them in the array.

12 ƒƒƒƒwhileƒ(in.hasNextLine())
13 ƒƒƒƒ{ƒStringƒsubclassƒ=ƒin.nextLine();
14 ƒƒƒƒƒƒifƒ(subclass.equals("GoodsLineItem"))
15 ƒƒƒƒƒƒ{ƒthis.addLineItem(newƒGoodsLineItem(in));
16 ƒƒƒƒƒƒ}ƒelseƒifƒ(subclass.equals("ServicesLineItem"))
17 ƒƒƒƒƒƒ{ƒthis.addLineItem(newƒServicesLineItem(in));
18 ƒƒƒƒƒƒ}ƒelseƒifƒ(subclass.equals("ConsultingLineItem"))
19 ƒƒƒƒƒƒ{ƒthis.addLineItem(newƒConsultingLineItem(in));
20 ƒƒƒƒƒƒ}ƒelse
21 ƒƒƒƒƒƒ{ƒthrowƒnewƒError("Unknown subclass: "ƒ+ƒsubclassƒ+ƒ".");
22 ƒƒƒƒƒƒ}
23 ƒƒƒƒ}
24 ƒƒ}

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 659

659
12.2

C
ASE S

TU
D
Y: IN

VO
ICES

Listing 12-8: A constructor for the Invoice class (continued)

25
26 ƒƒ/** Add one line item to items array. Enlarge the array, if necessary. */
27 ƒƒpublicƒvoidƒaddLineItem(LineItemƒitem)
28 ƒƒ{ƒ// Remainder of method omitted.
29 ƒƒ}
30 }

KEY IDEA

Each class reads the
data it needs to
initialize itself.

ch12/invoice/

The remaining task is to write the constructors needed to read a line item. A total of
four are required: one for LineItem and one for each of the subclasses. The
LineItem constructor will be called using super in each of the subclass constructors.
After it has read the information it requires, reading will resume in the subclass con
structor. It reads any remaining information to initialize its own instance variables.
Listing 12-9 shows the relevant code for LineItem, and Listing 12-10 shows the rele
vant code for ConsultingLineItem.

Listing 12-9: A constructor to read information for one LineItem object from a file

1 publicƒabstractƒclassƒLineItemƒextendsƒObject
2 {ƒprivateƒintƒquantity;
3 ƒƒprivateƒdoubleƒunitCost;
4 ƒƒprivateƒStringƒdescription;
5
6 ƒƒpublicƒLineItem(Scannerƒin)
7 ƒƒ{ƒsuper();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// Read only the data stored in this class.
8 ƒƒƒƒthis.quantityƒ=ƒin.nextInt();
9 ƒƒƒƒthis.unitCostƒ=ƒin.nextDouble();

10 ƒƒƒƒthis.descriptionƒ=ƒin.nextLine();
11 ƒƒ}
12
13 ƒƒ// Remainder of class omitted.
14 }

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 660

660
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

Listing 12-10: A constructor showing how to use a constructor in the superclass

1 publicƒclassƒConsultingLineItemƒextendsƒLineItem
2 {ƒprivateƒdoubleƒhours;
3
4 ƒƒpublicƒConsultingLineItem(Scannerƒin)
5 ƒƒ{ƒsuper(in);ƒƒƒƒƒ// Superclass reads what it needs from the file, leaving the
6 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// file cursor just before the number of consulting hours.
7 ƒƒƒƒthis.hoursƒ=ƒin.nextDouble();
8 ƒƒƒƒin.nextLine();
9 ƒƒ}

10
11 ƒƒ// Remainder of class omitted.
12 }

ch12/invoice/

Using a Factory Method

The approach shown in the preceding listings works. Its disadvantage is the complex
ity in the Invoice constructor that has little to do with invoices and much to do with
line items.

A better approach is to move the complexity of determining which subclass to con
struct and the actual construction into a static method named read in the LineItem
class. That method can determine which kind of line item is next in the file, construct
one, and return it. read must be a method and not a constructor because a method can
return a subclass of LineItem—something a constructor can’t do.

The read method, shown in Listing 12-11, is very similar to lines 13–22 in Listing 12-8.
It must be static so that it can be called without an instance of an object.

KEY IDEA

A static method can
return the required
subclass of
LineItem.

Listing 12-11: A factory method

ch12/invoice/
1 publicƒabstractƒclassƒLineItemƒextendsƒObject
2 { // Instance variables, constructors, and most methods omitted.
3
4 ƒƒpublicƒstaticƒLineItemƒread(Scannerƒin)
5 ƒƒ{ƒStringƒsubclassƒ=ƒin.nextLine();
6 ƒƒƒƒifƒ(subclass.equals("GoodsLineItem"))
7
8

ƒƒƒƒ{ƒreturnƒnewƒGoodsLineItem(in);
ƒƒƒƒ}ƒelseƒifƒ(subclass.equals("ServicesLineItem"))

Factory Method

9 ƒƒƒƒ{ƒreturnƒnewƒServicesLineItem(in);
10 ƒƒƒƒ}ƒelseƒifƒ(subclass.equals("ConsultingLineItem"))

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 661

661
12.3

P
O
LYM

O
RPH

ISM
 W

ITH
O
U
T A

RRAYS

Listing 12-11: A factory method (continued)

11 ƒƒƒƒ{ƒreturnƒnewƒConsultingLineItem(in);
12 ƒƒƒƒ}ƒelse
13 ƒƒƒƒ{ƒthrowƒnewƒError("Unknown subclass: "ƒ+ƒsubclassƒ+ƒ".");
14 ƒƒƒƒ}
15 ƒƒ}
16 }

This simplifies the constructor in Invoice, as shown in Listing 12-12.

Listing 12-12: Reading line items using a factory method

1 publicƒInvoice(Scannerƒin)
2 {ƒthis.customerƒ=ƒnewƒCustomer(in);
3
4 ƒƒƒƒ// Read and construct the line items, putting them in the array.
5 ƒƒƒƒwhileƒ(in.hasNextLine())
6 ƒƒ{ƒthis.addLineItem(LineItem.read(in));
7 ƒƒ}
8 }

12.3 Polymorphism without Arrays

So far most of our examples of polymorphism have used an array. For example, con
sider the following statement:

doubleƒamtƒ=ƒthis.items[i].calcAmount();

It calls calcAmount polymorphically because the array might hold a GoodsLineItem
or a ConsultingLineItem—and this code fragment doesn’t need to know or care.

Arrays, however, are not a requirement for using polymorphism. In Listing 12-7 we
called this.getDescription() and the correct subclass of LineItem returned the
answer.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 662

662
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

In fact, the potential for polymorphism exists any time you have a reference to an
object. What are some other examples?

A method may return a reference that is used polymorphically. For example, Invoice
might have a method to return the most expensive line item, for printing in a report.
The report’s method could use it this way:

LineItemƒexpensiveƒ=ƒanInvoice.getMostExpensiveLineItem();
doubleƒcostƒ=ƒexpensive.calcAmount();

The call to calcAmount is polymorphic because this code does not need to know what
kind of LineItem it’s dealing with. In fact, this code could be written without using
the variable expensive:

doubleƒcostƒ=ƒ
ƒƒanInvoice.getMostExpensiveLineItem().calcAmount();

A reference can also be passed to a parameter, allowing for polymorphism within a
method. For example, suppose we had a method with the signature void
gatherStatistics(LineItem item). Inside the method, it can call any of the methods
declared by LineItem without knowing whether it’s really a GoodsLineItem, a
ServicesLineItem, or a ConsultingLineItem.

An instance variable can also hold an object reference that is used polymorphically.

12.4 Overriding Methods in Object

With a new understanding of inheritance and polymorphism, we are now in a better
position to understand some of the methods in the class Object. There are three that
we need to discuss: toString, equals, and clone.

12.4.1 toString

Overriding toString was discussed in Section 7.3.3. There isn’t much to add here
except to note that we now know in more detail how Java chooses which toString
method to execute—and that when toString is called, thanks to polymorphism, the
caller doesn’t need to know or care which subclass of Object calculates the answer.

KEY IDEA

Polymorphism is a
possibility any time
you have a reference
to an object.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 663

663

LOOKING BACK

The DateTime class
in the becker library
includes the notion of

time. We’re ignoring
that here.

KEY IDEA

Use the right
signature to override
equals. Overloading

isn’t good enough.

12.4.2 equals

Section 8.2.4 discussed comparing objects for equivalence. The example was to check
whether two dates “mean” the same thing. We discovered that comparing them with
== was not the right thing to do. To check for equivalence, a method is required. At
that point we wrote the following method:

1 publicƒclassƒDateTimeƒextendsƒObject
2 {ƒprivateƒintƒyear;
3 ƒƒprivateƒintƒmonth;
4 ƒƒprivateƒintƒday;
5
6 ƒƒ// Other methods omitted.
7

8 ƒƒ/** Return true if this date represents the same date as other. */
9 ƒƒpublicƒbooleanƒisEquivalent(DateTimeƒother)

10 ƒƒ{ƒreturnƒotherƒ!=ƒnullƒ&&ƒthis.yearƒ==ƒother.yearƒ&&ƒ
11 ƒƒƒƒƒƒƒƒƒƒthis.monthƒ==ƒother.monthƒ&&ƒthis.dayƒ==ƒother.day;
12 ƒƒ}
13 }

This method is fine except that the designers of Java provide a method in the Object
class for this purpose: booleanƒequals(Objectƒother). Their intent is that we
override equals with the correct implementation for classes we write.

We can’t simply change “isEquivalent” to “equals” in the preceding code because
that would produce two different method signatures—the equals method in the
Object class takes an Object as its argument whereas the equals method in
DateTime takes a DateTime object as its argument. This provides overloading but not
overriding, and makes a difference as well. Suppose we have two objects:

Objectƒd1ƒ=ƒnewƒDateTime(2008,ƒ1,ƒ1);
DateTimeƒd2ƒ=ƒnewƒDateTime(2008,ƒ1,ƒ1);

d2.equals(d1) calls the method with the signature equals(Objectƒother)
(returning false) while d2.equals(d2) calls the method with the signature
equals(DateTimeƒother) (returning true).

To override equals correctly, we must use the same signature as defined in Object:
publicƒbooleanƒequals(Objectƒother).

In the isEquivalent method, we know that the object passed via the parameter is a
DateTime object. With equals, any object at all may be passed. We first need to ver
ify that other is an instance of the right type, DateTime. Fortunately, Java provides a
Boolean operator for that purpose. If x is a reference variable and T is the name of a
class or interface, then xƒinstanceofƒT returns true if x is a non-null reference

12.4
O

VERRID
IN

G
 M

ETH
O
D
S IN

 O
BJECT

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 664

664
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

that can call all of the methods specified in T. The type of x might be T, a subclass of T,
or a class that implements the interface T.

We can use instanceof as a key part of our equals method, as follows:

ifƒ(!(otherƒinstanceofƒDateTime))

{ƒ// other isn’t a DateTime object, so it can’t possibly be equal to this DateTime object.

ƒƒreturnƒfalse;

}

However, if other is an instance of DateTime, we need to access its fields or methods
to compare the dates. Because other is declared as an Object, we can’t just call
other.getYear(). We need to first assign it to a DateTime reference, but Java will
not allow us to simply perform the following assignment because it can’t verify at com
pile time that other will refer to a DateTime object.

DateTimeƒdtƒ=ƒother; // will not compile

We can tell the compiler to make an exception with a cast. A cast is our assurance to
the compiler that we believe other will, in fact, refer to a DateTime object when the
code executes. The compiler doesn’t completely trust us, however. It will verify at run
time that other can substitute for an object of the specified type. If it cannot, a
ClassCastException will be thrown.

The syntax for casting an object is like that for casting a primitive type, as in the
following:

DateTimeƒdtƒ=ƒ(DateTime)other;

The meaning, however, is different. When casting a primitive type, the value is actually
changed. For example, intƒiƒ=ƒ(int)3.99999 assigns i the value 3. When an
object reference is cast, the type of the object doesn’t change; it’s the program’s inter
pretation of the object that changes. Instead of interpreting it as an instance of
Object, the program now interprets it as an instance of what it really is, DateTime.

After casting other to dt, we can perform the comparisons as in isEquivalent.
Recall that this code is inside the DateTime class, so we can access instance variables
via dt as well as via this:

returnƒthis.yearƒ==ƒdt.yearƒ&&ƒthis.monthƒ==ƒdt.monthƒ
ƒƒƒƒƒƒƒƒ&&ƒthis.dayƒ==ƒdt.day;

Lastly, an object is compared to itself surprisingly often. This test can be performed very
efficiently with == and is often included before any of the other tests discussed here.

KEY IDEA

instanceof is used
to verify the type of
an object.

KEY IDEA

Casting an object
reference changes the
program’s
interpretation of the
object.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 665

665

The complete equals method is as follows:

1 publicƒbooleanƒequals(Objectƒother)

2 {ƒifƒ(thisƒ==ƒother)

3 ƒƒƒƒreturnƒtrue;ƒƒƒƒƒƒƒƒ// other is exactly the same object as this.
 Equals
4

5 ƒƒifƒ(!(otherƒinstanceofƒDateTime))

6 ƒƒƒƒreturnƒfalse;ƒƒƒƒƒƒ// other is not an instance of DateTime (or a subclass).

7

8 ƒƒ// Compare the relevant fields for equality.

9 ƒƒDateTimeƒdtƒ=ƒ(DateTime)other;

10 ƒƒreturnƒthis.yearƒ==ƒdt.yearƒ&&ƒthis.monthƒ==ƒdt.month

11 ƒƒƒƒƒƒƒƒ&&ƒthis.dayƒ==ƒdt.day;

12 }

KEY IDEA When should equals be overridden? Classes that represent a value such as Integer,
Many classes should DateTime, or Color should have their own equals method. Classes where an object
not override equals.	 is only equal to itself should not. Examples include Student (two students may have

the same name, but they are not equal to each other) or BankAccount (my account
shouldn’t be “equal” to your account, even if the balances happen to be the same).

Finally, a warning. Whenever equals is overridden, a method named hashCode
should also be overridden, but that’s beyond the scope of this book. If you use your
class with a class from the Java libraries that includes the word “Hash”, watch out!
You may get strange results if you override equals but not hashCode.

12.4.3 clone (advanced)

Sometimes an exact copy of an object is required. Suppose, for example, that a back
order in our invoicing system begins by requesting a duplicate of a line item. The Java
system provides a convention for providing this service based on the clone method
that all classes inherit from the Object class.

The clone method has the following goals:

➤ x.clone()ƒ!=ƒx (the object returned by cloning x is not the original object).

➤ x.clone().equals(x) (the cloned object is equal to the original object).

➤	 x.clone().getClass()ƒ==ƒx.getClass() (the clone and the original
have the same run-time class; one is not a subclass of the other).

12.4
O

VERRID
IN

G
 M

ETH
O
D
S IN

 O
BJECT

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 666

666
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

Using Clone

Suppose that someone has already implemented clone for the LineItem class. We
could then use it to create a duplicate line item object like this:

LineItemƒduplicateƒ=ƒ(LineItem)aLineItem.clone();

The cast to a LineItem is required because the clone method is declared to return an
Object.

Polymorphism comes into play here because clone may be overridden in the sub
classes of LineItem, but we don’t need to know or care. The correct method will be
called for the actual run-time type of aLineItem.

Implementing Clone

The clone method in the object class implements the following pseudocode:

newObjectƒ=ƒa new object with the same run-time class asƒthis
for(each instance variable in this)
{ copy the variable’s value to newObject
}
returnƒnewObject;

The clone method in Object returns an object with the same run-time type as the
original object and the same values for all its instance variables.

It may sound like the existing clone method is all that’s required. Unfortunately, that’s
not the case. It’s dangerous to call clone unless issues have been thought about care
fully for subclasses (more on these issues will follow). To help ensure that clone can
not be called without thinking these issues through, Java’s designers have done two
things. First, clone is protected, meaning it can only be called by a subclass.
Therefore, the only way to effectively use clone is to override the method and declare
it public.

Second, the clone method implemented in Object checks to make sure that the
class implements the Cloneable interface. If it doesn’t, clone throws the
CloneNotSupportedException. Either that exception must be caught or your
clone method must declare that it also throws the exception. It’s worth noting that
this is an unusual use of an interface; it affects the behavior of an existing method
rather than guaranteeing the presence of methods. Many programmers believe that this
design is a serious mistake. Nevertheless, clone is used widely enough that it’s worth
understanding how it works.

Taking these things into account, an appropriate implementation of clone in the
LineItem class would be as shown in Listing 12-13. Implemented this way, it will also
work for the subclasses of LineItem discussed earlier in the chapter.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 667

667

ch12/invoice/

12.4
O

VERRID
IN

G
 M

ETH
O
D
S IN

 O
BJECT

Listing 12-13: An implementation of clone in the LineItem class

1 publicƒabstractƒclassƒLineItemƒextendsƒObjectƒ
2 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒCloneable
3 {
4 ƒƒ// Instance variables, constructors, and methods omitted.
5
6 ƒƒ/** Make a duplicate copy of this object. */
7 ƒƒpublicƒObjectƒclone()
8 ƒƒ{ƒtryƒ
9 ƒƒƒƒ{ƒreturnƒsuper.clone();

10 ƒƒƒƒ}ƒcatchƒ(CloneNotSupportedExceptionƒe)ƒ
11 ƒƒƒƒ{ƒ// CloneNotSupportedException should never be thrown because we have
12 ƒƒƒƒƒƒ// implemented Cloneable. Error is an unchecked exception.
13 ƒƒƒƒƒƒthrowƒnewƒError("Should never happen.");
14 ƒƒƒƒ}
15 ƒƒ}
16 }

LOOKING BACK

The value in a
reference variable is

the address of
an object, not the

object itself.
See Section 8.2.1.

Dangers: Shallow Copies vs. Deep Copies

It seems like the clone method in the Object class does everything required. Why is it
so thoroughly protected? The clone method in Object simply copies the value in
each instance variable from the original object to the new object. For primitive types
like integers, characters, and immutable classes like String, this works very well. For
reference types, it often does not.

Consider cloning an Invoice object. The items instance variable refers to an array.
The value it stores is a reference to the array, not the array itself. If we call clone to
clone the invoice, it will copy this array reference but it won’t make a copy of the array
itself. Both invoices then refer to the same array of line items. If a line item is deleted
from the copy of the invoice, it would also be deleted from the original invoice.
However, the original’s numItems variable would not be updated, probably leading to
nasty results.

Figure 12-15 shows what it is known as a shallow copy. That’s where only the values in
the instance variables are copied from one object to the other. Cloning an invoice
should make a deep copy. A deep copy also clones objects that the object references.
The result of a deep copy is shown in Figure 12-16.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 668

Invoice
items:

mItems:

Invoice
items:

mItems:

668
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

(figure 12-15) original

Shallow copy of an

Invoice object
LineItem[]

length 4
[0]
[1]
[2]
[3]

3nu

Invoice

copy

items:
3numItems:

3, computers, 1750.00

1, office suite, 750.00

3, service contracts, 5.95, 12

(figure 12-16) original

Deep copy of an Invoice
object

LineItem[]
length 4

[0]
[1]
[2]
[3]

3nu

Invoice
items:

3numItems:

copy

LineItem[]
length 4

[0]
[1]
[2]
[3]

3, computers, 1750.00

1, office suite, 750.00

3, service contracts, 5.95, 12

3, computers, 1750.00

1, office suite, 750.00

3, service contracts, 5.95, 12

For a deep copy, we need to create a new array and clone each element in the old array.
The clone method in Listing 12-14 shows how.

Listing 12-14: A clone method that does a deep copy of Invoice

ch12/invoice/
1 publicƒclassƒInvoiceƒextendsƒObjectƒimplementsƒCloneable

2 {ƒprivateƒLineItem[]ƒitemsƒ=ƒnewƒLineItem[5];

3 ƒƒprivateƒintƒnumItemsƒ=ƒ0;

4

5 ƒƒ// Constructors and methods omitted.

6

7 ƒƒ/** Make a copy of this invoice. */

8 ƒƒpublicƒObjectƒclone()

9 ƒƒ{ƒtryƒ

10 ƒƒƒƒ{ƒInvoiceƒcopyƒ=ƒ(Invoice)super.clone();

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 669

669
12.5

IN
CREASIN

G
 F

LEXIBILITY W
ITH

 IN
TERFACES

Listing 12-14: A clone method that does a deep copy of Invoice (continued)

11 ƒƒƒƒƒƒ// Do a deep copy of the array of line items.
12 ƒƒƒƒƒƒcopy.itemsƒ=ƒnewƒLineItem[this.numItems];
13 ƒƒƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.numItems;ƒi++)
14 ƒƒƒƒƒƒ{ƒcopy.items[i]ƒ=ƒ(LineItem)this.items[i].clone();
15 ƒƒƒƒƒƒ}
16 ƒƒƒƒƒƒreturnƒcopy;
17 ƒƒƒƒ}ƒcatchƒ(CloneNotSupportedExceptionƒe)ƒ
18 ƒƒƒƒ{ƒthrowƒnewƒError("Should never happen.");
19 ƒƒƒƒ}
20 ƒƒ}
21 }

KEY IDEA

Immutable objects
can’t change and

thus don’t need to
be cloned.

Sometimes a deep copy is not needed, even though references are being used. If the refer
ence is to an immutable object such as String, a shallow copy is sufficient. Immutable
objects can’t change after they are constructed, so there is no danger in having the clone
and the original object share the same strings—or any other immutable object.

12.5 Increasing Flexibility with Interfaces

Using interfaces appropriately can allow for more flexible use of the code we write.
Flexible code can be used in more situations, often enabling us to avoid writing new
code. As an example, we’ll explore how the sorting method developed in Section 10.1.8
can be refactored for use in many situations. To make the example concrete, we’ll sort
instances of LineItem in a variety of ways. In our first example, we will consider how to
sort LineItem by description.

The original sorting method is reproduced in Listing 12-15. The statements shown in bold
must change to sort LineItem objects. The required changes fall into three categories:

➤ The documentation, which is very specific to the original project

➤ The references to a specific array to sort

➤ The condition used to sort the array

Listing 12-15: The sorting algorithm from the Big Brother/Big Sister project. Required changes to

sort line items are shown in bold

1 publicƒclassƒBBBSƒextendsƒObject
2 {ƒ...ƒpersonsƒ...ƒƒƒƒƒƒƒƒ// an array of Person objects
3
4 ƒƒ/** Sort the persons array in increasing order by age. */

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 670

670
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

Listing 12-15: The sorting algorithm from the Big Brother/Big Sister project. Required changes to

sort line items are shown in bold. (continued)

5 ƒƒpublicƒvoidƒsortByAge()
6 ƒƒ{ƒforƒ(intƒfirstUnsorted=0;ƒ
7 ƒƒƒƒƒƒƒƒƒfirstUnsortedƒ<ƒthis.persons.lengthƒ-ƒ1;
8 ƒƒƒƒƒƒƒƒƒfirstUnsorted++)
9 ƒƒƒƒ{ƒ// Find the index of the youngest unsorted person.

10 ƒƒƒƒƒƒintƒextremeIndexƒ=ƒfirstUnsorted;
11 ƒƒƒƒƒƒforƒ(intƒiƒ=ƒfirstUnsortedƒ+ƒ1;ƒ
12 ƒƒƒƒƒƒƒƒƒƒƒƒiƒ<ƒthis.persons.length;ƒi++)
13 ƒƒƒƒƒƒ{ƒifƒ(this.persons[i].getAge()ƒ<ƒ
14 ƒƒƒƒƒƒƒƒƒƒƒƒthis.persons[extremeIndex].getAge())
15 ƒƒƒƒƒƒƒƒ{ƒextremeIndexƒ=ƒi;
16 ƒƒƒƒƒƒƒƒ}
17 ƒƒƒƒƒƒ}
18
19 ƒƒƒƒƒƒ// Swap the youngest unsorted person with the person at firstUnsorted.
20 ƒƒƒƒƒƒPersonƒtempƒ=ƒthis.persons[extremeIndex];
21 ƒƒƒƒƒƒthis.persons[extremeIndex]ƒ=ƒ
22 ƒƒƒƒƒƒƒƒƒƒƒƒthis.persons[firstUnsorted];
23 ƒƒƒƒƒƒthis.persons[firstUnsorted]ƒ=ƒtemp;
24 ƒƒƒƒ}
25 ƒƒ}
26 }

Of the three categories of change identified earlier, the first two are easy. Generalizing
the documentation is trivial, and the problems with the names can be handled with
appropriate parameters. Once we use parameters, all reliance on instance variables is
removed, and the sort method can be made a class (static) method in a utilities
class. The first set of changes is shown in Listing 12-16. The only part left is to figure
out how to replace the pseudocode in line 10, which will influence the type of array
passed as an argument in line 4 and the type of temporary variable in line 16.

Listing 12-16: Making sort more reusable with parameters

1 publicƒclassƒUtilitiesƒextendsƒObject
2 {
3 ƒƒ/** Sort an array of objects. */
4 ƒƒpublicƒstaticƒvoidƒsort(????[]ƒa)
5 ƒƒ{ƒforƒ(intƒfirstUnsortedƒ=ƒ0;ƒfirstUnsortedƒ<ƒa.length-1;
6 ƒƒƒƒƒƒƒƒƒfirstUnsorted++)

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 671

671
12.5

IN
CREASIN

G
 F

LEXIBILITY W
ITH

 IN
TERFACES

Listing 12-16: Making sort more reusable with parameters (continued)

7 ƒƒƒƒ{ƒ// Find the index of extreme ("smallest") unsorted element.
8 ƒƒƒƒƒƒintƒextremeIndexƒ=ƒfirstUnsorted;
9 ƒƒƒƒƒƒforƒ(intƒiƒ=ƒfirstUnsortedƒ+ƒ1;ƒiƒ<ƒa.length;ƒi++)

10 ƒƒƒƒƒƒ{ƒifƒ(a[i] is less than a[extremeIndex])
11 ƒƒƒƒƒƒƒƒ{ƒextremeIndexƒ=ƒi;
12 ƒƒƒƒƒƒƒƒ}
13 ƒƒƒƒƒƒ}
14
15 ƒƒƒƒƒƒ// Swap the extreme unsorted element with the element at firstUnsorted.
16 ƒƒƒƒƒƒ????ƒtempƒ=ƒa[extremeIndex];
17 ƒƒƒƒƒƒa[extremeIndex]ƒ=ƒa[firstUnsorted];
18 ƒƒƒƒƒƒa[firstUnsorted]ƒ=ƒtemp;
19 ƒƒƒƒ}
20 ƒƒ}
21 }

KEY IDEA

Implementing an
interface gives

the class an
additional type.

12.5.1 Using an Interface

Line 10 of Listing 12-16 requires comparing two elements in the array to determine
which is “less” than the other, or which one should occur first in sorted order.

It would be really nice if the Object class had an isLessThan method similar to the
equals method. If it did, we could pass an array of Objects in line 4 and replace the
pseudocode in line 10 with:

ifƒ(a[i].isLessThan(a[extremeIndex]))ƒ

and the sort method would be done. It would depend, of course, on subclasses of
Object overriding isLessThan appropriately. Unfortunately, Object does not pro
vide such a method.

Another approach is to define isLessThan in the LineItem class and declare sort to
take an array of LineItem objects as its parameter. This works, but only allows sort
to sort LineItems and subclasses of LineItem. It would be preferable to have a solu
tion that is much more general.

An excellent solution is to use an interface. This allows a class such as LineItem to
have an extra type—the type of the interface. Java already provides such an interface,
Comparable. It’s included in the package java.lang, which is automatically
imported into every class. The interface is defined as shown in Listing 12-17.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 672

672
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

Listing 12-17: The Comparable interface from the Java library

1 publicƒinterfaceƒComparable
2 {ƒ/** Compare this object with the specified object for order. Return a negative number
3 ƒƒ*ƒif this object is less than the specified object, a positive number if this object is greater,
4 ƒƒ*ƒand 0 if this object is equal to the specified object.
5 ƒƒ*ƒ@param o The object to be compared. */
6 ƒƒpublicƒintƒcompareTo(Objectƒo);
7 }

To use this interface, we need to make the three changes to the sort method shown in
Listing 12-16:

➤	 In line 4, declare the array parameter variable using Comparable: public
staticƒvoidƒsort(Comparable[]ƒa).

➤	 Declare the type of the temporary variable used to swap elements in line 16
using Comparable.

➤	 Change line 10 to { ifƒ(a[i].compareTo(a[extremeIndex])ƒ<ƒ0).

Finally, in any class that we want to sort with this method, we need to implement
Comparable. To sort the line items by description, we would change LineItem as
follows:

1 publicƒabstractƒclassƒLineItemƒextendsƒObjectƒ

2 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒComparable

3 {ƒprivateƒStringƒdescription;

4

5 ƒƒ// Other instance variables, constructors, and methods omitted.

6

7 ƒƒpublicƒintƒcompareTo(Objectƒo)

8 ƒƒ{ƒLineItemƒitemƒ=ƒ(LineItem)o;

9 ƒƒƒƒreturnƒthis.description.compareTo(item.description);

10 ƒƒ}ƒ
11 }

The class declaration in lines 1 and 2 includes the phrase implementsƒComparable.
The only method it specifies is declared in lines 7–10. Notice that in line 8, the object is
cast to a LineItem. This is necessary to gain access to the instance variables required to
do the comparison. This cast also works for subclasses of LineItem but will fail if o is
something else, like a Robot. In that case, Java will throw a ClassCastException to
indicate an error. The documentation in the Comparable interface says that this is what
should happen when two objects can’t be compared to each other.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 673

673

KEY IDEA

Interfaces are another
way to exploit

polymorphism in a
program.

KEY IDEA

Use Java’s sort
instead of writing

your own.

What do sorting and interfaces have to do with polymorphism? Thanks to polymorphism,
the sort method can call the compareTo method without knowing or caring which class
actually implemented it. The sort method doesn’t care whether the compareTo method
is comparing descriptions or unit costs or the total cost of the line item.

Sorting in the Java Library

The Java library includes a sort method very similar to the one we have written except
that it is much faster, particularly on large arrays. It’s in the java.util.Arrays class
and has the following signature:

publicƒvoidƒsort(Object[]ƒa)

If you want to sort a partially filled array, you can use a companion method with the
following signature:

publicƒvoidƒsort(Object[]ƒa,ƒintƒfromIndex,ƒintƒtoIndex)

These two methods have arrays of objects as parameters rather than arrays of
Comparable like our sort method. How does that work?

The documentation states that all of the elements must implement Comparable and
that compareTo must not throw an exception for any pair of elements. If these condi
tions are violated, sort will throw a ClassCastException. We can make our ver
sion of sort behave the same way by making two changes to Listing 12-16. First,
change the type of the parameter in line 4 from Comparable[] to Object[]. Second,
include a cast inside the loop that calls compareTo, as follows:

9 ƒƒƒƒƒforƒ(intƒiƒ=ƒfirstUnsortedƒ+ƒ1;ƒiƒ<ƒa.length;ƒi++)
10 ƒƒƒƒƒ{ƒifƒ(((Comparable)a[i]).compareTo(a[extremeIndex])ƒ<ƒ0)
11 ƒƒƒƒƒƒƒ{ƒextremeIndexƒ=ƒi;
12 ƒƒƒƒƒƒƒ}
13 ƒƒƒƒƒ}

Mixin Interfaces

A mixin is a type that supplements the “primary type” of a class. It provides some
behavior that is mixed in with the normal behavior of the primary type. Comparable
is one such mixin that allows comparing objects and thus sorting them.

Other mixin interfaces include the following:

➤	 IMove: The interface we use in Section 12.1.4 to move dancing robots and the
banner they carry (a subclass of JDialog) is a mixin interface.

➤	 Runnable: It is used just for fun in Section 3.5.2 to allow several robots to
move simultaneously.

12.5
IN

CREASIN
G
 F

LEXIBILITY W
ITH

 IN
TERFACES

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 674

+

674
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

➤	 Observer: An interface used when one object wants to “observe” what hap
pens in another. We’ll use a variation of this when we write graphical user

interfaces in Chapter 13.

➤	 Paintable: The class we used in Section 6.1 to ensure that SimpleBots

could be painted on the screen could just as easily have been a mixin interface.

You may want to define your own interface to use as a mixin when an application needs
to process similarly a number of classes that don’t have a natural common superclass.

12.5.2 Using the Strategy Pattern

Implementing the Comparable interface in LineItem is fine if you want to sort the
line items in only one way. But suppose you are writing a report program for the mar
keting department. They want line items from all the invoices gathered into a single
report, sorted by total amount. We can’t redefine the compareTo method just for
them, so what do we do?

The Strategy pattern uses objects that define a family of interchangeable algorithms.
For sorting, we’ll use a strategy object that defines the comparison algorithm. When
we want a different sort order, we pass a different strategy object (defining a different Strategy
algorithm) to the sort method. This is facilitated with the Comparator interface, as
shown in Figure 12-17. Notice that the sort method in Utilities takes an instance
of Comparator as an argument.

Comparator

int compare(Object o1, Object o2)

Compare1

+int compare(...)

Compare2

+int compare(...)

Compare3

+int compare(...)

Utilities

+void sort(Object[],
 Comparator c)

(figure 12-17)

Using strategy objects to

define the sort order

A Strategy Object Using Comparator

The Comparator interface is defined in the java.util package and is quite similar to
Comparable. They both define a method that compares two objects and returns an
integer whose sign indicates which object is smaller. A key difference is that a
Comparator is passed both objects as parameters rather than comparing one object to

KEY IDEA

Many different objects
can implement
Comparator, each
comparing objects in
its own way.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 675

675

itself. A more minor difference is that Comparator’s method is named compare rather
than compareTo. The Comparator interface is declared as follows:

publicƒinterfaceƒComparator

{ƒ/** Compare obj1 and obj2 for order. Return a negative number if obj1 is less than

ƒƒ*ƒobj2, a positive number if obj1 is greater than obj2, and 0 if they are equal.

ƒƒ*ƒ@param obj1 One object to be compared.

ƒƒ*ƒ@param obj2 The other object to be compared. */

ƒƒpublicƒintƒcompare(Objectƒobj1,ƒObjectƒobj2);

}

The following class defines a strategy object that can compare line items when sorting
the marketing department’s report. Notice that it includes the phrase implements
Comparator in line 3. Lines 7–9 are formatted differently than we have seen before to
save space.

1 /** Compare two line items using the value calculated by calcAmount. */
2 publicƒclassƒLineItemAmountComparatorƒextendsƒObjectƒ
3 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒComparator
4 {ƒpublicƒintƒcompare(Objectƒobj1,ƒObjectƒobj2)
5 ƒƒ{ƒdoubleƒamt1ƒ=ƒ((LineItem)obj1).calcAmount();
6 ƒƒƒƒdoubleƒamt2ƒ=ƒ((LineItem)obj2).calcAmount();
7 ƒƒƒƒifƒ(amt1ƒ<ƒamt2)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{ƒreturnƒ-1;}ƒ
8 ƒƒƒƒelseƒifƒ(amt1ƒ>ƒamt2)ƒƒƒƒƒƒƒƒƒ{ƒreturnƒ1;ƒ}ƒ
9 ƒƒƒƒelseƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{ƒreturnƒ0;ƒ}
10 ƒƒ}

11 }

The sort method also needs to take an instance of Comparator as a parameter. This
is shown in Listing 12-18. The method is just like the previous version of sort except
for lines 4 and 11. In line 4, there is a new parameter to pass the strategy object imple
menting the comparison algorithm. In line 10, it’s used to compare two line items.

With these changes, we can use sort to sort an array of any kind of object in any order
we want, as long as we can provide a comparison strategy object. That’s a lot of
flexibility!

KEY IDEA In practice, however, we would not write our own sort routine. We would only write
Use the Comparator and use it with the sort method in java.util.Arrays.

12.5
IN

CREASIN
G
 F

LEXIBILITY W
ITH

 IN
TERFACES

java.util.Arrays
rather than writing

your own sort method. Listing 12-18: A sort method that uses a comparator method

1 publicƒclassƒUtilitiesƒextendsƒObject
2 {
3 ƒƒ/** Sort a partially-filled array of objects. */
4 ƒƒpublicƒstaticƒvoidƒsort(Object[]ƒa,ƒComparatorƒc)
5 ƒƒ{ƒforƒ(intƒfirstUnsortedƒ=ƒ0;ƒfirstUnsortedƒ<ƒa.length-1;

Strategy

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 676

676
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

Listing 12-18: A sort method that uses a comparator method (continued)

6 ƒƒƒƒƒƒƒƒfirstUnsorted++)
7 ƒƒƒƒ{ƒ// Find the index of extreme ("smallest") unsorted element.
8 ƒƒƒƒƒƒintƒextremeIndexƒ=ƒfirstUnsorted;
9 ƒƒƒƒƒƒforƒ(intƒiƒ=ƒfirstUnsortedƒ+ƒ1;ƒiƒ<ƒa.length;ƒi++)

10 ƒƒƒƒƒƒ{ƒifƒ(c.compare(a[i],ƒa[extremeIndex])ƒ<ƒ0)
11 ƒƒƒƒƒƒƒƒ{ƒextremeIndexƒ=ƒi;
12 ƒƒƒƒƒƒƒƒ}
13 ƒƒƒƒƒƒ}
14
15 ƒƒƒƒƒƒ// Swap the extreme unsorted element with the element at firstUnsorted.
16 ƒƒƒƒƒƒObjectƒtempƒ=ƒa[extremeIndex];
17 ƒƒƒƒƒƒa[extremeIndex]ƒ=ƒa[firstUnsorted];
18 ƒƒƒƒƒƒa[firstUnsorted]ƒ=ƒtemp;
19 ƒƒƒƒ}
20 ƒƒ}
21 }

Sorting with Multiple Keys

Suppose the marketing department wanted a report with all line items sorted first by
description, and if the descriptions happen to be the same, then in descending order by
total amount of the line item. The description is called the primary key. It is the most
important determinant of the order. If two objects have different primary keys, then
those keys alone are used to determine the order. However, if the primary keys are
equal, then the secondary key is used to determine the order. In this case, total amount
is the secondary key.

Following is a comparator that implements the described ordering:

1 classƒLineItemDescrTotalComparatorƒextendsƒObjectƒ

2 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒComparator

3 {ƒpublicƒintƒcompare(Objectƒobj1,ƒObjectƒobj2)

4 ƒƒ{ƒLineItemƒli1ƒ=ƒ(LineItem)obj1;

5 ƒƒƒƒLineItemƒli2ƒ=ƒ(LineItem)obj2;

6

7 ƒƒƒƒ// Compare using the primary key (description).

8 ƒƒƒƒintƒresultƒ=ƒli1.getDescription().compareTo(

9 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒli2.getDescription());

10 ƒƒƒƒifƒ(resultƒ==ƒ0)ƒƒƒƒƒƒƒ// Primary key is the same; use secondary key.
11 ƒƒƒƒ{ƒdoubleƒamt1ƒ=ƒli1.calcAmount();
12 ƒƒƒƒƒƒdoubleƒamt2ƒ=ƒli2.calcAmount();
13 ƒƒƒƒƒƒifƒ(amt1ƒ<ƒamt2)

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 677

677

14 ƒƒƒƒƒƒ{ƒresultƒ=ƒ1;ƒƒƒƒƒƒƒ// Descending order.

15 ƒƒƒƒƒƒ}ƒelseƒifƒ(amt1ƒ>ƒamt2)

16 ƒƒƒƒƒƒ{ƒresultƒ=ƒ-1;

17 ƒƒƒƒƒƒ}

18 ƒƒƒƒ}ƒ

19 ƒƒƒƒreturnƒresult;

20 ƒƒ}

21 }

KEY IDEA Notice the if statement for the secondary key in lines 13–17. Normally we return a neg-
Sort in descending ative number when the first argument is less than the second. Here we return positive 1,

order by reversing the and –1 when the first argument is larger. Reversing these two values sorts the objects in
signs of the returned descending order. Larger amounts are interpreted as “smaller” by this comparator.

values.

Anonymous Classes (advanced)

Small strategy objects such as Comparator are so common that Java’s designers
included a shortcut for defining them quickly and easily. This shortcut is called an
anonymous class. An anonymous class has the following properties:

➤	 The class doesn’t have a name (that’s why it’s called anonymous).

➤	 It combines declaring a class and instantiating one (and only one) object.

➤	 An anonymous class is defined at the same place the object it defines is needed.
This can, if the class is small, improve the understandability of your code.

The following is an example of an anonymous class that sorts line items by description
using a sort method from the Java library. To use this code, you must import
java.util.Arrays and java.util.Comparator.

1 privateƒvoidƒsortLineItems()

2 {ƒ// An anonymous class to compare line items by description.

3 ƒƒComparatorƒcƒ=ƒnewƒComparator()

4 ƒƒ{

5 ƒƒƒƒpublicƒintƒcompare(Objectƒobj1,ƒObjectƒobj2)

6 ƒƒƒƒ{ƒLineItemƒli1ƒ=ƒ(LineItem)obj1;

7 ƒƒƒƒƒƒLineItemƒli2ƒ=ƒ(LineItem)obj2;

8

9 ƒƒƒƒƒƒreturnƒli1.getDescription().compareTo(

10 ƒƒƒƒƒƒƒƒƒƒƒƒƒli2.getDescription());

11 ƒƒƒƒ}

12 ƒƒ};

13

14 ƒƒArrays.sort(this.items,ƒc);

15 }

12.5
IN

CREASIN
G
 F

LEXIBILITY W
ITH

 IN
TERFACES

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 678

678
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

The anonymous class appears in lines 3–12. Line 3 looks like any other object instanti
ation except that the semicolon is missing from the end of the line and Comparator is
an interface rather than a class. Comparator can be replaced by the interface the
anonymous class is to implement or the class it is to extend.

The body of the anonymous class appears between the “constructor” and the semi
colon terminating the assignment statement. In the previous code, the body appears in
lines 4–12.

Because the anonymous class has no name, it can’t have a constructor, only methods. It
may have instance variables, but they are uncommon and must always be initialized in
their declaration because there is no constructor.

An anonymous class can be used to create exactly one object. This one is assigned to
the variable c. This variable isn’t required. In fact, experienced programmers will often
replace the variable c in line 14 with the code between the equals in line 3 and the
semicolon in line 12. However, this practice makes the code more difficult to read.

Applications of Strategy Objects

Strategy objects are widely used for more than sorting. They often have a single
method but could have more. Here are a few uses:

➤	 The Java library has a number of static sorting methods in the
java.util.Arrays class that take a Comparator strategy object.

➤	 Strategy objects are used to arrange components in graphical user interfaces.
We’ll discuss this more in Section 12.6.

➤	 Many games use strategy objects to define different approaches for choosing
the next move.

➤	 Several classes within the becker.robots package, including Robot, include
methods—such as examineThings—that take a strategy object as an argu
ment. The method returns references to objects the robot may want to “exam
ine.” The strategy object determines which objects should be examined.

One particular use for strategy objects is handling objects that change behavior over
time. For example, an employee might move from hourly compensation to a salary and
perhaps to being compensated by contract over her tenure with a company. Using an
inheritance-based approach would require replacing an HourlyEmployee object with a
SalariedEmployee object, for example, as the employee is compensated differently.

Representing this kind of variation with subclasses creates problems as soon as there is
more than one kind of variation. Suppose that mode of work (telecommute vs. office)
is also represented with subclasses. Now we need HourlyTelecommutingEmployee,
SalariedTelecommutingEmployee, ContractTelecommutingEmployee, plus
three more for office employees. This quickly becomes unmanageable. Using strategy

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 679

679

objects to represent how employees are paid and how they work is a much better solu
tion. When their compensation method or their mode of work changes, simply replace
the strategy object stored in their Employee object.

12.5.3 Flexibility in Choosing Implementations

Java interfaces allow several implementations to be used the same way. This can allow
you to more easily change our minds later. For example, Java provides a set of classes
for storing collections of objects, similar to arrays. Two of these classes are ArrayList
and LinkedList. The two classes have many methods in common: add, remove,
contains, and so on. They also implement the same interface, List.

Why provide two classes that apparently do exactly the same thing? The answer is that
they are implemented differently and have different speed characteristics, as summa
rized in Table 12-1.

12.5
IN

CREASIN
G
 F

LEXIBILITY W
ITH

 IN
TERFACES

(table 12-1)

Speed characteristics of

ArrayList and

LinkedList

Operation ArrayList LinkedList

Add an object near the beginning of the list slow fast

Add an object near the end of the list fast fast

Remove from near the beginning of the list slow fast

Remove from near the end of the list fast slow

Get an object at a specified position fast slow

Set an object at a specified position fast slow

Determine if the list contains a specified object slow slow

Determine the size of the list fast fast

KEY IDEA

Interfaces make it
easier to change

which class is used.

If your application adds and removes objects infrequently but uses get a lot, then
ArrayList looks like a good choice. On the other hand, if get is infrequent but there
are many additions and deletions, LinkedList seems better.

Sound complicated? Afraid you might make the wrong choice and you’ll want to
change your mind later? Then use the List interface to declare your variables. This
can isolate the decision of which class to use to a single point—which constructor to
call when the list is first created. If you change your mind, there is only one place to
change, and the entire program can take advantage of your new approach.

For example, an inventory program might include a method to remove the items just
sold from the items in stock, as sketched in the code fragment shown in Listing 12-19.
Note that List is used throughout, leaving lots of flexibility to use either ArrayList,
LinkedList, or some other implementation of the List interface as the actual class.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 680

680
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

Listing 12-19: A class using interfaces to promote flexibility

1 publicƒclassƒInventoryƒextendsƒObject
2 {ƒprivateƒList<Item>ƒinventoryƒ=ƒnewƒArrayList<Item>();
3 ƒƒprivateƒList<Item>ƒreorderƒ=ƒnewƒLinkedList<Item>();
4 ƒƒ...
5
6 ƒƒ/**Remove the specified items from the current inventory. Update the list of items
7 ƒƒ*ƒto reorder.
8 ƒƒ*ƒ@itemsSold The items that have been sold and need to be removed from inventory. */
9 ƒƒpublicƒvoidƒremoveInventory(List<Item>ƒitemsSold)
10 ƒƒ{ƒforƒ(Itemƒitemƒ:ƒitemsSold)
11 ƒƒƒƒ{ƒ
12 ƒƒƒƒƒƒ// Remove the item from the inventory.
13 ƒƒƒƒƒƒthis.inventory.remove(item);
14
15 ƒƒƒƒƒƒ// If it’s the last one and not already on the reorder list, add it
16 ƒƒƒƒƒƒifƒ(!this.inventory.contains(item)ƒ&&ƒ
17 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ!this.reorder.contains(item))
18 ƒƒƒƒƒƒ{ƒthis.reorder.add(item);
19 ƒƒƒƒƒƒ}
20 ƒƒƒƒ}
21 ƒƒ}
22 }

By using List to declare variables in lines 2, 3, and 9, the programmer has left lots of
flexibility to change the actual classes being used. For example, the ArrayList in line 2
could be changed to a LinkedList with no further changes in the rest of the program.

12.6 GUI: Layout Managers

ch12/inventory/

Most graphical user interfaces allow users to interact with many components (buttons,
text boxes, sliders, and so on). The issue to be addressed in this section is how Java

Strategy
arranges the components in a panel, both initially and as the user resizes the frame dis
playing the panel. The task of arranging the components on the panel is called layout.
Java uses strategy objects called layout managers to determine how to arrange the com
ponents. By using strategy objects, JPanel can display the same set of components in
many different arrangements.

12.6.1 The FlowLayout Strategy

The default layout strategy for a JPanel is an instance of FlowLayout. It adds com
ponents to the current row until there is no more room. It then starts a new row. The

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 681

681

length of a row is determined by the width of the JPanel. Wider panels will have more
components on a row.

The left image in Figure 12-18 shows four components organized with a FlowLayout
strategy. The components are displayed left to right, top to bottom, in the same order
they were added. The right image shows how those same components are reorganized
when the frame is narrower.

12.6
G
U
I: L

AYO
U
T M

AN
AG

ERS

(figure 12-18)

The FlowLayout
strategy

A FlowLayout object centers rows by default. It can also be set to align them on either
the left or right side of the panel.

Each component has a preferred size, which is respected by FlowLayout. As we’ll
soon see, some layout managers ignore such size information.

12.6.2 The GridLayout Strategy

The strategy implemented by a GridLayout object is to place all of the components
into a grid, as shown in Figure 12-19. Each component is made the same size as all the
others, completely ignoring their preferred sizes. The number of rows and columns is
set when the strategy object is created.

(figure 12-19)

The GridLayout
strategy

Setting a JPanel’s layout strategy is done with its setLayout method, as shown in
lines 17–18 of Listing 12-20. This listing is already showing the program structure we
will adopt for our graphical user interfaces. A group of components is combined by
extending JPanel. Laying out the components is a distinct task that is delegated to a
private helper method called layoutView.

Listing 12-21 displays an instance of this panel in a frame.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 682

682
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

Listing 12-20: A JPanel extended to show a group of buttons, organized with a grid strategy

1 importƒjava.awt.*;
2 importƒjavax.swing.*;
3
4 publicƒclassƒDemoGridLayoutƒextendsƒJPanel
5 {
6 ƒƒprivateƒJButtonƒoneƒ=ƒnewƒJButton("One");
7 ƒƒprivateƒJButtonƒtwoƒ=ƒnewƒJButton("Two");
8 ƒƒ// Instance variables for the last four buttons are omitted.
9

10 ƒƒpublicƒDemoGridLayout()
11 ƒƒ{ƒsuper();
12 ƒƒƒƒthis.layoutView();
13 ƒƒ}
14
15 ƒƒprivateƒvoidƒlayoutView()
16 ƒƒ{ƒ// Set the layout strategy to a grid with 2 rows and 3 columns.
17 ƒƒƒƒGridLayoutƒstrategyƒ=ƒnewƒGridLayout(2,ƒ3);
18 ƒƒƒƒthis.setLayout(strategy);
19
20 ƒƒƒƒ// Add the components.
21 ƒƒƒƒthis.add(this.one);
22 ƒƒƒƒthis.add(this.two);
23 ƒƒƒƒ// Code to add the last four buttons is omitted.
24 ƒƒ}
25 }

ch12/layoutManagers/

Strategy

Listing 12-21: A main method that displays a custom JPanel in a frame

ch12/layoutManagers/
1 importƒjavax.swing.*;

2

3 publicƒclassƒGridLayoutMain

4 {

5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

6 ƒƒ{ƒJPanelƒpƒ=ƒnewƒDemoGridLayout();

7

8 ƒƒƒƒJFrameƒfƒ=ƒnewƒJFrame("GridLayout");

9 ƒƒƒƒf.setContentPane(p);

10 ƒƒƒƒf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 ƒƒƒƒf.pack();ƒƒƒƒƒƒƒƒƒƒƒƒƒ// Base frame size on preferred size of components.
12 ƒƒƒƒf.setVisible(true);
13 ƒƒ}
14 }

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 683

683

12.6.3 The BorderLayout Strategy

The BorderLayout strategy lays out up to five objects in a panel, as shown in
Figure 12-20. No matter what size the panel is, the north and south areas cover the
entire width. Their heights are determined by the preferred heights of the components
they hold. The east and west areas expand or contract to occupy the remaining height
of the panel. Their widths are determined by the preferred sizes of the components
they hold. Finally, the center area expands or contracts to occupy the remaining space.

12.6
G
U
I: L

AYO
U
T M

AN
AG

ERS

(figure 12-20)

The BorderLayout
strategy

Areas that do not have a component will not take any space. For example, if the button
was left out of the east area in Figure 12-20, the center area would simply expand to fill it.

The layout managers we’ve seen previously arrange the components according to the
order in which they are added to the panel. BorderLayout handles positioning with a
constraint, which is specified when the component is added. The constraint says where
the component should be placed.

Listing 12-20 could be modified to use a BorderLayout strategy by changing line 17 to:

17 ƒƒƒƒBorderLayoutƒstrategyƒ=ƒnewƒBorderLayout();

and changing the lines that add the components to use the required constraints.

21 ƒƒƒƒthis.add(this.one,ƒBorderLayout.EAST);
22 ƒƒƒƒthis.add(this.two,ƒBorderLayout.NORTH);

12.6.4 Other Layout Strategies

The BoxLayout strategy arranges components in a horizontal row or a vertical column. It
tries to respect the preferred sizes of components. However, if a component does not have a
maximum size, it will grow or shrink to fill available space. Text fields and text areas, for
example, do not have a maximum size unless you set one.

Like GridLayout, GridBagLayout uses a grid. However, its cells can vary in size,
and a component can take up more than one cell in the grid. To accomplish all this, it
uses a fairly complex constraint, called GridBagConstraints.

Another constraint-based layout strategy is SpringLayout. It works by specifying how the
edges of each component relate to other components or to the edges of the enclosing panel.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 684

684
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

12.6.5 Nesting Layout Strategies

A single layout strategy is usually not enough for a complex graphical user interface.
Consider Figure 12-21, for example. None of the simpler layout strategies we’ve covered
can handle this by themselves. GridBagLayout and SpringLayout could do it, but
using them would involve a tremendous amount of work in setting all the constraints.

(figure 12-21)
A complex layout task

LOOKING AHEAD
An excellent solution is based on the fact that JPanel is also a component. It can be added

Programming to another JPanel that is organized by its own layout strategy object. The user interface in
Exercise 12.12 asks

Figure 12-21 is organized with four JPanel objects, as shown in Figure 12-22. you to finish
implementing
HangmanView.

(figure 12-22)
Laying out a complex user

interface using nested

panels, each with its own

layout strategy

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 685

685
12.6

G
U
I: L

AYO
U
T M

AN
AG

ERS

The four JPanel objects are as follows:

➤	 controls is organized by a GridLayout and holds the Forfeit and New
Game buttons.

➤	 letters is also organized by a GridLayout and holds 26 buttons, one for each
letter of the alphabet.

➤	 buttons is organized by a BoxLayout and holds two JPanel components,
controls and letters.

➤	 hangman is organized by a BorderLayout. The center area holds the graphic
showing the gallows. The south area holds a JLabel displaying the letters
guessed so far. The east area holds the buttons panel (which holds letters
and controls). The north and west area of the BorderLayout are empty
and shrink to take no space.

This interface can be implemented with code similar to that shown in Listing 12-22.

ch12/hangman/

Strategy

Listing 12-22: Implementing nesting layout managers

1 importƒbecker.xtras.hangman.*;
2 importƒjavax.swing.*;
3 importƒjava.awt.*;
4
5 /** Layout the view for the game of hangman.
6 *
7 * @author Byron Weber Becker */
8 publicƒclassƒHangmanViewƒextendsƒJPanel
9 {ƒ// Constructor omitted.

10
11 ƒƒ/** Layout the view in a JPanel managed by BorderLayout. */
12 ƒƒprivateƒvoidƒlayoutView()
13 ƒƒ{ƒJPanelƒhangmanƒ=ƒthis;ƒƒƒƒƒƒƒ// Use same name as previous discussion
14 ƒƒƒƒhangman.setLayout(newƒBorderLayout());
15 ƒƒƒƒƒ
16 ƒƒƒƒ// South
17 ƒƒƒƒJLabelƒphraseƒ=ƒnewƒJLabel("GO FLY A KITE");
18 ƒƒƒƒhangman.add(phrase,ƒBorderLayout.SOUTH);
19
20 ƒƒƒƒ// Center
21
22

ƒƒƒƒJComponentƒgallowsƒ=ƒnewƒGallowsView(
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒnewƒSampleHangman());

23 ƒƒƒƒhangman.add(gallows,ƒBorderLayout.CENTER);
24
25 ƒƒƒƒ// East -- letters and controls
26 ƒƒƒƒJPanelƒbuttonsƒ=ƒthis.buttonsPanel();

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 686

686
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

Listing 12-22: Implementing nesting layout managers (continued)

27 ƒƒƒƒhangman.add(buttons,ƒBorderLayout.EAST);
28 ƒƒ}
29
30 ƒƒ/** Layout and return a subpanel with all the buttons. */
31 ƒƒprivateƒJPanelƒbuttonsPanel()
32 ƒƒ{ƒ// A JPanel holding 26 buttons, one for each letter of the alphabet.
33 ƒƒƒƒJPanelƒlettersƒ=ƒnewƒJPanel();
34 ƒƒƒƒletters.setLayout(newƒGridLayout(13,ƒ2));
35 ƒƒƒƒforƒ(charƒchƒ=ƒ'A';ƒchƒ<=ƒ'Z';ƒch++)
36 ƒƒƒƒ{ƒletters.add(newƒJButton(" "ƒ+ƒch));
37 ƒƒƒƒ}
38
39 ƒƒƒƒ// A JPanel holding the Forfeit and New Game buttons is omitted.
40
41 ƒƒƒƒreturnƒletters;
42 ƒƒ}
43 }

12.7 Patterns

12.7.1 The Polymorphic Call Pattern

Name: Polymorphic Call

Context: You are writing a program that handles several variations of the same general
idea (for example, several kinds of bank accounts). Each kind of thing has similar
behaviors, but the details may differ.

Solution: Use a polymorphic method call so that the actual object being used deter
mines which method is called. The most basic form of the pattern is identical to the
Command Invocation pattern from Chapter 1 except for how the «objReference» is
given its value. For example,

«varTypeName»ƒ«objReference»ƒ=ƒ«instanceƒofƒobjTypeName»;
...
«objReference».«serviceName»(«parameterList»);

where «objTypeName» is a subclass of «varTypeName» or «objTypeName» is a class
that implements the interface «varTypeName».

There are many variations. For example, «objReference» could be a simple instance
variable, an array, a parameter, or a value returned from a method.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 687

687

Consequences: «varTypeName» determines the names of the methods that can be
called using «objReference», but «objTypeName» determines the code that is actu
ally executed.

Related Pattern: This pattern is a variation of the Command Invocation pattern.

12.7.2 The Strategy Pattern

Name: Strategy

Context: The way an object behaves may change over time or from application to
application. Examples include how an employee is compensated as the nature of his or
her employment changes, how a game chooses its move as the player adjusts prefer
ences, or how a JPanel lays out the components it contains.

Solution: Identify the methods that may need to be executed differently, depending on
the strategy. Define these methods in a superclass or an interface. Write several subclasses
that implement the behavior required at specific phases in a program’s life.

For example, in a game, a player object needs to make its next move depending on the
preferences of the user. The Player class could be defined as follows, where
MoveStrategy is either the superclass of several different strategy classes or an inter
face that is implemented by several strategy classes.

publicƒclassƒPlayerƒextendsƒ...
{ƒprivateƒMoveStrategyƒmoveStrategyƒ=ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒnewƒDefaultMoveStrategy();
ƒƒ...
ƒƒpublicƒvoidƒsetMoveStrategy(MoveStrategyƒaStrategy)
ƒƒ{ƒthis.moveStrategyƒ=ƒaStrategy;
ƒƒ}

ƒƒpublicƒMoveƒgetMove(...)
ƒƒ{ƒreturnƒthis.moveStrategy.getMove(...);
ƒƒ}
}

Consequences: The behavior of a class can be easily changed as the program proceeds
simply by supplying a different strategy object.

Related Patterns:
➤	 This pattern is a specialization of the Has-a (Composition) pattern.

➤	 The Polymorphic Call pattern is used to call the methods in the strategy
object.

12.7
P

ATTERN
S

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 688

688
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

12.7.3 The Equals Pattern

Name: Equals

Context: Objects must be compared for equivalency with each other. Comparisons may
be done using such library code as ArrayList or HashSet, and so a standard
approach must be used.

Solution: Override the equals method in the Object class. It is designated to take
any instance of Object (including subclasses) as its argument, so care must be taken to
ensure that the two objects can be compared. The following general template may
be used:

publicƒclassƒ«className»ƒ...

{ƒprivateƒ«primitiveType»ƒ«primitiveField1»

ƒƒ...

ƒƒprivateƒ«primitiveType»ƒ«primitiveFieldN»

ƒƒprivateƒ«referenceType»ƒ«referenceField1»

ƒƒ...

ƒƒprivateƒ«referenceType»ƒ«referenceFieldN»

ƒƒpublicƒbooleanƒequals(Objectƒother)

ƒƒ{ƒifƒ(thisƒ==ƒother)

ƒƒƒƒƒƒreturnƒtrue;

ƒƒƒƒifƒ(!(otherƒinstanceofƒ«className»))

ƒƒƒƒƒƒreturnƒfalse;

ƒƒƒƒ«className»ƒoƒ=ƒ(«className»)other;

ƒƒƒƒreturnƒ

ƒƒƒƒƒƒƒthis.«primitiveField1»ƒ==ƒo.«primitiveField1»ƒ&&

ƒƒƒƒƒƒƒ...

ƒƒƒƒƒƒƒthis.«primitiveFieldN»ƒ==ƒo.«primitiveFieldN»ƒ&&

ƒƒƒƒƒƒƒthis.«referenceField1».equals(o.«referenceField1»)ƒ&&

ƒƒƒƒƒƒƒ...

ƒƒƒƒƒƒƒthis.«referenceFieldN».equals(o.«referenceFieldN»);

ƒƒ}

}

where == is used for primitive fields and equals is used for object references. It may
be that only a subset of the object fields are used to determine equality.

Consequences: The equals method can be used to check any object for equivalence
with any other object.

Related Pattern: This pattern should be used in place of the Equivalence Test pattern.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 689

689

12.7.4 The Factory Method Pattern

Name: Factory Method

Context: A specific subclass should be instantiated depending on various factors, such
as the information found in a file or values obtained from a user. The logic for deciding
which specific subclass to create should be localized in one place in the program.

Solution: Write a method that determines which subclass to instantiate and then
returns it. In general,

publicƒstaticƒ«superClassName»ƒ«factoryMethodName»(...)

{ƒ«superClassName»ƒinstanceƒ=ƒnull;

ƒƒifƒ(«testForSubclass1»)

ƒƒ{ƒinstanceƒ=ƒnewƒ«subclassName1»(...);

ƒƒ}ƒelseƒifƒ(«testForSubclass2»)

ƒƒ{ƒinstanceƒ=ƒnewƒ«subclassName2»(...);

ƒƒ}ƒelseƒ...

ƒƒreturnƒinstance;

}

Consequences: A specific subclass is chosen to be instantiated and then returned for use.

Related Pattern: None.

12.8 Summary and Concept Map

12.8
S

U
M

M
ARY AN

D
 C

O
N
CEPT M

AP

Polymorphism is a programming technique in which a variable declared with a super
class or an interface, X, is actually assigned an instance of a different class, Y. Y must
be either a subclass of X or a class implementing interface X.

The program typically calls a method defined by X but the behavior is determined by
the object’s actual class, Y. This allows:

➤	 a collection of objects to be handled uniformly but still have individual differences

➤	 the behavior of an object to be easily changed by changing a strategy object

➤	 an alternative implementation to be used with a minimum number of changes
to the client code

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 690

690
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

Polymorphism plays a significant role in the implementation and execution of methods
inherited from the Object class, including toString, equals, and clone. The strat
egy pattern is used extensively in laying out graphical user interfaces.

are
 de

ter
mine

d b
y

is determined by

m
ay be a superclass of

can identify

may be

may be
is also called

is a
lso

 ca
lle

d

has m
ethods overridden

by

m
ay

be
an

interface im
plem

ented
by

the reference
variable‘s type

the object‘s
actual type

instanceof

an interface

a superclass

the abstract
class

the concrete
class

method names
that can be called

the behavior of
the methods that

are executed

12.9 Problem Set

Written Exercises

12.1 The move method in the LeftDancer class (see Listing 12-1) contains the
statement super.move() (lines 16, 18, and 20). What would happen if one of
those statements were this.move()?

12.2 Polymorphism is like a ship’s commanding officer yelling, “Battle stations!” Each
member of the crew knows exactly what he should do in response to that
order—and does it. The commander doesn’t need to give each crew member indi
vidual instructions. Think of three more real-life analogies for polymorphism.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 691

691

12.3 Write comparator classes that can be used to sort an array of:

a. Robot objects in ascending order by distance from the origin

b. LineItem objects in descending order by unit cost

c.	 Person objects (see Section 10.1) by role. Persons with the same role should
be ordered by gender, while persons with the same role and gender should be
ordered by decreasing age. (Hint: Use compareTo to compare enumerations.)

12.4 Draw a class diagram for the drawing program example in Section 12.1.3.

12.5 Study the documentation for the specified class. Draw a partial class diagram

of it and its subclasses, showing the most important overridden methods and

additional features of each subclass.

a. becker.robots.Sim

b. java.text.Format

c.	 java.awt.Component (This is the root of a huge hierarchy. Stop when
your diagram includes about 10 classes, some of which are at least sub-
subclasses of Component.)

d. java.io.Reader (Include a brief description of the functionality each sub
class adds.)

12.6 Read the documentation for the Box class. What combination of classes does it
replace? Describe what “struts” and “glue” are and how they might be used.

Programming Exercises

12.7 In the dancing robots example, it appears the fundamental difference between
a LeftDancer and a RightDancer is not in how they move but in their
favored direction to turn. Refactor the dancing robots example shown in
Figure 12-3 so that move and pirouette are completely defined in the
abstract class in terms of turn and antiTurn. These last two methods are
abstract and must be overridden in both LeftDancer and RightDancer.

12.8 Investigate the documentation for becker.robots.IPredicate. For each of
the following, write the predicate and a simple robot test program.

a. Write a predicate to identify a Streetlight that is on. Use it to turn off
several streetlights.

b. The City class has a method named setThingCountPredicate. If
showThingCounts is set to true, the number of things on each intersec
tion that meet the predicate’s criteria will be shown. The default counts the
number of things that can be moved by a robot. Change it to show the total
of all things, except robots.

12.9 P
RO

BLEM
 S

ET

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 692

692
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

c. Extend Robot to include a query, northIsBlocked, which returns true if
the north exit to the intersection is blocked by a Thing such as a Wall. The
query will use isBesideThing and a predicate that you write. The robot
should not turn while executing this query.

d. Extend Robot to include a query, dirIsBlocked(intƒdir). It is similar
to northIsBlocked in part (c), but is not restricted to a single direction.
The predicate will need an instance variable to remember the direction. The
robot should not turn while executing this query.

12.9 Consider a family of robots that all have a doMyThing method. When a baby
robot does its thing, it moves in a random direction with a random speed.
Parent robots do their thing by moving and automatically picking up all the
things found on their new intersection. Grandparent robots do their thing by
moving at one-third the speed of a normal robot.

a. Implement the robot family by extending RobotSE three times. Write a
main method containing an array of family members. Also scatter a number
of Thing objects around. Make each robot do its thing 10 times. (Hint: You
will need to introduce an abstract class.)

b. Implement the robot family by writing FamilyMemberBot. It extends
RobotSE to use an instance of IMoveStrategy. Write the interface
IMoveStrategy and three classes that implement it. Write a main method
containing an array of FamilyMemberBots. Also scatter a number of
Thing objects around. Make each robot do its thing five times. Change each
robot to use a different move strategy, and then move each robot five more
times. (Hint: The method in IMoveStrategy will take an instance of
FamilyMemberBot, named bot, as a parameter and could contain method
calls like bot.move()).

12.10 Some courses assign letter grades, whereas other courses assign a percentage
between 0 and 100. Still others assign a pass/fail grade.

Write an interface named Grade. The toPercent method returns the grade as
an integer percentage between 0 and 100 percent. The toString method
prints the grade in its “native” format (a percentage, a letter grade, or either
“Pass” or “Fail”). The isPass method returns true for a passing grade,
false otherwise. The includeInAverage returns true for letter and
numeric grades, but false for pass/fail grades.

Write three classes that implement Grade: LetterGrade, PercentageGrade,
and PassFailGrade. Write a main method that fills an array with grades. For
each grade, print on one line the native format, “Pass” or “Fail” (as appropri
ate), and the percentage (if it can be included in an average). After the list of
grades, print the average grade as a percentage.

Use your school’s mapping between letter grades and numeric grades, if it has
one. Otherwise, make up something like A+ is 95%, A is 90%, etc.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 693

693

12.11 Write a main method that displays a JPanel inside a JFrame to arrange com
ponents as follows.

a. Use a GridLayout to arrange JCheckBox and JSlider components as
shown in Figure 12-23a.

b. Use a combination of BorderLayout, BoxLayout, and FlowLayout to
arrange JRadioButton, JButton, and JTextArea components as shown
in Figure 12-23b. The text field will have no size unless you specify the rows
and columns when it is created.

c. Approximate (b) as closely as you can using only BoxLayout and
FlowLayout. You may find calling setAlignmentY(0.0F) on one of the
panels useful.

d. Approximate (b) as closely as you can using only GridBagLayout and
FlowLayout. You will need to read the GridBagConstraints class docu
mentation carefully.

12.9 P
RO

BLEM
 S

ET

(figure 12-23)

Possible layouts

a) One layout	 b) Another layout

12.12 Finish the program in Listing 12-22 so that it also displays Forfeit and New
Game buttons, as shown in Figure 12-21. Include a main method that displays
HangmanView in a JFrame. You won’t be able to play a game with your pro
gram, but it should look good.

For an additional challenge, read about the Box class and figure out how to use
it to replace a JPanel organized with a BoxLayout strategy.

12.13 In Section 10.1.5, we discussed various operations on those elements of an
array that satisfy a specified property. For example, calculate the average age of
everyone who is a “Little” or print all the people who are “Bigs.”

Download the Big Brother/Big Sister example from Chapter 10 (ch10/bbbs/).
Add an interface, IInclude, which has a single method,
booleanƒinclude(Personƒp). Add the following methods to
BigBroBigSis.java:

a.	 intƒcountSatisfy(IIncludeƒinclude) counts those persons who sat
isfy include.

http:setAlignmentY(0.0F

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 694

694
CH

AP
TE

R
12

 |
PO

LY
M

O
RP

H
IS

M

b. doubleƒaverageAge(IIncludeƒinclude) finds the average age of all
those people who satisfy include.

c.	 voidƒlist(IIncludeƒinclude,ƒPrintWriterƒout) lists to the speci
fied file all those people who satisfy include.

d. Person[]ƒsubset(IIncludeƒinclude) returns a filled array of all those
people who satisfy include.

Write a main method to test your methods using an instance of IInclude that
specifies female “Bigs.”

Programming Projects

12.14 Implement a simple bank application. The bank will have many accounts, each
with an account number and a balance. A command interpreter will allow cus
tomers to enter one of the following commands:

➤ dƒxxxƒyyy (deposits the amount xxx to account number yyy).

➤ wƒxxxƒyyy (withdraws the amount xxx from account yyy).

➤	 tƒxxxƒyyyƒzzz (withdraws the amount xxx from account yyy and
deposits the same amount in account zzz).

➤ bƒyyy (displays the balance of account yyy).

The bank has two kinds of accounts. A PerUseAccount charges a set fee of
$0.50 for each withdrawal. A MinBalanceAccount charges a fee of $1.00 for
each withdrawal if the balance is less than $1,000. If the balance is $1,000 or
more, no fee is charged.

a. Implement the banking system without using polymorphism or inheritance.
Write a brief document outlining in point form what would have to be done
to add a new kind of bank account to the system.

b. Implement the banking system using an inheritance hierarchy for the
account classes. Take advantage of polymorphism but minimize the use of
casting. Write a brief document outlining in point form what would have to
be done to add a new kind of bank account to the system.

12.15 Implement a simple guessing game in which the user chooses a number that the
program will try to guess. After each guess, the user will answer with either H
(the guess was too high), L (the guess was too low), or C (the guess was correct).
Allow the user to easily change the guessing strategy used by the program at the
beginning of each game. Strategies should include at least two of the following:

a. Guess a random number.

b. Guess a number that is one larger than the previous guess. The first guess
should be the smallest legal number for the game.

c. Guess the smallest legal number. As long as the user responds with L, guess
a number that is 10 larger than the previous guess. When the user says it’s
too large, start guessing a number that is one less than the previous guess.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 695

695

d. Based on the user’s answers, keep track of the upper and lower limits on the
number that could have been chosen by the user. Each guess should be the
average of these two values. After each guess, update the upper and lower
limits. (This brief description describes how most people search a physical
phonebook: start in the middle and successively eliminate half of the
remaining entries.)

12.16 Extend JComponent to paint shapes on itself. The shapes that it paints and
their locations will depend on which shapes are added to a list the component
maintains. Your shapes should form an inheritance hierarchy with Shape at
the root. Shape should extend Object.

a. Demonstrate your program with a main method that adds a number of rec
tangles, circles, lines, and stars to your subclass of JComponent.

b. Implement two additional shapes of your choice beyond those required in (a).

c. Enhance your program so that it will paint the shapes it reads from a file.

12.17 Implement a simplified game of Monopoly that has an inheritance hierarchy of
BoardSquare objects. Subclasses must include Property, Railroad, Go, and
IncomeTax. You will also need a Player class and a command interpreter to
play the game.

Think carefully about whether the Player object should react according to the
kind of square it landed on or whether the BoardSquare objects should react
to Players landing on or crossing them.

a. Implement the game with two instances of Player that always ask a user
for what to do.

b. Implement the game to allow between two and six players, each of which
uses a move strategy object to determine how it plays. Provide at least three
different strategies: one that asks the user, another that always buys a prop
erty if it can, and a third that only buys a property if it has at least $500.
Give the user a choice of strategies for each player when the game begins.

12.18 ACME Inc. has a standing order for 50 widgets each week from XYZ Inc. The
agreement is that ACME sends the widgets each Friday and XYZ will send a
check to pay for them that same day. If both live up to their agreement, they
both profit. On the other hand, XYZ might send a fraudulent check, hoping to
receive goods for free; or ACME might not send the goods, hoping to receive
unearned payment.

We’ll say either company “cooperates” if it abides by its side of the agreement.
If it does not, we’ll say the company “defects.” The payoff can then be repre
sented with Table 12-2.

12.9 P
RO

BLEM
 S

ET

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 696

696

(table 12-2)
Company actions

CH
AP

TE
R

12
 |

PO
LY

M
O
RP

H
IS

M

ACME’s Action XYZ’s Action Value to ACME Value to XYZ

Cooperate Cooperate 3 3

Cooperate Defect -2 5

Defect Cooperate 5 -2

Defect Defect 0 0

If both companies want to maximize their profit, what should their strategies
be? Cooperate all of the time? Cooperate most of the time but defect occasion
ally? Cooperate as much as the other company cooperates?

First, develop three strategies that implement the following interface. They
might be as simple as always cooperating, cooperating with the same probabil
ity that the other player has cooperated in the past, repeating the other player’s
last decision, or always defecting.

publicƒinterfaceƒICommerceStrategy
{ƒpublicƒstaticƒfinalƒintƒDEFECTƒ=ƒ0;
ƒƒpublicƒstaticƒfinalƒintƒCOOPERATEƒ=ƒ1;

ƒƒ/**ƒDecide whether to cooperate with the other player, given the other's history of

ƒƒ*ƒƒcooperating with this player.

ƒƒ*ƒƒ@param other ƒƒThe decisions made by the other player in previous turns. Each

ƒƒ*ƒƒƒƒƒƒƒƒƒƒ ƒƒelement of the array is one of {DEFECT, COOPERATE}.

ƒƒ*ƒƒ@param numTurns The number of turns made (other is partially filled).

ƒƒ*ƒƒ@return one of {DEFECT, COOPERATE} */

ƒƒpublicƒintƒgetDecision(int[]ƒother,ƒintƒnumTurns);

}

Second, develop a program that plays each strategy against all the other strate
gies, including a copy of itself. Print the cumulative score for each strategy to
determine the best one. Assume that the players do not know how many turns
there will be. (Does it change your strategy if you know this is your last turn?)

 Chapter 13 Graphical User Interfaces

Chapter Objectives

After studying this chapter, you should be able to:

➤ Write a graphical user interface using existing Java components

➤ Implement interfaces using the Model-View-Controller pattern

➤ Structure a graphical user interface using multiple views

➤ Write new components for use in graphical user interfaces

A graphical user interface (GUI) often gives us the first glimpse of a new program. The
information it displays indicates the program’s purpose, whereas a quick review of the
interface’s controls and menus gives us a feel for what the program can do.

Graphical user interfaces operate in a fundamentally different way from text-based
interfaces. In a text-based interface, the program is in control, demanding information
when it suits the program rather than the user. With a graphical user interface, the user
has much more control; users can perform operations in their preferred order rather
than according to the program’s demands. Naturally, this difference requires structur
ing the program in a different way.

This chapter pulls together the graphical user interface thread running through each
chapter and adds new material, enabling us to design and build graphical user inter
faces for our programs.

697

698

13.1 Overview

CH
AP

TE
R

13
 |

G
RA

PH
IC

AL
 U

SE
R

IN
TE

RF
AC

ES

Building the graphical user interface (GUI) for a program can be one of the more
rewarding parts of programming. Finally, we begin to see the results of our labor and
are able to manipulate our program directly. The user interface is also a place where we
can use aesthetic skills and sensibilities.

On the other hand, creating GUIs can involve a lot of time and frustration. Developing
them will call upon every skill we’ve learned so far: extending existing classes, writing
methods, using collaborating classes and instance variables, using Java interfaces, and
so on. However, following a concrete set of steps will make the job easier. Watch for
patterns that occur repeatedly. Master those patterns, and you’ll be able to write GUIs
like a professional.

We will proceed by developing a variant of the game of Nim. The requirements are
specified in Figure 13-1.

(figure 13-1) A game of Nim begins with a pile of
tokens. Two players take turns

Requirements for the removing one, two, or three tokens

from the pile. The last player to
 game of Nim
remove a token wins the game. The

players will be designated “red” and

“black.” The first one to move will be

chosen randomly. The initial size of

the pile is between ten and twenty

tokens and is set randomly.

An example of one possible user

interface is shown on the right.

13.1.1 Models, Views, and Controllers

Recall from Chapter 8 that graphical user interfaces are usually structured using the
Model-View-Controller pattern. Figure 13-2, reproduced here from Section 8.6.2,
shows the core ideas.

699
13.1

O
VERVIEW

(figure 13-2)

View and controller

interact with the user and

the model

View

Controller

User Interface

Model

KEY IDEA

The model maintains
relevant information,

the view displays it,
and the controller
requests changes

to it.

The model is the part of the program that represents the problem at hand. In our game
of Nim, it’s the model that will keep track of how many tokens remain on the pile,
whose turn it is to move next, and who (if anyone) has won the game. The model also
enforces rules. For example, it will not allow a player to take more than three tokens.

The user interface is composed of the view and the controller. The user, represented by
the eye and the mouse, uses the view to obtain information from the model. It’s the
view, for example, that displays the current size of the pile and whose turn it is. The
user interacts with the controller to change the model. In the case of Nim, the con
troller is used to remove some tokens or to start a new game.

The arrow between the controller and the view indicates that the controller will need
to call methods in the view. The lack of an arrow going the other way indicates that the
view will generally not need to call the controller’s methods. The two arrows between
the user interface and the model indicate that both the view and the controller will
have reason to call the model’s methods—the view to obtain information to display
and the controller to tell the model how the user wants it to change. The dotted arrow
from the model to the user interface indicates that the model will be very restrictive in
how it calls methods in the interface. Essentially, it will call only a single method to tell
the view that it has changed and that the view needs to update the display.

The interaction of the controller, model, and view may seem complicated at first.
However, it follows a standard pattern, which includes the following typical steps, per
formed in the following order:

➤	 The user manipulates the user interface—for example, enters text in a component.

➤	 The user interface component notifies its controller by calling a method that
we write.

➤	 The controller calls a mutator method in the model, perhaps supplying addi
tional information such as text that was entered in the component.

➤	 Inside the mutator method, the model changes its state, as appropriate. Then it
calls the view’s update method, informing the view that it needs to update the
information it displays.

➤	 Inside the update method, the view calls accessor methods in the model to
gather the information it needs to display. It then displays that information.

700
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

Our first graphical user interface will use a single view and controller. We will learn in
Section 13.5, however, that using multiple views and controllers can actually make an
interface easier to build. We will plan for that possibility from the beginning.

KEY IDEA

Interfaces usually
have more than
one view.

13.1.2 Using a Pattern

Models, views, and controllers make up a pattern that occurs repeatedly. The steps for
using this pattern are shown in Figure 13-3. You’ll find that many of the steps are
familiar from previous chapters in the book. None of this is truly new material; it just
puts together what we have already learned in a specific way, resulting in a graphical
user interface.

Model-View-Controller

Set up the Model and View

1. Write three nearly empty classes:
a. The model, implementing becker.util.IModel.
b. The view, extending JPanel and implementing becker.util.IView.

The constructor takes an instance of the model as an argument.
c. A class containing a main method to run the program.

2. In main, create instances of the model and the view. Display the view in a
frame.

Build and Test the Model

1. Design, implement, and test the
model. In particular,
a. add commands used by the

controllers to change the
model

b. add queries used by the views
to obtain the information to
display

2. Call updateAllViews just before
exiting any method that changes
the model’s state.

Build the View and Controllers

1. Design the interface.
2. Construct the required

components and lay them out in
the view.

3. Write updateView to update the
information displayed by the view
to reflect the model.

4. Write appropriate controllers for
each of the components that
update the model. Register the
controllers.

(figure 13-3)

Steps for building a

graphical user interface

We will elaborate on these steps in each of the next three subsections.

13.2 Setting up the Model and View

The first step sets up the basic architecture for the Model-View-Controller pattern. This
is where the connections between the classes are established, and by the end of this step,
we will have a program that we can run, even though it won’t do anything more than
show us an empty frame. The class diagram of the resulting program is shown in
Figure 13-4.

701

(figure 13-4) IModel IView

Partial class diagram

for Nim
NimModel

-ArrayList<IView> views
other instance variables omitted
+NimModel()
+void addView(IView view)
+void removeView(IView view)
+void updateAllViews()
other methods omitted

NimView
-NimModel model
other instance variables omitted
+NimView(NimModel aModel)
+void updateView()
other methods omitted

Nim

+void main(String[] args)

13.2
S

ETTIN
G
 U

P TH
E M

O
D
EL AN

D
 V

IEW

LOOKING BACK

ArrayLists were
discussed in

Section 8.5.1,
interfaces in
Section 7.6.

KEY IDEA

The IModel interface
specifies methods

needed in the model
to manage views.

13.2.1 The Model’s Infrastructure

The model’s primary purpose is to model the problem, in our case the game of Nim. It
must also inform the views each time the model changes (and therefore the view needs to
change the information it displays). It is this update function that we are focusing on now.

It’s possible that a model may have several views, and we will provide for that possi
bility right away by keeping a list of views that we need to inform of changes. These
requirements are embodied in the IModel interface. It specifies that a model needs to
be able to add a view, remove a view, and update all views. The model will only need
to call one method in the views, updateView. It expects each view to implement the
IView interface.

A class with this infrastructure is shown in Listing 13-1. Every model will start out just
like this except that the name of the class, the constructor, and the class documentation
will change to reflect the program’s purpose.

Listing 13-1: The model’s class with infrastructure to inform views of changes

1 importƒbecker.util.IModel;
2 importƒbecker.util.IView;
3 importƒjava.util.ArrayList;
4
5 /** A class implementing a version of Nim. There is a (virtual) pile of tokens. Two
6 *ƒ players take turns removing 1, 2, or 3 tokens. The player who takes the last token
7 *ƒ wins the game.
8 *
9 * @author Byron Weber Becker */

10 publicƒclassƒNimModelƒextendsƒObjectƒimplementsƒIModel

ch13/nim
Infrastructure/

702
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

Listing 13-1: The model’s class with infrastructure to inform views of changes (continued)

11 {ƒprivateƒArrayList<IView>ƒviewsƒ=ƒnewƒArrayList<IView>();
12
13 ƒƒ/** Construct a new instance of the game of Nim. */
14 ƒƒpublicƒNimModel()
15 ƒƒ{ƒsuper();
16 ƒƒ}
17
18 ƒƒ/** Add a view to display information about this model.
19 ƒƒ*ƒ@param view The view to add. */
20 ƒƒpublicƒvoidƒaddView(IViewƒview)
21 ƒƒ{ƒthis.views.add(view);
22 ƒƒ}
23
24 ƒƒ/** Remove a view that has been displaying information about this model.
25 ƒƒ*ƒ@param view The view to remove. */
26 ƒƒpublicƒvoidƒremoveView(IViewƒview)
27 ƒƒ{ƒthis.views.remove(view);
28 ƒƒ}
29
30 ƒƒ/** Inform all the views currently displaying information about this model that the
31 ƒƒ*ƒmodel has changed and their display may need changing too. */
32 ƒƒpublicƒvoidƒupdateAllViews()
33 ƒƒ{ƒforƒ(IViewƒviewƒ:ƒthis.views)
34 ƒƒƒƒ{ƒview.updateView();
35 ƒƒƒƒ}
36 ƒƒ}
37 }

Of course, more must be added to NimModel. In particular, it does nothing yet to
model the game of Nim. But when one of the players takes some tokens from the pile,
for example, we now have the infrastructure in place to inform all of the views that
they need to update the information they are showing the players.

Using AbstractModel

These three methods are always required to implement a model. Instead of writing
them each time we create a model class, we can put them in their own class. Our model
can simply extend that class.

703

KEY IDEA

A component is
nothing more than an

object designed for
user interfaces.

Buttons, scroll bars,
and text fields are all

examples of
components.

Such a class, AbstractModel, is in the becker.util package. Its code is almost
exactly like the code in Listing 13-1 except for the name of the class. NimModel is then
implemented as follows:

importƒbecker.util.AbstractModel;

publicƒclassƒNimModelƒextendsƒAbstractModel
{
ƒƒpublicƒNimModel()
ƒƒ{ƒsuper();
ƒƒ}

ƒƒ// Other methods will be added here to implement the model.

}

AbstractModel implements IModel, implying that NimModel also implements that
interface. The clause implementsƒIModel does not need to be repeated.

The Java library has a class named Observable that is very similar to AbstractModel. It
is designed to work with an interface named Observer that is very similar to IView. Why
don’t we use them instead? There are two reasons.

First, the update method in Observable is more complex than we need.

Second, and more importantly, the Java library doesn’t have an interface corresponding
to IModel. Therefore, the model must always extend Observable. Sometimes this isn’t
a problem (as with NimModel), but other times the model must extend another class. In
those situations, the missing interface is required, and these classes can’t be used.

At the time of this writing, Java library contains 6,558 classes. A number of those
classes define their own versions of Observer and Observable, as we have done. It’s
interesting to note that none of the classes use Observer and Observable.

13.2.2 The View’s Infrastructure

Each view will be a subclass of JPanel1 that contains the user interface components
required to interact with the model. For now, however, we will provide only the infra
structure for updating the view. That consists of implementing the IView interface,
which specifies the updateView method called by the model in updateAllViews.
This is all shown in Listing 13-2.

1 This is true most of the time. It’s convenient for menus to extend JMenuBar and toolbars to extend
JToolBar.

13.2
S

ETTIN
G
 U

P TH
E M

O
D
EL AN

D
 V

IEW

704
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

Listing 13-2: The view’s class set up to receive notification of changes in the model

1 importƒjavax.swing.JPanel;
2 importƒbecker.util.IView;
3
4 /** Provide a view of the game of Nim to a user.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒNimViewƒextendsƒJPanelƒimplementsƒIView
8 {ƒprivateƒNimModelƒmodel;
9

10 ƒƒ/** Construct the view.
11 ƒƒ* @param aModel The model we will be displaying. */
12 ƒƒpublicƒNimView(NimModelƒaModel)
13 ƒƒ{ƒsuper();
14 ƒƒƒƒthis.modelƒ=ƒaModel;
15 ƒƒƒƒthis.model.addView(this);
16 ƒƒƒƒthis.updateView();
17 ƒƒ}
18
19 ƒƒ/** Called by the model when it changes. Update the information this view displays. */
20 ƒƒpublicƒvoidƒupdateView()
21 ƒƒ{
22 ƒƒ}
23 }

The view is passed an instance of the model when it is constructed. The model is saved
in an instance variable, and the view adds itself to the model’s list of views. Finally, the
view must update the information it displays by calling updateView in line 16.

ch13/nim
Infrastructure/

13.2.3 The main Method

The last step in setting up the infrastructure is to write the main method. It constructs
an instance of the model and an instance of the view. It then displays the view in an
appropriately sized frame. This is shown in Listing 13-3.

705

ch13/nim
Infrastructure/

13.3
B

U
ILD

IN
G
 AN

D
 T

ESTIN
G
 TH

E M
O
D
EL

Listing 13-3: The main method for running the program

1 importƒjavax.swing.JFrame;
2
3 /** Run the game of Nim. There is a (virtual) pile of tokens. Two players take turns
4 * ƒremoving 1, 2, or 3 tokens. The player who takes the last token wins the game.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒNim
8 {
9 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

10 ƒƒ{ƒNimModelƒmodelƒ=ƒnewƒNimModel();
11 ƒƒƒƒNimViewƒviewƒ=ƒnewƒNimView(model);
12
13 ƒƒƒƒJFrameƒfƒ=ƒnewƒJFrame("Nim");
14 ƒƒƒƒf.setSize(250,ƒ200);
15 ƒƒƒƒf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
16 ƒƒƒƒf.setContentPane(view);
17 ƒƒƒƒf.setVisible(true);
18 ƒƒ}
19 }

13.3 Building and Testing the Model

LOOKING BACK

Enumerations were
discussed in

Section 7.3.4.

Figure 13-3 describes the steps for building a user interface. It suggests that the model
requires commands to change its state and queries for the views to use in updating the
display. If we keep this in mind while using the development process discussed in
Chapter 11, we will discover that the model for Nim needs the following methods:

➤ removeTokens, a command to remove one, two, or three tokens from the pile

➤ getPileSize, a query returning the current size of the pile

➤ getWhoseTurn, a query returning whose turn it is

➤ getWinner, a query returning which player, if any, has won the game

The requirements in Figure 13-1 specify that the first player and the initial size of the
pile are chosen randomly. The default constructor will do that, but since randomness
makes the class hard to test, we’ll also add a private constructor, allowing our test har
ness to easily specify the pile size and first player.

Representing the two players is a perfect job for an enumeration type. We will use three
values: one for the red player, one for the black player, and one for nobody. The last
one might be used, for example, as the answer to the query of who has won the game
(if the game isn’t over yet, nobody has won).

706
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

The Player enumeration is shown in Listing 13-4, and the NimModel class is shown
in Listing 13-5. In NimModel, the only method (other than the constructors) that
changes the model’s state is removeTokens. After it has made its changes, it calls
updateAllViews at line 96 to inform the views that they should update the informa
tion they display.

KEY IDEA

Call
updateAllViews
before returning from
a method that
changes the model.

Listing 13-4: The Player enumeration type

1 /** The players in the game of Nim, plus NOBODY to indicate situations where
2 * ƒneither player is applicable (for example, when no one has won the game yet).
3 *
4 * ƒ@author Byron Weber Becker */
5 publicƒenumƒPlayerƒ
6 {ƒRED,ƒBLACK,ƒNOBODY
7 }

ch13/nimOneView/

Listing 13-5: The completed NimModel class

ch13/nimOneView/
1 importƒbecker.util.AbstractModel;

2 importƒbecker.util.Test;

3

4 /** A class implementing a version of Nim. There is a (virtual) pile of tokens. Two

5 *ƒ players take turns removing 1, 2, or 3 tokens. The player who takes the last token

6 *ƒ wins the game.

7 *

8 * @author Byron Weber Becker */

9 publicƒclassƒNimModelƒextendsƒAbstractModel

10 {ƒ// Extending AbstractModel is an easy way to implement the IModel interface.
11
12 ƒƒ// Limit randomly generated pile sizes and how many tokens can be removed at once.
13 ƒƒpublicƒstaticƒfinalƒintƒMIN_PILESIZEƒ=ƒ10;
14 ƒƒpublicƒstaticƒfinalƒintƒMAX_PILESIZEƒ=ƒ20;
15 ƒƒpublicƒstaticƒfinalƒintƒMAX_REMOVEƒ=ƒ3;ƒ
16
17 ƒƒprivateƒintƒpileSize;
18 ƒƒprivateƒPlayerƒwhoseTurn;
19 ƒƒprivateƒPlayerƒwinnerƒ=ƒPlayer.NOBODY;
20

21 ƒƒ/** Construct a new instance of the game of Nim. */

22 ƒƒpublicƒNimModel()
23 ƒƒ{ƒ// Call the other constructor to do the initialization.
24 ƒƒƒƒthis(NimModel.random(MIN_PILESIZE,ƒMAX_PILESIZE),
25 ƒƒƒƒƒƒƒƒƒNimModel.chooseRandomPlayer());
26 ƒƒ}

707
13.3

B
U
ILD

IN
G
 AN

D
 T

ESTIN
G
 TH

E M
O
D
EL

Listing 13-5: The completed NimModel class (continued)

27
28 ƒƒ/** We need a way to create a nonrandom game for testing purposes. */
29 ƒƒprivateƒNimModel(intƒpileSize,ƒPlayerƒnext)
30 ƒƒ{ƒsuper();
31 ƒƒƒƒthis.pileSizeƒ=ƒpileSize;
32 ƒƒƒƒthis.whoseTurnƒ=ƒnext;
33 ƒƒ}
34
35 ƒƒ/** Generate a random number between two bounds. */
36 ƒƒprivateƒstaticƒintƒrandom(intƒlower,ƒintƒupper)
37 ƒƒ{ƒreturnƒ(int)(Math.random()*(upper-lower+1))ƒ+ƒlower;
38 ƒƒ}
39
40 ƒƒ/** Choose a player at random.
41 ƒƒ*ƒ@return Player.RED or Player.BLACK with 50% probability for each */
42 ƒƒprivateƒstaticƒPlayerƒchooseRandomPlayer()
43 ƒƒ{ƒifƒ(Math.random()ƒ<ƒ0.5)
44 ƒƒƒƒ{ƒreturnƒPlayer.RED;
45 ƒƒƒƒ}ƒelse
46 ƒƒƒƒ{ƒreturnƒPlayer.BLACK;
47 ƒƒƒƒ}
48 ƒƒ}
49
50 ƒƒ/** Get the current size of the pile.
51 ƒƒ*ƒ@return the current size of the pile */
52 ƒƒpublicƒintƒgetPileSize()
53 ƒƒ{ƒreturnƒthis.pileSize;
54 ƒƒ}
55
56 ƒƒ/** Get the next player to move.
57 ƒƒ*ƒ@return Either Player.RED or Player.BLACK if the game has not yet been won,
58 ƒƒ* ƒor Player.NOBODY if the game has been won. */
59 ƒƒpublicƒPlayerƒgetWhoseTurn()
60 ƒƒ{ƒreturnƒthis.whoseTurn;
61 ƒƒ}
62 ƒ
63 ƒƒ/** Get the winner of the game.
64 ƒƒ*ƒ@return Either Player.RED or Player.BLACK if the game has already been won;
65 ƒƒ*ƒPlayer.NOBODY if the game is still in progress. */
66 ƒƒpublicƒPlayerƒgetWinner()
67 ƒƒ{ƒreturnƒthis.winner;
68 ƒƒ}

708
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

Listing 13-5: The completed NimModel class (continued)

69
70 ƒƒ/** Is the game over?
71 ƒƒ*ƒ@return true if the game is over; false otherwise. */
72 ƒƒprivateƒbooleanƒgameOver()
73 ƒƒ{ƒreturnƒthis.pileSizeƒ==ƒ0;
74 ƒƒ}
75
76 ƒƒ/** Remove one, two, or three tokens from the pile. Ignore any attempts to take
77 ƒƒ*ƒtoo many or too few tokens. Otherwise, remove howMany tokens from the pile
78 ƒƒ*ƒand update whose turn is next.
79 ƒƒ*ƒ@param howMany How many tokens to remove.
80 ƒƒ*ƒ@throws IllegalStateException if the game has already been won */
81 ƒƒpublicƒvoidƒremoveTokens(intƒhowMany)
82 ƒƒ{ƒifƒ(this.gameOver())
83 ƒƒƒƒ{ƒthrowƒnewƒIllegalStateException(
84 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ"The game has already been won.");
85 ƒƒƒƒ}
86
87 ƒƒƒƒifƒ(this.isLegalMove(howMany))
88 ƒƒƒƒ{ƒthis.pileSizeƒ=ƒthis.pileSizeƒ-ƒhowMany;
89 ƒƒƒƒƒƒifƒ(this.gameOver())
90 ƒƒƒƒƒƒ{ƒthis.winnerƒ=ƒthis.whoseTurn;
91 ƒƒƒƒƒƒƒƒthis.whoseTurnƒ=ƒPlayer.NOBODY;
92 ƒƒƒƒƒƒ}ƒelse
93 ƒƒƒƒƒƒ{ƒthis.whoseTurnƒ=ƒ
94 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒNimModel.otherPlayer(this.whoseTurn);
95 ƒƒƒƒƒƒ}
96 ƒƒƒƒƒƒthis.updateAllViews();ƒ
97 ƒƒƒƒ}ƒƒƒƒ
98 ƒƒ}
99

100 ƒƒ// Is howMany a legal number of tokens to take?
101 ƒƒprivateƒbooleanƒisLegalMove(intƒhowMany)
102 ƒƒ{ƒreturnƒhowManyƒ>=ƒ1ƒ&&ƒhowManyƒ<=ƒMAX_REMOVEƒ&&ƒ
103 ƒƒƒƒƒƒƒƒƒƒƒhowManyƒ<=ƒthis.pileSize;
104 ƒƒ}
105
106 ƒƒ// Return the other player.
107 ƒƒprivateƒstaticƒPlayerƒotherPlayer(Playerƒwho)
108 ƒƒ{ƒifƒ(whoƒ==ƒPlayer.RED)
109 ƒƒƒƒ{ƒreturnƒPlayer.BLACK;
110 ƒƒƒƒ}ƒelseƒifƒ(whoƒ==ƒPlayer.BLACK)
111 ƒƒƒƒ{ƒreturnƒPlayer.RED;

709
13.4

B
U
ILD

IN
G
 TH

E V
IEW

 AN
D
 C

O
N
TRO

LLERS

Listing 13-5: The completed NimModel class (continued)

112 ƒƒƒƒ}ƒelse
113 ƒƒƒƒ{ƒthrowƒnewƒIllegalArgumentException();
114 ƒƒƒƒ}
115 ƒƒ}
116
117 ƒƒ// The addView, removeView, and updateAllViews methods could be included
118 ƒƒ// here. That isn't necessary in this case because NimModel extends AbstractModel.
119
120 ƒƒ/** Test the class. */
121 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
122 ƒƒ{ƒSystem.out.println("Testing NimModel");
123 ƒƒƒƒNimModelƒnimƒ=ƒnewƒNimModel(10,ƒPlayer.RED);
124 ƒƒƒƒTest.ckEquals("pile size",ƒ10,ƒnim.getPileSize());
125 ƒƒƒƒTest.ckEquals("winner",ƒPlayer.NOBODY,ƒnim.getWinner());
126 ƒƒƒƒTest.ckEquals("next",ƒPlayer.RED,ƒnim.getWhoseTurn());
127
128 ƒƒƒƒ/** ------ find the code to see complete test suite ------*/
129 ƒƒ}
130 }

13.4 Building the View and Controllers

KEY IDEA

The program shown
in Figure 13-5

contains lots of code
to help get you

started using
components.

The view, of course, is what displays information from the model to the user. It is the
visible part of the user interface. The controllers are what make the interface interac
tive. They listen for the user manipulating controls such as buttons or menus and then
make appropriate calls to the commands in the model.

13.4.1 Designing the Interface

Java comes with many user interface components including buttons, text fields, menus,
sliders, and labels. Some of these are shown in Figure 13-5. Designing an interface
includes deciding which of these components are most appropriate both to display the
model and to accept input from the user, and how to best arrange them on the screen.
For now, while we’re learning the basics, we will restrict ourselves to labels for dis
playing information and text fields to accept input from the user. In Section 13.7, we
will explore other components.

710
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

(figure 13-5)

Application demonstrating

many of the components

available for

constructing views

ch13/component
Demo/

Our first view will appear as shown in Figure 13-6. It shows the end of the game after
Red has won. The text areas (one has “2” in it, the other has “3”) are enabled when it’s
the appropriate player’s turn and disabled when it isn’t. When the game is over, both
are disabled, as shown here.

(figure 13-6)

First view for the game

of Nim

711
13.4

B
U
ILD

IN
G
 TH

E V
IEW

 AN
D
 C

O
N
TRO

LLERS

KEY IDEA

References to
components requiring

ongoing access are
stored in instance

variables.

LOOKING BACK

Layout managers
were discussed in

Section 12.6.

(figure 13-7)

NimView uses nested

JPanels to lay out the

components

13.4.2 Laying Out the Components

The components for any view can be divided into those that require ongoing access and
those that don’t. In this view, the following five components require ongoing access
either to change the information they display or to obtain changes made by the user.

➤	 Two JTextFields to accept input from the players

➤	 One JLabel showing the pile’s current size

➤	 Two JLabels announcing the winner (they are not visible until there is a win
ner, and even then only one is shown)

References to these objects will be stored in instance variables.

// Get how many tokens to remove.
privateƒJTextFieldƒredRemovesƒ=ƒnewƒJTextField(5);
privateƒJTextFieldƒblackRemovesƒ=ƒnewƒJTextField(5);

// Info to display.
privateƒJLabelƒpileSizeƒ=ƒnewƒJLabel();

privateƒJLabelƒredWinsƒ=ƒnewƒJLabel("Winner!");

privateƒJLabelƒblackWinsƒ=ƒnewƒJLabel("Winner!");

The components that do not require ongoing access include several JPanel objects
used to organize the components and the borders around them. Instance variables stor
ing references to these components are not required.

These components are laid out using four nested JPanels, as shown in Figure 13-7.

blackRemoves is a JTextField.
blackWins is a JLabel to announce
when black wins (usually not visible).

black is a JPanel to group
blackRemoves and blackWins.

center is a JPanel to group the
panel for black and the panel for red.

pSize is a JPanel holding the label
displaying the pile’s current size.

The entire view is also a JPanel,
organized with a BorderLayout.

2

Winner!

3

Winner!

712
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

The task of laying out the components occurs when the view is constructed and is usu
ally complex enough to merit a helper method called from the constructor. We’ll call
the helper method layoutView, as shown in Listing 13-6. The method carries out the
following tasks:

➤	 The first JPanel, named red, is defined in lines 12–15. It contains a
JTextField to accept information from the red player and a label to
announce if red is the winner. The JPanel itself is wrapped with a border to
label it in line 15.

➤	 The second JPanel, black, is just like red except that it contains compo
nents for the black player.

➤	 The third JPanel, pSize, contains the label used to display the size of the
pile. It, too, has a border to label it.

➤	 The fourth JPanel, center, is not directly visible in the user interface. It
exists solely to group the red and blackƒJPanels into a single component
that can be placed as a whole.

Finally, recall that NimView is itself a JPanel that can have its own layout manager. It
is set in line 36 to be a BorderLayout. Only two of the layout’s five areas are used, the
center and the south side. The center section grows and shrinks as its container is
resized. That’s where we put the center panel containing red and black. The south
area contains pSize.

Adding the layoutView method to NimView, as shown in Listing 13-6, and running
the program results in something that looks much like Figure 13-6. The pile size won’t
be displayed and both players will be declared winners. To display that information
correctly we need to update the view with information from the model.

Listing 13-6: A helper method to lay out the view for Nim

1 publicƒclassƒNimViewƒextendsƒJPanelƒimplementsƒIView
2 {ƒ// Instance variables omitted.
3
4 ƒƒpublicƒNimView(NimModelƒaModel)
5 ƒƒ{ƒ// Details omitted.
6 ƒƒƒƒthis.layoutView();
7 ƒƒ}
8
9 ƒƒ// Layout the view.

10 ƒƒprivateƒvoidƒlayoutView()
11 ƒƒ{ƒ// A panel for the red player.
12 ƒƒƒƒJPanelƒredƒ=ƒnewƒJPanel();
13 ƒƒƒƒred.add(this.redRemoves);
14 ƒƒƒƒred.add(this.redWins);

ch13/nimOneView/

713
13.4

B
U
ILD

IN
G
 TH

E V
IEW

 AN
D
 C

O
N
TRO

LLERS

Listing 13-6: A helper method to lay out the view for Nim (continued)

15 ƒƒƒƒred.setBorder(BorderFactory.createTitledBorder("Red"));
16
17 ƒƒƒƒ// A panel for the black player.
18 ƒƒƒƒJPanelƒblackƒ=ƒnewƒJPanel();
19 ƒƒƒƒblack.add(this.blackRemoves);
20 ƒƒƒƒblack.add(this.blackWins);
21 ƒƒƒƒblack.setBorder(BorderFactory.createTitledBorder("Black"));
22
23 ƒƒƒƒ// Pile size information.
24 ƒƒƒƒJPanelƒpSizeƒ=ƒnewƒJPanel();
25 ƒƒƒƒpSize.add(this.pileSize);
26 ƒƒƒƒpSize.setBorder(
27 ƒƒƒƒƒƒƒƒƒƒBorderFactory.createTitledBorder("Pile Size"));
28
29 ƒƒƒƒ// Group the red and black panels.
30 ƒƒƒƒJPanelƒcenterƒ=ƒnewƒJPanel();
31 ƒƒƒƒcenter.setLayout(newƒGridLayout(1,ƒ2));
32 ƒƒƒƒcenter.add(red);
33 ƒƒƒƒcenter.add(black);
34
35 ƒƒƒƒ// Lay out the pieces in this view.
36 ƒƒƒƒthis.setLayout(newƒBorderLayout());
37 ƒƒƒƒthis.add(center,ƒBorderLayout.CENTER);
38 ƒƒƒƒthis.add(pSize,ƒBorderLayout.SOUTH);
39 ƒƒ}
40 }

KEY IDEA

The updateView
method is responsible
for updating the view

with the latest
information from

the model.

13.4.3 Updating the View

The updateView method was already added when we set up the model and view
architecture, but it doesn’t do anything yet. It is called by the model each time the
model changes so that it can update the view’s components with current information.

For the moment, we want updateView to perform three basic tasks:

➤	 Display the correct pile size.

➤	 Enable the JTextField for the red player when it is the red player’s turn and
disable it otherwise, with similar behavior for the black player’s text field.
When a component is disabled, the players can’t use it, thus forcing each
player to take his or her turn at the right time.

714
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

➤	 Make redWins visible when the red player wins the game and invisible when
it hasn’t, with similar behavior for blackWins.

Recall that the constructor received a reference to the model as a parameter. This refer
ence was stored in an instance variable named, appropriately, model. We will use it to
retrieve the necessary information from the model to carry out these tasks.

Updating the Size of the Pile

The component to display the size of the pile is a JLabel. It has a method, setText,
which takes a string and causes the label to display it. Thus, we can update the pile size
display with the following statement:

this.pileSize.setText(""ƒ+ƒthis.model.getPileSize());

The result from getPileSize is an int. “Adding” it to the empty string forces Java
to convert it to a string, which is what setText requires.

If you run the program now, the user interface should show the pile size.

Updating the Text Fields

redRemoves is the name of the text field used by the red player to say how many
tokens to remove. To enable or disable it, we’ll use the setEnabled method, passing
true to enable the component and false to disable it. We want the text field enabled
when the following Boolean expression is true:

this.model.getWhoseTurn()ƒ==ƒPlayer.RED

If this expression is false (it’s not red’s turn), the component should be disabled. Thus,

this.redRemoves.setEnabled(
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis.model.getWhoseTurn()ƒ==ƒPlayer.RED);

enables redRemoves when it’s the red player’s turn and disables it otherwise. Recall
that when the game is over, getWhoseTurn returns Player.NOBODY, resulting in both
text fields being disabled.

Updating the Winners

When the game is over, we want either redWins or blackWins to become visible. If
the game isn’t over, we want both to be invisible. Every component has a method
named setVisible that makes the component visible when passed the value true

715
13.4

B
U
ILD

IN
G
 TH

E V
IEW

 AN
D
 C

O
N
TRO

LLERS

LOOKING AHEAD

We will refine
updateView in

Section 13.4.5.

and invisible when passed the value false. We can again use a simple Boolean expres
sion to pass the correct value:

this.redWins.setVisible(
ƒƒƒƒƒƒƒƒƒƒƒƒƒthis.model.getWinner()ƒ==ƒPlayer.RED);

A similar statement for blackWins completes the method. Like getWhoseTurn,
getWinner can also return Player.NOBODY.

The entire method is shown in Listing 13-7. If you run the program with this method
completed, the user interface should display the initial pile size, one of the text fields
should be enabled (indicating who removes the first tokens), and neither player should
have their “Winner!” label showing. However, the game still can’t be played because
the components will not yet respond to the users.

Listing 13-7: Updating the view with current information from the model

1 publicƒclassƒNimViewƒextendsƒJPanelƒimplementsƒIView
2 {ƒprivateƒNimModelƒmodel;
3 ƒƒprivateƒJTextFieldƒredRemovesƒ=ƒnewƒJTextField(5);
4 ƒƒ// Other instance variables, constructor, and methods omitted.
5
6 ƒƒ/** Called by the model when it changes. Update the information this view displays. */
7 ƒƒpublicƒvoidƒupdateView()
8 ƒƒ{ƒ// Update the size of the pile.
9 ƒƒƒƒthis.pileSize.setText(""ƒ+ƒthis.model.getPileSize());

10
11 ƒƒƒƒ// Enable and disable the text fields for each player.
12 ƒƒƒƒthis.redRemoves.setEnabled(
13 ƒƒƒƒƒƒƒƒƒƒƒƒthis.model.getWhoseTurn()ƒ==ƒPlayer.RED);
14 ƒƒƒƒthis.blackRemoves.setEnabled(
15 ƒƒƒƒƒƒƒƒƒƒƒƒthis.model.getWhoseTurn()ƒ==ƒPlayer.BLACK);
16
17 ƒƒƒƒ// Proclaim the winner, if there is one.
18 ƒƒƒƒthis.redWins.setVisible(
19 ƒƒƒƒƒƒƒƒƒƒƒƒthis.model.getWinner()ƒ==ƒPlayer.RED);
20 ƒƒƒƒthis.blackWins.setVisible(
21 ƒƒƒƒƒƒƒƒƒƒƒƒthis.model.getWinner()ƒ==ƒPlayer.BLACK);
22 ƒƒ}
23 }

ch13/nimOneView/

716
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

13.4.4 Writing and Registering Controllers

The fundamental job of a controller is to detect when a user is manipulating a compo
nent and to respond in a way appropriate for the specific program. To best understand
how this happens, we need to delve into a simplified version of a component. All of the
Java components work similarly.

Understanding Events

For concreteness, let’s consider JTextField. A simplified version appears in Listing
13-8. The key feature is the handleEvent method. It detects various kinds of events
caused by the user, such as pressing the Enter key or using the Tab key to move either
into or out of the text field. Listing 13-8 uses pseudocode for detecting these actions
because we don’t really need to know how they are accomplished. Thanks to encapsu
lation and information hiding, we can use the class without knowing those intimate
details.

What is important is that when one of these events occurs, two things happen. First,
the component constructs an event object describing the event and containing such
information as when the event occurred, if any keys were pressed at the time, and
which component created it.

Second, the component calls a specific method, passing the event object as an argu
ment. This method is one that we write as part of our controller. It’s in this method that
we have an opportunity to take actions specific to our program, such as calling the
removeTokens method in the model.

Listing 13-8: A simplified version of JTextField

1 publicƒclassƒJTextFieldƒextendsƒ...
2 {ƒprivateƒActionListenerƒactionListener;
3 ƒƒprivateƒFocusListenerƒfocusListener;
4
5 ƒƒpublicƒvoidƒaddActionListener(ActionListenerƒaListener)
6 ƒƒ{ƒthis.actionListenerƒ=ƒaListener;
7 ƒƒ}
8
9 ƒƒpublicƒvoidƒaddFocusListener(FocusListenerƒfListener)

10 ƒƒ{ƒthis.focusListenerƒ=ƒfListener;
11 ƒƒ}
12
13 ƒƒprivateƒvoidƒhandleEvent()
14 ƒƒ{ƒifƒ(user pressed the “Enter” key)

717
13.4

B
U
ILD

IN
G
 TH

E V
IEW

 AN
D
 C

O
N
TRO

LLERS

Listing 13-8: A simplified version of JTextField (continued)

15 ƒƒƒƒ{ƒconstruct an object, event, describing what happened
16 ƒƒƒƒƒƒthis.actionListener.actionPerformed(event);
17 ƒƒƒƒ}ƒelseƒifƒ(user tabbed out of this text field)
18 ƒƒƒƒ{ƒconstruct an object, event, describing what happened
19 ƒƒƒƒƒƒthis.focusListener.focusLost(event);
20 ƒƒƒƒ}ƒelseƒifƒ(user tabbed into this text field)
21 ƒƒƒƒ{ƒconstruct an object, event, describing what happened
22 ƒƒƒƒƒƒthis.focusListener.focusGained(event);
23 ƒƒƒƒ}ƒelseƒ
24 ƒƒƒƒƒƒ...
25 ƒƒ}
26 }

KEY IDEA

In Java, controllers
implement methods
defined in interfaces

with names ending in
Listener.

KEY IDEA

In Java, we use
listener interfaces to

implement
controllers.

Obviously, the method called has a name. That means that our controller must have
a method with the same name. Ensuring that it does is a perfect job for a Java inter
face. The names ActionListener and FocusListener at lines 2, 3, 5, and 9 in
Listing 13-8 are, in fact, the names of Java interfaces. Our controllers will always
implement at least one interface whose name ends with Listener.

There are, unfortunately, two competing terminologies. “Controller” is a well-
established name for the part of a user interface that interprets events and calls the
appropriate commands in the model. Java uses the term listener for a class that is called
when an event occurs. Most of the time the two terms mean the same thing.

Implementing a Controller

When the user presses the Enter key inside a JTextField component, the component calls
a method named actionPerformed. This method is defined in the ActionListener

interface (and is, in fact, the only method defined there). It takes a single argument of type
ActionEvent. Therefore, the skeleton for our controller class will be:

importƒjava.awt.event.ActionListener;
importƒjava.awt.event.ActionEvent;

publicƒclassƒRemovesControllerƒextendsƒObjectƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒActionListener
{
ƒƒpublicƒvoidƒactionPerformed(ActionEventƒe)
ƒƒ{
ƒƒ}
}

718
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

Inside actionPerformed, we need to obtain the value the user typed into the text field
and then call the model with that value. One approach is to have instance variables stor
ing references to the text field and the model for the game. Then actionPerformed can
be written as

publicƒvoidƒactionPerformed(ActionEventƒe)
{ƒStringƒenteredTextƒ=ƒthis.textfield.getText();
ƒƒintƒremoveƒ=ƒconvert enteredText to an integer;
ƒƒthis.model.removeTokens(remove);
}

The conversion from a string to an integer can be done with parseInt, a static
method in the Integer class. It will throw a NumberFormatException if the user
enters text that is not a valid integer. If this exception is thrown, we’ll recover in the
catch clause by selecting the entered text and ignoring what was entered.

The full method is shown in lines 21–29 of Listing 13-9. The rest of the listing, lines 11–19,
is simply declaring the instance variables needed and initializing them in a constructor.

LOOKING AHEAD

Implementing
controllers can use a
number of shortcuts.
Some of them will
be explored in
Section 13.6,
Controller Variations.

Listing 13-9: A controller for a text field

1 importƒjavax.swing.JTextField;
2 importƒjava.awt.event.*;
3
4 /** A controller for the game of Nim that informs the model how many tokens a player
5 * wants to remove.
6 *
7 * @author Byron Weber Becker */
8 publicƒclassƒRemovesControllerƒextendsƒObjectƒ
9 ƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒActionListener

10 {
11 ƒƒprivateƒNimModelƒmodel;
12 ƒƒprivateƒJTextFieldƒtextfield;
13
14 ƒƒpublicƒRemovesController(NimModelƒaModel,ƒ
15 ƒƒƒƒƒƒƒƒƒƒƒƒƒJTextFieldƒaTextfield)
16 ƒƒ{ƒsuper();
17 ƒƒƒƒthis.modelƒ=ƒaModel;
18 ƒƒƒƒthis.textfieldƒ=ƒaTextfield;
19 ƒƒ}
20
21 ƒƒpublicƒvoidƒactionPerformed(ActionEventƒe)
22 ƒƒ{ƒtryƒ
23 ƒƒƒƒ{ƒintƒremoveƒ=ƒ
24 ƒƒƒƒƒƒƒƒƒƒƒƒƒInteger.parseInt(this.textfield.getText());
25 ƒƒƒƒƒƒthis.model.removeTokens(remove);

ch13/nimOneView/

719
13.4

B
U
ILD

IN
G
 TH

E V
IEW

 AN
D
 C

O
N
TRO

LLERS

Listing 13-9: A controller for a text field (continued)

26 ƒƒƒƒ}ƒcatchƒ(NumberFormatExceptionƒex)ƒ
27 ƒƒƒƒ{ƒthis.textfield.selectAll();
28 ƒƒƒƒ}
29 ƒƒ}
30 }

KEY IDEA

A controller must be
registered with a

component.

Registering Controllers

The very last step to make this user interface interactive is to construct the controllers
and register them with the text fields. Recall that the simplified version of JTextField

shown in Listing 13-8 contained methods such as addActionListener and
addFocusListener. They each took an instance of the similarly named interface and
saved it in an instance variable. Registering our controller simply means calling the
appropriate addXxxListener method for the relevant component, passing an
instance of the controller as an argument.

We’ve only written one controller class, but we’ll use one instance of it for the
redRemoves text field and a second instance for the blackRemoves text field. A user
interface often has several controllers, so it makes sense to have a helper method,
registerControllers, just for constructing and registering controllers. It is called
from the view’s constructor.

The code in Listing 13-10 registers the red controller in two steps but combines the
steps for the black controller.

Listing 13-10: A method registering the controllers with the appropriate components

1 publicƒclassƒNimViewƒextendsƒJPanelƒimplementsƒIView
2 {ƒ// Instance variables omitted.
3
4 ƒƒpublicƒNimView()
5 ƒƒ{ƒ// Some details omitted.
6 ƒƒƒƒthis.registerControllers();
7 ƒƒ}
8
9 ƒƒ/** Register controllers for the components the user can manipulate. */

10 ƒƒprivateƒvoidƒregisterControllers()
11 ƒƒ{ƒRemoveControllerƒredControllerƒ=ƒ
12 ƒƒƒƒƒƒƒƒnewƒRemoveController(this.model,ƒthis.redRemoves);
13 ƒƒƒƒthis.redRemoves.addActionListener(redController);

720
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

Listing 13-10: A method registering the controllers with the appropriate components (continued)

14
15 ƒƒƒƒthis.blackRemoves.addActionListener(
16 ƒƒƒƒƒƒƒnewƒRemoveController(this.model,ƒthis.blackRemoves));
17 ƒƒ}
18 }

If you run the program with these additions, you should be able to play a complete,
legal game, as shown in Figure 13-8.

(figure 13-8)

User interface as it

appears at each stage of a

complete game

a) The game begins with a pile of 10. Red
has the first turn.

b) Red takes two tokens; now it’s black’s
turn. The player must click in its text field
before entering a value.

c) Black takes three tokens. It’s red’s turn.
The “2” from red’s previous turn still shows.
Red does not need to click in its text field
before entering a value but must delete the
old value before entering a new one.

d) Red takes one token; now it’s black’s
turn. The 3 from the previous turn still
shows in the text field.

e) Black takes two tokens, setting up red for
a win.

f) Red takes two tokens and is proclaimed
the winner.

721

13.4.5 Refining the View

The program runs, as shown in Figure 13-8. However, there are three areas in which
improvements could be made.

➤	 The black user must click in its text field before entering a value. It would be
nice if the player could simply type a new value.

➤	 The value previously entered by a player remains in the text field and must be
removed before entering a new value.

➤	 Finally, the fonts used in the text fields and the JLabels are too small, given
their importance in the user interface.

Focus

In any given user interface, one component at most will receive input from the user’s
keyboard. This component is said to have the keyboard focus. Usually a component
will give some visible sign when it has the focus. A component that accepts text will
show a flashing bar called the insertion point. A button that has the focus will often
have a subtle box around its label.

Focus normally shifts from one component to the next in the order that they were
added to their container. In the case of Nim, however, the component that should have
the focus depends on whose turn it is. So, in the updateView method, we can update
which component has the focus with the following code. This code also replaces the
previously entered value with an empty string.

ifƒ(this.model.getWhoseTurn()ƒ==ƒPlayer.RED)
{ƒthis.redRemoves.requestFocusInWindow();
ƒƒthis.redRemoves.setText("");
}ƒelseƒifƒ(this.model.getWhoseTurn()ƒ==ƒPlayer.BLACK)
{ƒthis.blackRemoves.requestFocusInWindow();
ƒƒthis.blackRemoves.setText("");
}

Another approach is to write a controller class implementing the FocusListener

interface. It can detect when a component gains or loses focus. This is useful, for exam
ple, if action needs to be taken when a user moves into or out of a component using
either the mouse or the keyboard.

Fonts

A larger font for the various components can be specified with the setFont method.
Its argument is a Font object describing the desired font. The following code could be
included in the layoutView method to change the font for the five components.

13.4
B

U
ILD

IN
G
 TH

E V
IEW

 AN
D
 C

O
N
TRO

LLERS

722
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

// Enlarge the fonts.

Fontƒfontƒ=ƒnewƒFont("Serif",ƒFont.PLAIN,ƒ24);

this.redRemoves.setFont(font);

this.blackRemoves.setFont(font);

this.redWins.setFont(font);

this.blackWins.setFont(font);

this.pileSize.setFont(font);

The first argument to the Font constructor specifies to use a font with serifs. Such fonts
have short lines at the ends of the main strokes of each letter. Common fonts that have
serifs include Times New Roman, Bookman, and Palatino. The string “SansSerif” can be
used to specify a font without serifs. Helvetica is a common sans serif font. The string
“monospaced” indicates a font using a fixed width for each letter. An example is Courier.

You can also specify an actual font name like “Helvetica” as the first argument.
However, you can’t be sure that the font is actually installed on the computer unless
you check. The program in Listing 13-11 will list all the names of all the fonts that are
installed. Try it for yourself to see which fonts are installed on your computer.

Listing 13-11: A program to list the names of fonts installed on a computer

1 importƒjava.awt.Font;
2 importƒjava.awt.GraphicsEnvironment;
3
4 /** List the font names available on the current computer system.
5 *
6 * @author Byron Weber Becker */
7 publicƒclassƒListFontsƒextendsƒObject
8 {ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
9 ƒƒ{ƒGraphicsEnvironmentƒgeƒ=ƒ

10 ƒƒƒƒƒƒƒƒGraphicsEnvironment.getLocalGraphicsEnvironment();
11 ƒƒƒƒFont[]ƒnamesƒ=ƒge.getAllFonts();
12
13 ƒƒƒƒforƒ(Fontƒfƒ:ƒnames)
14 ƒƒƒƒ{ƒSystem.out.println(f.getName());
15 ƒƒƒƒ}
16 ƒƒ}
17 }

ch13/fonts/

The second argument to the Font constructor is the style. There are three basic styles,
defined as constants in the Font class: PLAIN, ITALIC, and BOLD. ITALIC makes the let
ters slant and BOLD makes the strokes thicker. A bold, italic font can also be specified by
adding the BOLD and ITALIC constants together and passing the result to the constructor.

723
13.4

B
U
ILD

IN
G
 TH

E V
IEW

 AN
D
 C

O
N
TRO

LLERS

The third argument to the Font constructor is the font’s size. The size is measured in
points, where one point is 1/72 of an inch. Ten to 12 points is a comfortable size for
reading; use 16 points or larger for labels and headlines.

This finishes our first view. The complete code is shown in Listing 13-12. Most com
ponents have many other ways to refine the way they look. Investigating them further
falls outside the scope of this book. Exploring the documentation and method names
for the component, as well as its superclasses, will often indicate what can be done.

Listing 13-12: The completed code for the NimView class

1 importƒjavax.swing.JPanel;
2 importƒbecker.util.IView;
3 importƒjavax.swing.JTextField;
4 importƒjavax.swing.JLabel;
5 importƒjavax.swing.BorderFactory;
6 importƒjava.awt.GridLayout;
7 importƒjava.awt.BorderLayout;
8 importƒjava.awt.Font;
9

10 /** Provide a view of the game of Nim to a user.
11 *
12 *ƒ@author Byron Weber Becker */
13 publicƒclassƒNimViewƒextendsƒJPanelƒimplementsƒIView
14 {ƒ// The model implementing Nim's logic.
15 ƒƒprivateƒNimModelƒmodel;
16
17 ƒƒ// Get how many tokens to remove.
18 ƒƒprivateƒJTextFieldƒredRemovesƒ=ƒnewƒJTextField(5);
19 ƒƒprivateƒJTextFieldƒblackRemovesƒ=ƒnewƒJTextField(5);
20 ƒƒ
21 ƒƒ// Info to display.
22 ƒƒprivateƒJLabelƒpileSizeƒ=ƒnewƒJLabel();
23 ƒƒprivateƒJLabelƒredWinsƒ=ƒnewƒJLabel("Winner!");
24 ƒƒprivateƒJLabelƒblackWinsƒ=ƒnewƒJLabel("Winner!");
25
26 ƒƒ/** Construct the view.
27 ƒƒ*ƒ@param aModel The model we will be displaying. */
28 ƒƒpublicƒNimView(NimModelƒaModel)
29 ƒƒ{ƒsuper();
30 ƒƒƒƒthis.modelƒ=ƒaModel;
31
32 ƒƒƒƒthis.layoutView();
33 ƒƒƒƒthis.registerControllers();
34

ch13/nimOneView/

724
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

Listing 13-12: The completed code for the NimView class (continued)

35 ƒƒƒƒthis.model.addView(this);
36 ƒƒƒƒthis.updateView();
37 ƒƒ}
38
39 ƒƒ/** Called by the model when it changes. Update the information this view displays. */
40 ƒƒpublicƒvoidƒupdateView()
41 ƒƒ{ƒthis.pileSize.setText(""ƒ+ƒthis.model.getPileSize());
42
43 ƒƒƒƒthis.redRemoves.setEnabled(
44 ƒƒƒƒƒƒƒƒƒƒthis.model.getWhoseTurn()ƒ==ƒPlayer.RED);
45 ƒƒƒƒthis.blackRemoves.setEnabled(
46 ƒƒƒƒƒƒƒƒƒƒthis.model.getWhoseTurn()ƒ==ƒPlayer.BLACK);
47 ƒƒƒƒthis.redWins.setVisible(
48 ƒƒƒƒƒƒƒƒƒƒthis.model.getWinner()ƒ==ƒPlayer.RED);
49 ƒƒƒƒthis.blackWins.setVisible(
50 ƒƒƒƒƒƒƒƒƒƒthis.model.getWinner()ƒ==ƒPlayer.BLACK);
51
52 ƒƒƒƒifƒ(this.model.getWhoseTurn()ƒ==ƒPlayer.RED)
53 ƒƒƒƒ{ƒthis.redRemoves.requestFocusInWindow();
54 ƒƒƒƒƒƒthis.redRemoves.setText("");
55 ƒƒƒƒ}ƒelseƒifƒ(this.model.getWhoseTurn()ƒ==ƒPlayer.BLACK)
56 ƒƒƒƒ{ƒthis.blackRemoves.requestFocusInWindow();
57 ƒƒƒƒƒƒthis.blackRemoves.setText("");
58 ƒƒƒƒ}
59 ƒƒ}
60
61 ƒƒ/** Layout the view. */
62 ƒƒprivateƒvoidƒlayoutView()
63 ƒƒ{ƒ// A panel for the red player
64 ƒƒƒƒJPanelƒredƒ=ƒnewƒJPanel();
65 ƒƒƒƒred.add(this.redRemoves);
66 ƒƒƒƒred.add(this.redWins);
67 ƒƒƒƒred.setBorder(BorderFactory.createTitledBorder("Red"));
68
69 ƒƒƒƒ// A panel for the black player
70 ƒƒƒƒJPanelƒblackƒ=ƒnewƒJPanel();
71 ƒƒƒƒblack.add(this.blackRemoves);
72 ƒƒƒƒblack.add(this.blackWins);
73 ƒƒƒƒblack.setBorder(BorderFactory.createTitledBorder("Black"));
74
75 ƒƒƒƒ// Pilesize info.
76 ƒƒƒƒJPanelƒpSizeƒ=ƒnewƒJPanel();

725
13.4

B
U
ILD

IN
G
 TH

E V
IEW

 AN
D
 C

O
N
TRO

LLERS

Listing 13-12: The completed code for the NimView class (continued)

77 ƒƒƒƒpSize.add(this.pileSize);
78 ƒƒƒƒpSize.setBorder(
79 ƒƒƒƒƒƒƒƒƒƒBorderFactory.createTitledBorder("Pile Size"));
80
81 ƒƒƒƒ// Group the red and black panels.
82 ƒƒƒƒJPanelƒcenterƒ=ƒnewƒJPanel();
83 ƒƒƒƒcenter.setLayout(newƒGridLayout(1,ƒ2));
84 ƒƒƒƒcenter.add(red);
85 ƒƒƒƒcenter.add(black);
86
87 ƒƒƒƒ// Lay out the pieces in this view.
88 ƒƒƒƒthis.setLayout(newƒBorderLayout());
89 ƒƒƒƒthis.add(center,ƒBorderLayout.CENTER);
90 ƒƒƒƒthis.add(pSize,ƒBorderLayout.SOUTH);
91
92 ƒƒƒƒ// Enlarge the fonts.
93 ƒƒƒƒFontƒfontƒ=ƒnewƒFont("Serif",ƒFont.PLAIN,ƒ24);
94 ƒƒƒƒthis.redRemoves.setFont(font);
95 ƒƒƒƒthis.blackRemoves.setFont(font);
96 ƒƒƒƒthis.redWins.setFont(font);
97 ƒƒƒƒthis.blackWins.setFont(font);
98 ƒƒƒƒthis.pileSize.setFont(font);
99 ƒƒ}

100
101 ƒƒ/** Register controllers for the components the user can manipulate. */
102 ƒƒprivateƒvoidƒregisterControllers()
103 ƒƒ{ƒthis.redRemoves.addActionListener(
104 ƒƒƒƒƒƒƒƒnewƒRemovesController(this.model,ƒthis.redRemoves));
105 ƒƒƒƒthis.blackRemoves.addActionListener(
106 ƒƒƒƒƒƒnewƒRemovesController(this.model,ƒthis.blackRemoves));
107 ƒƒ}
108 }

13.4.6 View Pattern

Views can be complex. However, they follow a common pattern, shown in Listing 13-13,
which makes them much easier to understand and implement.

726
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

Listing 13-13: A pattern template for a view

1 importƒbecker.util.IView;
2 importƒjavax.swing.JPanel;
3 «listƒofƒotherƒimports»
4
5 publicƒclassƒ«viewName»ƒextendsƒJPanelƒimplementsƒIView
6 {ƒprivateƒ«modelClassName»ƒmodel;
7
8 ƒƒ«componentƒdeclarations»
9

10 ƒƒpublicƒ«viewName»(«modelClassName»ƒaModel)
11 ƒƒ{ƒsuper();
12 ƒƒƒƒthis.modelƒ=ƒaModel;
13 ƒƒƒƒthis.layoutView();
14 ƒƒƒƒthis.registerControllers();
15 ƒƒƒƒthis.model.addView(this);
16 ƒƒƒƒthis.updateView();
17 ƒƒ}
18
19 ƒƒpublicƒvoidƒupdateView()
20 ƒƒ{ƒ«statementsƒtoƒupdateƒtheƒcomponentsƒinƒtheƒview»
21 ƒƒ}
22
23 ƒƒprivateƒvoidƒlayoutView()
24 ƒƒ{ƒ«statementsƒtoƒlayƒoutƒtheƒcomponentsƒwithinƒtheƒview»
25 ƒƒ}
26
27 ƒƒprivateƒvoidƒregisterControllers()
28 ƒƒ{ƒ«statementsƒtoƒconstructƒandƒregisterƒcontrollers»
29 ƒƒ}
30 }

13.5 Using Multiple Views

Now let’s implement a different user interface for the same game. Because the
NimModel class exhibits very low coupling with its first view (calling only the
updateView method via the IView interface), we will be able to replace the user inter
face without changing NimModel at all.

Our new interface is illustrated in Figure 13-9. Instead of typing in the number of
tokens to remove, the user clicks the appropriate button. Like our previous interface,

KEY IDEA

One of the strengths
of the Model-View-
Controller pattern is
the low coupling
between the
various parts.

727

components are disabled when they don’t apply. For example, the black player’s but
tons are shown disabled, and when there are only 2 tokens remaining on the pile, the
“Remove 3 Tokens” button will be disabled for both players. Like our previous inter
face, “Winner!” is displayed for the winning player at the appropriate time.

13.5
U

SIN
G
 M

U
LTIPLE V

IEW
S (figure 13-9)

Different user interface

for Nim

KEY IDEA

A view can
be partitioned into

subviews.

We could write this user interface as one big view, as we did previously. However, this
view has a total of nine components to manage, raising the overall complexity.
Furthermore, the four components for the red player are managed almost exactly like
those for the black player. This suggests that some good abstractions might simplify the
problem.

Recall that we wrote the model anticipating multiple views. The model has a list of
views, and each time the model’s state changes, it goes through that list and tells each
view to update itself. This allows us to decompose the overall view into a number of
subviews. Each subview will add itself to the model’s list of views and will have its
updateView method called at the appropriate times.

This version of the interface will use three subviews: one for the red player, one for the
black player, and one to display the pile size. NimView will still exist to organize the
three subviews.

Dividing the view into several subviews has two distinct advantages. First, each view
can focus on a smaller part of the overall job, allowing it to be simpler, easier to under
stand, easier to write, and easier to debug. Second, subviews can be easily changed or
even replaced without fear of breaking the rest of the interface.

728
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

13.5.1 Implementing NimView

NimView is the overall view of the game. It is composed of the three subviews for the
players and the pile size. NimView does not (directly) display information about the
model nor does it (directly) update the model. Both of those tasks are delegated to the
subviews. NimView’s only task is to organize the subviews in a panel.

In the following ways, it is a degenerate view:

➤ It doesn’t need an instance variable storing a reference to the model.

➤ It doesn’t have any controllers to construct or register.

➤ It doesn’t need to register itself with the model.

As seen in Listing 13-14, all NimView does is instantiate and lay out the subviews.

Listing 13-14: NimView, a view consisting of three subviews

1 importƒjavax.swing.JPanel;
2 importƒjavax.swing.BorderFactory;
3 importƒjava.awt.GridLayout;
4 importƒjava.awt.BorderLayout;
5
6 /** Provide a view of the game of Nim to a user.
7 *
8 * @author Byron Weber Becker */
9 publicƒclassƒNimViewƒextendsƒJPanel

10 {
11 ƒƒ/** Construct the view.
12 ƒƒ* @param aModel The model we will be displaying. */
13 ƒƒpublicƒNimView(NimModelƒaModel)
14 ƒƒ{ƒsuper();
15
16 ƒƒƒƒ// Create the subviews.
17 ƒƒƒƒNimPlayerViewƒredƒ=ƒ
18 ƒƒƒƒƒƒƒƒƒƒnewƒNimPlayerView(aModel,ƒPlayer.RED);
19 ƒƒƒƒNimPlayerViewƒblackƒ=ƒ
20 ƒƒƒƒƒƒƒƒƒƒnewƒNimPlayerView(aModel,ƒPlayer.BLACK);
21 ƒƒƒƒNimPileViewƒpileƒ=ƒnewƒNimPileView(aModel);
22
23 ƒƒƒƒ// Put a title on each subview.
24 ƒƒƒƒred.setBorder(BorderFactory.createTitledBorder("Red"));
25 ƒƒƒƒblack.setBorder(BorderFactory.createTitledBorder("Black"));
26 ƒƒƒƒpile.setBorder(BorderFactory.createTitledBorder("Pile Size"));

27

ch13/nimMultiView/

729
13.5

U
SIN

G
 M

U
LTIPLE V

IEW
S

Listing 13-14: NimView, a view consisting of three subviews (continued)

28 ƒƒƒƒ// Group the red and black views.
29 ƒƒƒƒJPanelƒcenterƒ=ƒnewƒJPanel();
30 ƒƒƒƒcenter.setLayout(newƒGridLayout(2,ƒ1));
31 ƒƒƒƒcenter.add(red);
32 ƒƒƒƒcenter.add(black);
33
34 ƒƒƒƒ// Lay out the pieces in this view.
35 ƒƒƒƒthis.setLayout(newƒBorderLayout());
36 ƒƒƒƒthis.add(center,ƒBorderLayout.CENTER);
37 ƒƒƒƒthis.add(pile,ƒBorderLayout.SOUTH);
38 ƒƒ}
39 }

13.5.2 Implementing NimPileView

The NimPileView class, shown in Listing 13-15, is a simple view. It does not need to
update the model, so there are no controllers. It only has a JLabel that is updated via
the updateView method. addView is called at line 17 to add this view to the model’s
list of views.

ch13/nimMultiView/

Listing 13-15: The NimPileView class

1 importƒbecker.util.IView;
2 importƒjavax.swing.*;
3 importƒjava.awt.Font;
4
5 /** A view showing the current pile size for the game of Nim.
6 *
7 * @author Byron Weber Becker */
8 publicƒclassƒNimPileViewƒextendsƒJPanelƒimplementsƒIView
9 {ƒprivateƒNimModelƒmodel;

10 ƒƒprivateƒJLabelƒpileSizeƒ=ƒnewƒJLabel();
11
12 ƒƒ/** Construct the view. */
13 ƒƒpublicƒNimPileView(NimModelƒaModel)
14 ƒƒ{ƒsuper();
15 ƒƒƒƒthis.modelƒ=ƒaModel;
16 ƒƒƒƒthis.layoutView();
17 ƒƒƒƒthis.model.addView(this);
18 ƒƒƒƒthis.updateView();

730
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

Listing 13-15: The NimPileView class (continued)

19 ƒƒ}
20
21 ƒƒ/** Update the view. Called by the model when its state changes. */
22 ƒƒpublicƒvoidƒupdateView()
23 ƒƒ{ƒthis.pileSize.setText(""ƒ+ƒthis.model.getPileSize());
24 ƒƒ}
25
26 ƒƒ/** Layout the view. */
27 ƒƒprivateƒvoidƒlayoutView()
28 ƒƒ{ƒthis.pileSize.setFont(newƒFont("Serif",ƒFont.PLAIN,ƒ24));
29 ƒƒƒƒthis.add(this.pileSize);
30 ƒƒ}
31 }

13.5.3 Implementing NimPlayerView

NimPlayerView is a full-fledged view. It has its own components to lay out within
itself. Those components are used to update the model, so they need to have controllers
registered. The view also displays part of the state of the model—who’s turn it is and
who has won—and so it needs an updateView method and an instance variable to
store a reference to the model.

We’ll write NimPlayerView so that one instance of the class can be used for the red
player and a second instance for the black player. To meet this goal, it must store the
player it represents (lines 14 and 29 of Listing 13-16). The player is used in the
updateView method (lines 45 and 48) to determine which buttons to enable and
whether a winner should be declared.

The view has three buttons for user interaction. They all need to be added to the
view, be enabled and disabled as appropriate, and have controllers registered. These
tasks are all made easier by placing the buttons in an array (lines 16–20) and using
loops (lines 43–46, 58–61, and 69–72).

Listing 13-16: The NimPlayerView class

1 importƒbecker.util.IView;
2 importƒjavax.swing.JPanel;
3 importƒjavax.swing.JButton;
4 importƒjavax.swing.JLabel;
5 importƒjavax.swing.SwingConstants;

ch13/nimMultiView/

731
13.5

U
SIN

G
 M

U
LTIPLE V

IEW
S

Listing 13-16: The NimPlayerView class (continued)

6 importƒjava.awt.Font;
7 importƒjava.awt.GridLayout;
8
9 /** Provide a view of the game of Nim focused on one particular player to a user.

10 *
11 * @author Byron Weber Becker */
12 publicƒclassƒNimPlayerViewƒextendsƒJPanelƒimplementsƒIView
13 {ƒprivateƒNimModelƒmodel;
14 ƒƒprivateƒPlayerƒplayer;
15 ƒƒ
16 ƒƒprivateƒJButton[]ƒremoveButtonsƒ=ƒnewƒJButton[]ƒ{
17 ƒƒƒƒnewƒJButton("Remove 1 Token"),ƒ
18 ƒƒƒƒnewƒJButton("Remove 2 Tokens"),
19 ƒƒƒƒnewƒJButton("Remove 3 Tokens")
20 ƒƒ};
21 ƒƒprivateƒJLabelƒwinnerƒ=ƒnewƒJLabel("Winner!");
22
23 ƒƒ/** Construct a view for one player.
24 ƒƒ *ƒ@param aModel The game's model.
25 ƒƒ *ƒ@param player The player for which this is the view. */
26 ƒƒpublicƒNimPlayerView(NimModelƒaModel,ƒPlayerƒaPlayer)
27 ƒƒ{ƒsuper();
28 ƒƒƒƒthis.modelƒ=ƒaModel;
29 ƒƒƒƒthis.playerƒ=ƒaPlayer;
30
31 ƒƒƒƒthis.layoutView();
32 ƒƒƒƒthis.registerControllers();
33
34 ƒƒƒƒthis.model.addView(this);
35 ƒƒƒƒthis.updateView();
36 ƒƒ}
37
38 ƒƒ/** Update the view to reflect recent changes in the model's state. */
39 ƒƒpublicƒvoidƒupdateView()
40 ƒƒ{ƒPlayerƒwhoseTurnƒ=ƒthis.model.getWhoseTurn();
41 ƒƒƒƒintƒpSizeƒ=ƒthis.model.getPileSize();
42 ƒƒƒƒ// Enable buttons if it's my player's turn and there are enough tokens on the pile.
43 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.removeButtons.length;ƒi++)
44 ƒƒƒƒ{ƒthis.removeButtons[i].setEnabled(
45 ƒƒƒƒƒƒƒƒƒƒwhoseTurnƒ==ƒthis.playerƒ&&ƒiƒ+ƒ1ƒ<=ƒpSize);
46 ƒƒƒƒ}
47 ƒƒƒƒthis.winner.setVisible(
48 ƒƒƒƒƒƒƒƒƒƒthis.model.getWinner()ƒ==ƒthis.player);

732
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

Listing 13-16: The NimPlayerView class (continued)

49 ƒƒ}
50
51 ƒƒ/** Lay out the components for this view. */
52 ƒƒprivateƒvoidƒlayoutView()
53 ƒƒ{ƒGridLayoutƒgridƒ=ƒnewƒGridLayout(4,ƒ1,ƒ5,ƒ5);
54 ƒƒƒƒthis.setLayout(grid);
55
56 ƒƒƒƒFontƒfontƒ=ƒnewƒFont("Serif",ƒFont.PLAIN,ƒ24);
57
58 ƒƒƒƒforƒ(JButtonƒbƒ:ƒthis.removeButtons)
59 ƒƒƒƒ{ƒthis.add(b);
60 ƒƒƒƒƒƒb.setFont(font);
61 ƒƒƒƒ}
62
63 ƒƒƒƒthis.winner.setFont(font);
64 ƒƒƒƒthis.add(this.winner);
65 ƒƒ}
66
67 ƒƒ/** Register controllers for this view's components. */
68 ƒƒprivateƒvoidƒregisterControllers()
69 ƒƒ{ƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.removeButtons.length;ƒi++)
70 ƒƒƒƒ{ƒthis.removeButtons[i].addActionListener(
71 ƒƒƒƒƒƒƒƒƒƒnewƒRemoveButtonController(this.model,ƒiƒ+ƒ1));
72 ƒƒƒƒ}
73 ƒƒ}
74 }

Like JTextField, JButton objects use an ActionListener. When the button is
clicked, it calls the actionPerformed method for all the listeners that have been
added. Recall that it is inside the actionPerformed method that we specify the code
to execute when the button is clicked. This is where we call the removeTokens

method in the model.

In our previous controller the user typed the number of tokens to remove from the pile.
We need a different way to find out how many tokens to remove. One approach is to
have a separate controller object for each button. The controller has an instance vari
able that remembers how many tokens to remove. That instance variable is set, of
course, when the controller is constructed. We can see this at line 71 of Listing 13-16,
where a new controller is instantiated for each button.

The revised controller class is shown in Listing 13-17.

733

ch13/nimMultiView/

13.5
U

SIN
G
 M

U
LTIPLE V

IEW
S

Listing 13-17: The controller for the JButtons used to remove tokens

1 importƒjava.awt.event.*;
2
3 /** A controller to remove tokens from the game of Nim.
4 *
5 *ƒ@author Byron Weber Becker */
6 publicƒclassƒRemoveButtonControllerƒextendsƒObjectƒ
7 ƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒActionListener
8 {
9 ƒƒprivateƒNimModelƒmodel;

10 ƒƒprivateƒintƒnumRemove;
11
12 ƒƒ/** Construct an instance of the cotroller.
13 ƒƒ*ƒ@param aModel The model this controls.
14 ƒƒ*ƒ@param howMany How many tokens to remove when the button is clicked. */
15 ƒƒpublicƒRemoveButtonController(NimModelƒaModel,ƒintƒhowMany)
16 ƒƒ{ƒsuper();
17 ƒƒƒƒthis.modelƒ=ƒaModel;
18 ƒƒƒƒthis.numRemoveƒ=ƒhowMany;
19 ƒƒ}
20
21 ƒƒ/** Remove the right number of tokens from the model. */
22 ƒƒpublicƒvoidƒactionPerformed(ActionEventƒevt)
23 ƒƒ{ƒthis.model.removeTokens(this.numRemove);
24 ƒƒ}
25 }

13.5.4 Sequence Diagrams

Removing a token involves six interacting classes. This is a level of complexity that we
haven’t seen before, but it is not uncommon. To keep things in perspective, it’s impor
tant to think locally. For each method, we can ask, what is the job that this method has
to do? What services does it need from other classes to do that job?

But a global perspective can help, too. Figure 13-10 is a sequence diagram that can help
visualize the objects involved in removing a token and the sequence of actions taking place.

734
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

NimPlayerView
(red)

NimPlayerView
(black)

Controller NimModelJButton

handle-
Event

remove-
Tokens

action-
Performed

NimPileView (figure 13-10)

Sequence diagram of the

actions involved in

removing tokens and

updating the views

updateAllViews

update-
View
get...

get...

updateView

getWhoseTurn

getPileSize

updateView

getPileSize

The six objects involved are shown at the top of the diagram, each with their class
name. In the case of NimPlayerView there are two, so we distinguish between the
instance for the red player and the instance for the black player. There are six JButton

objects, but it isn’t important to distinguish between them, so only one is shown.

The dashed line extending down from each object is its lifeline. In a complete sequence
diagram, the lifeline would begin with the object’s construction and end when the
object is no longer needed. The boxes along the lifeline represent a method executing in
that object. The solid arrows between the boxes represent one method calling another.
A dashed arrow with an open arrowhead represents a method finishing execution and
returning to its caller.

Putting all this together, the diagram begins in the upper-left corner with the
handleEvent method in JButton being called, presumably because the user clicked

735

the button. handleEvent calls the actionPerformed method in the controller. We
can think of the actionPerformed method as executing for quite a while—all the
time that it takes to call removeTokens, including the calls that removeTokens

makes. This length of time is represented by the length of the box on the controller’s
lifeline.

On the lifeline for NimModel, we see that the longest box, corresponding to
removeTokens, calls a helper method in the same class, updateAllViews. This
helper method calls all the updateView methods in the views registered with
NimModel. Each of these, of course, calls additional methods.

By the time execution returns to the handleEvent method in JButton at the bottom-
left corner of the diagram, tokens have been removed from the model and all of the
views have been updated accordingly.

13.6 Controller Variations

13.6
C

O
N
TRO

LLER V
ARIATIO

N
S

KEY IDEA

An inner class can
access instance

variables and
methods of its

enclosing class.

Three techniques are often used to simplify writing controllers. One nests the con
troller class inside the view’s class. The second makes use of information passed in the
event objects. The third is a shortcut often taken in sample code in other books and on
the Internet.

13.6.1 Using Inner Classes

An inner class is a class that is nested inside another class.2 Inner classes are most use
ful for defining small helper classes that are very specific to a particular task. By plac
ing inner classes inside the class they are helping, we can make that relationship more
explicit and keep the definition of the helper class very close to the class it is helping.
Beyond this, the primary advantage of an inner class is that it can access the methods
and instance variables of its enclosing class—even the private methods and instance
variables.

Views are usually written with inner classes for the controllers.

Listing 13-18 shows the NimPlayerView (Listing 13-16) and
RemoveButtonController (Listing 13-17) combined in a single file by making the
controller an inner class.

2 There are actually four varieties of inner classes. We will focus on member classes. The other three
are nested top-level classes, local classes, and anonymous classes.

736
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

KEY IDEA
The first thing to notice about Listing 13-18 is that RemoveButtonController falls

An inner class isbetween the opening and closing braces of theƒNimPlayerView class. The actual
placed inside another

order of instance variables, methods, and inner classes within the outer class doesn’t class, but outside of
matter to the compiler, but inner classes are generally placed at the end. all methods.

Listing 13-18: Using an inner class for a view’s controller

1 // Import classes needed by both view and controller.
2 publicƒclassƒNimPlayerViewƒextendsƒJPanelƒimplementsƒIView
3 {ƒprivateƒNimModelƒmodel;
4
5 ƒƒ// Other instance variables, constructor, updateView, and layoutView are omitted.
6
7 ƒƒprivateƒvoidƒregisterControllers()
8 ƒƒ{ƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.removeButtons.length;ƒi++)
9 ƒƒƒƒ{ƒthis.removeButtons[i].addActionListener(

10 ƒƒƒƒƒƒƒƒƒƒnewƒRemoveButtonController(i+1));
11 ƒƒƒƒ}
12 ƒƒ}
13
14 ƒƒ// Inner class for the controllers to remove tokens from the pile.
15 ƒƒprivateƒclassƒRemoveButtonControllerƒextendsƒObject
16 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒActionListener
17 ƒƒ{ƒprivateƒintƒnumRemove;
18
19 ƒƒƒƒpublicƒRemoveButtonController(intƒhowMany)
20 ƒƒƒƒ{ƒsuper();
21 ƒƒƒƒƒƒthis.numRemoveƒ=ƒhowMany;
22 ƒƒƒƒ}
23
24 ƒƒƒƒpublicƒvoidƒactionPerformed(ActionEventƒevt)
25 ƒƒƒƒ{ƒNimPlayerView.this.model.removeTokens(this.numRemove);
26 ƒƒƒƒ}
27 ƒƒ}
28 }

ch13/nimInnerClass/

Second, the inner class accesses the model instance variable from the outer class at line 25.
The syntax for doing so is a little odd. We cannot write this.model because then we
would be referring to an instance variable in the RemoveButtonController class. To
access the outer class, first give the name of that class and then access the variable as usual.
It is also possible to write the following and let the compiler figure it out:

model.removeTokens(this.numRemove);

For clarity, however, we will always write the longer version.

737

Third, because the inner class can access the model via the outer class, the model

instance variable has disappeared along with code in the constructor to initialize it.
The argument is also omitted when the constructor is called in line 10.

Each instance of the inner class is tied to a specific instance of the outer class. For
example, the game creates two instances of NimPlayerView, one for the red player
and one for the black player. Both of these objects create three controllers. The con
trollers created for red’s instance of the view are forever tied to that instance. They will
access the methods and instance variables in red’s instance of the view and will never
access those in black’s instance.

13.6.2 Using Event Objects

The actionPerformed method is always passed an ActionEvent object which pro
vides more details about the user’s action. All of the methods in all of the listener inter
faces have an event object as a parameter.

One of the most useful items of information in an event object is the source of the
event—that is, which component was manipulated by the user. Using that information,
we can figure out how many tokens to remove without using an instance variable in
the controller class. We’ll simply compare the source to each JButton in the array.
When we have a match, we’ll know how many tokens to remove.

With this approach, the controller will have no instance variables at all. This has two
implications. First, there are no instance variables to initialize, and we can let Java provide
a default constructor for us.3 Second, every instance is just like all the other instances, and
we can use the same controller for all three buttons. Listing 13-19 shows how.

13.6
C

O
N
TRO

LLER V
ARIATIO

N
S

KEY IDEA

Use event objects to
obtain more

information about the
event and the source

that generated it.

ch13/nimInnerClass/

Listing 13-19: A controller that uses the event object to avoid instance variables

1 // Import classes needed by both view and controller.
2 publicƒclassƒNimPlayerViewƒextendsƒJPanelƒimplementsƒIView
3 {ƒprivateƒNimModelƒmodel;
4 ƒƒprivateƒJButton[]ƒremoveButtonsƒ=ƒnewƒJButton[]ƒ
5 ƒƒ{ƒnewƒJButton("Remove 1 Token"),ƒ
6 ƒƒƒƒnewƒJButton("Remove 2 Tokens"),
7 ƒƒƒƒnewƒJButton("Remove 3 Tokens")
8 ƒƒ};
9

10 ƒƒ// Other instance variables, constructor, updateView, and layoutView are omitted.

3 Omitting the parameterless or default constructor is an option for every class, but we have always
included it, when applicable, for clarity. Controllers are usually so small and specialized, however,
that we can omit them without loss of clarity.

738
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

Listing 13-19: A controller that uses the event object to avoid instance variables (continued)

11
12 ƒƒ/** Register controllers for this view's components. */
13 ƒƒprivateƒvoidƒregisterControllers()
14 ƒƒ{ƒRemoveButtonControllerƒcontrollerƒ=ƒ
15 ƒƒƒƒƒƒƒƒƒƒnewƒRemoveButtonController();
16 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.removeButtons.length;ƒi++)
17 ƒƒƒƒ{ƒthis.removeButtons[i].addActionListener(controller);
18 ƒƒƒƒ}
19 ƒƒ}
20
21 ƒƒprivateƒclassƒRemoveButtonControllerƒextendsƒObject
22 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒActionListener
23 ƒƒ{ƒpublicƒvoidƒactionPerformed(ActionEventƒevt)
24 ƒƒƒƒ{ƒJButtonƒsrcƒ=ƒ(JButton)evt.getSource();
25 ƒƒƒƒƒƒifƒ(srcƒ==ƒremoveButtons[0])
26 ƒƒƒƒƒƒ{ƒmodel.removeTokens(1);
27 ƒƒƒƒƒƒ}ƒelseƒifƒ(srcƒ==ƒremoveButtons[1])
28 ƒƒƒƒƒƒ{ƒmodel.removeTokens(2);
29 ƒƒƒƒƒƒ}ƒelseƒifƒ(srcƒ==ƒremoveButtons[2])
30 ƒƒƒƒƒƒ{ƒmodel.removeTokens(3);
31 ƒƒƒƒƒƒ}ƒelse
32 ƒƒƒƒƒƒ{ƒassertƒfalse;ƒƒƒƒƒƒƒƒ// Shouldn't happen!
33 ƒƒƒƒƒƒ}
34 ƒƒƒƒ}
35 ƒƒ}
36 }

Note in line 24 that the getSource method returns an Object which must be cast to
an appropriate type. The source itself will often have useful information. For example,
if it were a text field, we could get the text typed by the user.

The cascading-if structure in lines 25–33 is fine for a small number of components,
but if the components are stored in an array, a loop can be more concise, as follows:

publicƒvoidƒactionPerformed(ActionEventƒevt)

{ƒJButtonƒsrcƒ=ƒ(JButton)evt.getSource();

ƒƒintƒiƒ=ƒ0;

ƒƒwhileƒ(removeButtons[i]ƒ!=ƒsrc)

ƒƒ{ƒi++;

ƒƒ}

ƒƒassertƒremoveButtons[i]ƒ==ƒsrc;

ƒƒmodel.removeTokens(i+1);

}

739
13.6

C
O
N
TRO

LLER V
ARIATIO

N
S

KEY IDEA

This is not a
recommended

approach, but its use
is widespread.

13.6.3 Integrating the Controller and View

The controller and view can also be integrated into the same class without the use of an
inner class. Many examples on the Web use this approach because it is quick and easy.
It introduces a significant disadvantage, however, in that there is only one controller
for all of the various components. With the previous techniques, you can easily write
one controller for a JButton and a different controller for a JTextField. Each con
troller has its own actionPerformed method that is specific to a particular task.
When the controller and view are integrated, a single actionPerformed method must
handle both components. In terms of the software engineering principles studied in
Section 11.3.2, such integration reduces the cohesion of the methods (recall that we
want high cohesion). Nevertheless, the technique is shown here so that you can under
stand it if and when you see it.

The technique works by implementing the required interfaces in the view class itself. In
Listing 13-20, the ActionListener interface is listed on the class header (lines 2–3)
and its only method, actionPerformed, is implemented at lines 14–23 just like any
other method. Note that there is no inner class. The “controller” is registered with the
JButton objects in line 10. Instead of constructing a separate object, a reference to the
view itself (that is, this) is passed to the button.

ch13/nimIntegrated/

Listing 13-20: A version of NimPlayerView that integrates the view and the controller

1 // Import classes needed by both view and controller.
2 publicƒclassƒNimPlayerViewƒextendsƒJPanelƒ
3 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒIView,ƒActionListener
4 {ƒ
5 ƒƒ// Other instance variables, constructor, updateView, and layoutView are omitted.
6
7 ƒƒ/** Register controllers for this view's components. */
8 ƒƒprivateƒvoidƒregisterControllers()
9 ƒƒ{ƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.removeButtons.length;ƒi++)

10 ƒƒƒƒ{ƒthis.removeButtons[i].addActionListener(this);
11 ƒƒƒƒ}
12 ƒƒ}
13
14 ƒƒpublicƒvoidƒactionPerformed(ActionEventƒevt)
15 ƒƒ{ƒJButtonƒsrcƒ=ƒ(JButton)evt.getSource();
16
17 ƒƒƒƒintƒiƒ=ƒ0;
18 ƒƒƒƒwhileƒ(removeButtons[i]ƒ!=ƒsrc)
19 ƒƒƒƒ{ƒi++;
20 ƒƒƒƒ}
21 ƒƒƒƒassertƒremoveButtons[i]ƒ==ƒsrc;

740
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

Listing 13-20: A version of NimPlayerView that integrates the view and the controller (continued)

22 ƒƒƒƒmodel.removeTokens(i+1);

23 ƒƒ}

24 }

13.7 Other Components

So far, we have only worked with JTextField and JButton components. But there
are many more components, too many to cover in a book such as this. So how can you
learn to use them? Use the following strategies:

➤ Discover what components are available and might be applicable

➤ Identify the listeners used

➤ Skim the documentation

➤ Begin with sample code

➤ Work incrementally

In the following sections, we’ll use these strategies to learn how to display a set of color
names to use in Nim instead of “Red” and “Black”.

13.7.1 Discover Available Components

There are several ways to discover available components. One is to look at “A Visual
Index to the Swing Components,” which can be found at http://java.sun.com/docs/books/
tutorial/uiswing/components/components.html. It shows a sample of each component
and has links to documentation where you can learn more. Figure 13-11 shows a part
of the Web page that looks promising. It appears that at least two kinds of components
can display lists of color names, as we would like to do.

Clicking the links labeled “Combo box” and “List” leads to pages titled “How to Use
Combo Boxes” and “How to Use Lists.” The first page refers to the component
JComboBox, and the second page refers to JList.

http://java.sun.com/docs/books

741

(figure 13-11)

Part of “A Visual Index to

the Swing Components”

13.7
O

TH
ER C

O
M

PO
N
EN

TS

Another option is to find one of several demonstration programs available. One that
comes with this textbook is shown in Figure 13-5. If you have downloaded the exam
ple code for the textbook, you’ll find the code in the directory ch13/componentDemo.
Running the program and playing with the components will show that JSpinner is
also a possibility. In Figure 13-5, it displays “Sunday,” but it also “spins” through the
other days of the week. It could also spin through the color names we want to display.

Any of these options could work for us. Choosing between them is largely a matter of
personal taste. For now, we’ll choose JList.

13.7.2 Identify Listeners

When we identify the listeners for a component, we identify what kind of events it can
tell us about and therefore what kind of controllers we can write. Every component
may have the following six kinds of listeners:

➤	 Component listeners listen for changes in the component’s size, position, or
visibility. Component listeners have methods like componentHidden,
componentResized, and componentMoved.

➤	 Focus listeners listen for the component gaining or losing the ability to receive
keyboard input. Focus listeners have two methods, focusGained and
focusLost.

➤	 Key listeners listen for key press events. Such events are fired only by the com
ponent that has the keyboard focus. Key listeners have keyPressed,
keyReleased, and keyTyped methods.

➤	 Mouse listeners listen for mouse clicks and the mouse moving into and out of
the component’s drawing area. Mouse listeners have five methods, including
mouseEntered and mouseClicked.

➤	 Mouse motion listeners listen for changes in the cursor’s position within the com
ponent. Such listeners have two methods, mouseMoved and mouseDragged.

➤	 Mouse wheel listeners listen for mouse wheel movement over the component.
They have a single method, mouseWheelMoved.

Ac
tio

nL
ist

en
er

Ca
ret

Lis
ten

er

Ch
an

ge
Lis

ten
er

Do
cu

men
tLi

ste
ne

r

Ite
mLis

ten
er

Lis
tSe

lec
tio

nL
ist

en
er

Wind
ow

Lis
ten

er

Ot
he

r

742
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

In addition to these six listeners, components have one or more additional listeners
that vary by component type. For example, we have already seen that JTextField

and JButton objects can have ActionListeners.

A complete table of components and listeners is maintained by the creators of Java at
http://java.sun.com/docs/books/tutorial/uiswing/events/eventsandcomponents.html.
This table is summarized in Figure 13-12. Looking at the list, we can tell that the JList

component uses a ListSelectionListener and one or more unspecified listeners.

(figure 13-12)

Listeners used by some of

Java’s GUI components

Component
JButton

JCheckBox

JColorChooser

JComboBox

JDialog

JEditorPane

JFileChooser

JFormattedTextField

JFrame

JList

JMenu

JMenuItem

JPasswordField

JPopupMenu

JProgressBar

JRadioButton

JSlider

JSpinner

JTabbedPane

JTable

JTextArea

JTextField

JToggleButton

JTree

Another approach is to look at the documentation for the component at
http://java.sun.com/j2se/1.5.0/docs/api/. For example, find JList in the left side and click
on it. Scroll down to the list of methods and look for methods named addXxxxListener,
where the Xxxx can vary. JList has an addListSelectionListener method.

http://java.sun.com/j2se/1.5.0/docs/api
http://java.sun.com/docs/books/tutorial/uiswing/events/eventsandcomponents.html

743

KEY IDEA

The API
documentation

provides full details
about each class.

The documentation for ListSelectionListener says the interface specifies a single
method, valueChanged. This is the method that our controller for JList will need to
implement.

13.7.3 Skim the Documentation

There are two primary sources of information for working with Java’s GUI compo
nents: the API documentation and the Java Tutorial.

Application Programming Interface (API) Documentation

One primary source of information is the API, or application programming interface,
documentation. It is the class-by-class documentation found at http://java.sun.com/
j2se/1.5.0/docs/api/. The documentation for each class gives an overview of the class,
its inheritance hierarchy, a list of the constructors provided, and a list of the methods
provided, including detailed descriptions of what they do.

The first time you use a component, skim this documentation looking for methods that
sound useful. There may be lots of them—don’t get overwhelmed. For JList, the doc
umentation lists about 70 methods, plus the 344 methods it inherits from its super-
classes.

What’s important when getting started using a JList? Constructing the component,
adding items to display in the list, adding a listener, and finding out which item on the
list was selected. Skimming the documentation for methods that sound relevant yields
the following:

➤	 JList(): constructs an empty JList

➤	 JList(Object[]ƒlistData): constructs a JList that displays the ele
ments in the specified array

➤	 addListSelectionListener: adds a listener to the JList

➤	 getSelectedIndex: returns the index of the first selected item; if nothing is
selected, it returns -1

➤	 getSelectedIndicies: returns an array of all the selected indices

➤	 getSelectedValue: returns the first selected value

These methods answer most of our questions. We might have expected to find an “add
item” method to add items to the list, but we didn’t. Instead, it appears that we pass an
array of items to display when the component is constructed. It also appears that several
items can be selected at one time. We may want to make note of that for future reference.

13.7
O

TH
ER C

O
M

PO
N
EN

TS

http:http://java.sun.com

744
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

The Java Tutorial

The Java Tutorial at http://java.sun.com/docs/books/tutorial/ provides a wealth of practical
examples for creating graphical user interfaces. Particularly relevant is the “Creating a GUI
with JFC/Swing” chapter. It contains sections such as “Learning Swing by Example,”
“Using Swing Components,” and “Writing Event Listeners.” One subsection, at
http://java.sun.com/docs/books/tutorial/uiswing/components/componentlist.html, contains
a long list of topics with names like “How to Make Applets” and “How to Use Lists.” The
API documentation often provides direct links to these sections of the tutorial.

Clicking the “How to Use Lists” link opens a document that includes sample code and
sections titled “Initializing a List,” “Selecting Items in a List,” and “Adding Items to
and Removing Items from a List.” All sound helpful!

13.7.4 Begin with Sample Code

Building on the discoveries of someone else is always easier than starting from scratch.
When learning to use a new component, look for sample code using it. The Java
Tutorial is a good place to look, particularly in the “How to…” sections referenced
earlier.

Another source for sample code that matches the style presented in this textbook is the
componentDemo program shown in Figure 13-5. If you run the program and click an
element in the JList, an entry is added to the table at the bottom of the frame. The
view column says “ListView.” This is the name of the class containing the JList. The
second column, “Listener,” says “ListView$ListController.” That’s the name of the
controller class that handled your mouse click—the ListController class that is an
inner class within the ListView class.

Open the source for ListView and you’ll find the code constructing the JList, laying it
out within a view, and registering a controller, as well as the code for the controller itself.
Much of this code can be cut and pasted directly into the program you’re writing.

13.7.5 Work Incrementally

The last piece of advice is to work incrementally. Start with small goals for the compo
nent. Meet those goals and then move on to more ambitious goals. For example, you
might begin by displaying the JList in a view. Listing 13-21 shows a minimal view
with the goal of showing a JList with the names of some colors and detecting when
one has been selected.

KEY IDEA

The Java Tutorial
contains lots of
sample code.

http://java.sun.com/docs/books/tutorial/uiswing/components/componentlist.html
http://java.sun.com/docs/books/tutorial

ch13/usingJList/

745
13.7

O
TH

ER C
O
M

PO
N
EN

TS

Listing 13-21: A simple view to display a list of colors and detect when one is selected

1 importƒbecker.util.IView;
2 importƒjavax.swing.JPanel;
3 importƒjavax.swing.JList;
4 importƒjavax.swing.event.ListSelectionEvent;
5 importƒjavax.swing.event.ListSelectionListener;
6
7 publicƒclassƒViewƒextendsƒJPanelƒimplementsƒIView
8 {ƒ// private Object model;
9 ƒƒprivateƒJListƒlist;

10
11 ƒƒpublicƒView(ObjectƒaModel)
12 ƒƒ{ƒsuper();
13 ƒƒƒƒ// this.model = aModel;
14 ƒƒƒƒthis.layoutView();
15 ƒƒƒƒthis.registerControllers();
16 ƒƒƒƒ// this.model.addView(this);
17 ƒƒƒƒthis.updateView();
18 ƒƒ}
19
20 ƒƒpublicƒvoidƒupdateView()
21 ƒƒ{// Statements to update the components in the view.
22 ƒƒ}
23
24 ƒƒprivateƒvoidƒlayoutView()
25 ƒƒ{ƒthis.listƒ=ƒnewƒJList(newƒString[]ƒ{"Red",ƒ"Green",ƒ"Blue",
26 ƒƒƒƒƒƒƒƒƒƒ"Yellow",ƒ"Orange",ƒ"Pink",ƒ"Black"});
27 ƒƒƒƒthis.add(this.list);
28 ƒƒ}
29
30 ƒƒprivateƒvoidƒregisterControllers()
31 ƒƒ{ƒthis.list.addListSelectionListener(
32 ƒƒƒƒƒƒƒƒƒƒnewƒListController());
33 ƒƒ}
34
35 ƒƒprivateƒclassƒListControllerƒextendsƒObjectƒ
36 ƒƒƒƒƒƒƒƒƒƒimplementsƒListSelectionListener
37 ƒƒ{ƒpublicƒvoidƒvalueChanged(ListSelectionEventƒevt)
38 ƒƒƒƒ{ƒSystem.out.println(
39 ƒƒƒƒƒƒƒƒƒƒ"selected "ƒ+ƒView.this.list.getSelectedValue());
40 ƒƒƒƒ}
41 ƒƒ}
42 }

746
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

Running a program that places this view in a frame appears as shown in Figure 13-13
and proves that we have made significant progress. The list shows the seven colors and
it prints a message when one is selected. However, there are two problems. First, each
time a color is selected, two copies of the message are printed by the controller. Second,
the list has no scroll bars. If the window is made smaller than the list, part of the list
simply disappears.

(figure 13-13)

Running the JList test

For the first problem, it seems like the ListSelectionListener documentation
would be a good place to start. After all, the listener contains the code that is being
called twice. However, that documentation provides no help.

If we look at the ListSelectionEvent documentation, we find a method named
getValueIsAdjusting. Its description says “Returns true if this is one of multiple
change events,” which sounds promising. JList reports a list selection event both
when the mouse is pressed and when it is released—as well as several more events in
between if the user moves the mouse over different values in the list. Rewriting our
controller’s valueChanged method results in only one message being printed, the one
selected when the mouse button is released:

ƒƒpublicƒvoidƒvalueChanged(ListSelectionEventƒevt)

ƒƒ{ƒifƒ(!evt.getValueIsAdjusting())

ƒƒƒƒ{ƒSystem.out.println(

ƒƒƒƒƒƒƒƒƒƒ"selected "ƒ+ƒView.this.list.getSelectedValue());

ƒƒƒƒ}

ƒƒ}

The problem of the missing scroll bars can be solved by searching the JList class doc
umentation for “scroll.” That search finds the following:

“JList doesn’t support scrolling directly. To create a scrolling list you
make the JList the viewport view of a JScrollPane. For example:

JScrollPaneƒscrollPaneƒ=ƒnewƒJScrollPane(dataList);

where dataList is the instance of JList you want to display. The
JScrollPane component is added to the view instead of the JList.”

747
13.8

G
RAPH

ICAL V
IEW

S

KEY IDEA

Component-size
problems are often

related to the layout
manager.

Working incrementally, we add equivalent code to the layoutView method in
Listing 13-21 and run the program to see the results. Unfortunately, nothing has
changed, and scroll bars still do not appear.

It turns out that JPanel’s default layout manager, FlowLayout, allows the list to take
up as much space as it requests. JScrollPane does not show the scroll bars until the
available space is less than the requested space. BorderLayout is a layout manager
that forces its components to fit within the available space. Using it to manage the
view’s layout results in the scroll bars appearing when the JList is small. The result
ing code for layoutView is as follows:

ƒƒprivateƒvoidƒlayoutView()
ƒƒ{ƒthis.setLayout(newƒBorderLayout());
ƒƒƒƒthis.listƒ=ƒnewƒJList(newƒString[]ƒ{"Red",ƒ"Green",ƒ
ƒƒƒƒƒƒ"Blue",ƒ"Yellow",ƒ"Orange",ƒ"Pink",ƒ"Black"});
ƒƒƒƒJScrollPaneƒscrollpaneƒ=ƒnewƒJScrollPane(this.list);
ƒƒƒƒthis.add(scrollpane,ƒBorderLayout.CENTER);
ƒƒ}

As shown here, it is unrealistic to expect to understand and use a complex class like
JList on the first try. An excellent strategy is to work incrementally. Understand and
implement the basics, make note of the remaining issues, and then solve them one at a
time. Using this strategy, we are well on our way to making effective use of the JList

component. Reasonable next steps include making calls to the model in response to
user selections and, if required, learning how to add new values to the list while the
program is running.

13.8 Graphical Views

Many components are available for Java programs, but sometimes none of them are
quite right for a particular application. In those cases, you may need to make your
own. We have, in fact, already done this. In Section 6.7, we wrote the Thermometer

class, which displayed a temperature using an image of a thermometer.

In Section 13.8.1, we will implement a similar class to simply display a pile of tokens
for the game of Nim. In Section 13.8.2, we will go a step further and add a listener for
mouse events so that the user can utilize our new component to select the tokens to
remove from the pile.

13.8.1 Painting a Component

Instances of our custom component, PileComponent, represent a pile of tokens as cir
cles, drawn one on top of the other, as shown in Figure 13-14. Such a component that
does its own painting usually extends the JComponent class (see Listing 13-22).

748
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

(figure 13-14)

Custom component

representing a pile of

tokens for Nim

Two crucial parts of the class are instance variables, used to either store or acquire the
information required to do the painting (lines 4–5), and the paintComponent method
(lines 27–40).

Two instance variables are required: numTokens stores the actual number of tokens to LOOKING BACK

display; maxTokens stores the maximum number that could be displayed. The maxi- Repainting is

mum is used to scale the circles appropriately; it is set with the constructor. numTokens explained in more
detail in Section 6.7.2.is set using a mutator method, setPileSize, called from the updateView method in

the view that contains the PileComponent object. When the pile size is changed,
this.repaint() must be called. It tells the Java system that it should call
paintComponent as soon as possible to redraw the pile.

The paintComponent method begins by calculating useful values for painting
(lines 29–32). The first two merely make temporary copies of the component’s
width and height to make them easier to use. The second two calculate the diameter
of each token and where the left side will be painted.

Lines 35-39 use a loop to draw each of the tokens in the pile.

One other detail is setting the minimum and preferred size of the component in lines 12 and
13. Without these statements, the component’s size will default to a barely visible 1 x 1
pixel square.

749

ch13/nimMultiView/

13.8
G

RAPH
ICAL V

IEW
S

Listing 13-22: A component that displays the size of a token pile graphically

1 // Import statements omitted.
2 publicƒclassƒPileComponentƒextendsƒJComponentƒ
3 {
4 ƒƒprivateƒintƒnumTokensƒ=ƒ0;
5 ƒƒprivateƒintƒmaxTokens;
6
7 ƒƒ/** Create a new component.
8 ƒƒ* @param max The maximum number of tokens that can be displayed. */
9 ƒƒpublicƒPileComponent(intƒmax)

10 ƒƒ{ƒsuper();
11 ƒƒƒƒthis.maxTokensƒ=ƒmax;
12 ƒƒƒƒthis.setMinimumSize(newƒDimension(40,ƒ60));
13 ƒƒƒƒthis.setPreferredSize(newƒDimension(60,ƒ90));
14 ƒƒ}
15
16 ƒƒ/**ƒReset the size of the pile.
17 ƒƒ* @param num The new pile size. 0 <= num <= maxTokens */
18 ƒƒpublicƒvoidƒsetPileSize(intƒnum)
19 ƒƒ{ƒifƒ(numƒ<ƒ0ƒ||ƒnumƒ>ƒthis.maxTokens)
20 ƒƒƒƒ{ƒthrowƒnewƒIllegalArgumentException("too many/few tokens");
21 ƒƒƒƒ}
22 ƒƒƒƒthis.numTokensƒ=ƒnum;
23 ƒƒƒƒthis.repaint();
24 ƒƒ}
25
26 ƒƒ/** Paint the component. */
27 ƒƒpublicƒvoidƒpaintComponent(Graphicsƒg)
28 ƒƒ{ƒ// Values to use in painting.
29 ƒƒƒƒintƒwidthƒ=ƒthis.getWidth();
30 ƒƒƒƒintƒheightƒ=ƒthis.getHeight();
31 ƒƒƒƒintƒtokenDiaƒ=ƒMath.min(width,ƒheight/this.maxTokens);
32 ƒƒƒƒintƒtokenLeftƒ=ƒwidth/2ƒ-ƒtokenDia;
33
34 ƒƒƒƒ// Draw the tokens.
35 ƒƒƒƒg.setColor(Color.BLACK);
36 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.numTokens;ƒi++)
37 ƒƒƒƒ{ƒintƒtopƒ=ƒheightƒ-ƒ(iƒ+ƒ1)ƒ*ƒtokenDia;
38 ƒƒƒƒƒƒg.fillOval(tokenLeft,ƒtop,ƒtokenDia,ƒtokenDia);
39 ƒƒƒƒ}
40 ƒƒ}
41 }

750
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

13.8.2 Making a Graphical Component Interactive

We can make PileComponent interactive, enabling users to use the mouse to select a
number of tokens by performing the following steps, also illustrated in Figure 13-15.

The steps are:

➤ Press the mouse button

➤ Drag the mouse over some of the tokens displayed by the component

➤ Release the mouse button

mouse
pressed

mouse

dragged
mouse
released

In general, implementing a custom component involves the five steps shown in
Figure 13-16. The result is a component we can use in a view, complete with its own
controllers—just like we use controllers with JTextField and JButton components.

1. Write a class that extends JComponent.
2. Declare instance variables to store the information required to paint the component

appropriately. Override the paintComponent method to do the painting.
3. Write mutator methods to update the instance variables. Call the repaint method

before exiting any method that changes the component’s state.
4. Declare a list to store the component’s listeners. Include methods to add and remove

components from the list, and a handleEvent method to inform all listeners of a
significant event.

5. Write and register listeners to detect and respond to the user’s actions.

You may notice similarities with what we have done before. For example, both a com
ponent and a model call a method when their state is changed (Step 3), and both have
a list of objects to inform when something significant happens (Step 4).

(figure 13-15)

Sequence of mouse

actions triggering a

selection

(figure 13-16)

Steps to implement an

interactive component

KEY IDEA

A component has
features in common
with both models
and views.

751

LOOKING BACK

Listing 13-8 shows a
simplified version of
JTextField. It also
has a handleEvent

method.

On the other hand, a component is also similar to a view. Both extend a kind of com
ponent (JPanel versus JComponent in Step 1), and both have listeners (Step 5),
although in a view the listeners are called “controllers.”

The first three steps in Figure 13-16 were already done in the earlier version of
PileComponent. In the following subsections, we will discuss Steps 4 and 5 in more
detail, referring to Listing 13-23, which contains the code for the completed component.
This new, interactive version of PileComponent will be called PileComponent2.

Informing the Component’s Listeners

When our component is used in a view, we will want to add controllers to it that
update the model. They will implement an interface such as ActionListener or
ListSelectionListener. Now, because we are writing the component, we can
choose which listener interface to use. Of all the listeners listed in Figure 13-12,
ActionListener seems the most appropriate.

Therefore, in lines 22–23 of Listing 13-23 we declare an ArrayList to store objects
implementing ActionListener. In lines 45–48 we provide an addActionListener

method, like the one provided in JButton and JTextField. A complete implementa
tion would also provide a removeActionListener method.

In lines 101–108 we provide a private method named handleEvent, to be called
when the component detects the user selecting some tokens. It constructs an
ActionEvent object and then loops through all the registered controllers, calling their
actionPerformed method and passing the event object.

Writing and Registering Listeners

The last step, and the most complicated one, is figuring out when to call the
handleEvent method. To do so, we will write two inner classes implementing
MouseListener and MouseMotionListener. The first listener4 will be informed
each time something happens to the mouse button. The second listener will be
informed each time the mouse moves. Mouse-related events are split into two listeners
because there are many motion events. If the component only cares about mouse clicks,
we don’t want to incur the overhead associated with mouse motion events.

13.8
G

RAPH
ICAL V

IEW
S

4 We use the term “listener” rather than “controller” because these classes will not be interacting with
the program’s model.

752
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

We need to detect the following three mouse events:

➤	 When the mouse button is pressed, we will create a new rectangle that will
bound the area (and tokens) selected.

➤	 When the mouse is dragged, we will update the size of the bounding rectangle
and repaint the component to show it.

➤	 When the mouse button is released, we will update the size of the bounding
rectangle one last time and then call the handleEvent method to inform all
the registered controllers.

These three steps are performed in the mousePressed, mouseDragged, and
mouseReleased methods, respectively, found in lines 121–125, 144–147, and
127–132 of Listing 13-23. All three use the getPoint method in the event object to
find out where the mouse was when the event occurred.

Of course, the component should provide feedback on which tokens have been
selected. This is accomplished in the paintComponent method. Lines 71–75 draw the
bounding rectangle, and lines 82–84 determines if it surrounds the token currently
being drawn. If it does, an instance variable is incremented, and the token’s color is
changed to yellow. An accessor method, getNumSelected, is provided to allow
clients to get the number of selected tokens.

Listing 13-23: An interactive component that allows the user to select a number of tokens

1 importƒjavax.swing.JComponent;
2 importƒjava.awt.Graphics;
3 importƒjava.awt.Insets;
4 importƒjava.awt.Dimension;
5 importƒjava.awt.Point;
6 importƒjava.awt.Color;
7 importƒjava.awt.Rectangle;
8 importƒjava.awt.event.MouseListener;
9 importƒjava.awt.event.MouseMotionListener;

10 importƒjava.awt.event.MouseEvent;
11 importƒjava.awt.event.ActionListener;
12 importƒjava.awt.event.ActionEvent;
13 importƒjava.util.ArrayList;
14
15 /** A component that displays a pile of tokens and allows the user to select a number of
16 * them. It informs registered listeners when tokens have been selected. Allows the
17 * client to change the number of tokens in the pile.
18 *
19 * @author Byron Weber Becker */
20 publicƒclassƒPileComponent2ƒextendsƒJComponentƒ
21 { // Store the controllers to inform when a selection takes place.

ch13/nimMultiView/

753
13.8

G
RAPH

ICAL V
IEW

S

Listing 13-23: An interactive component that allows the user to select a number of tokens

(continued)

22 ƒƒprivateƒArrayList<ActionListener>ƒactionListenersƒ=ƒ
23 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒnewƒArrayList<ActionListener>();
24
25 // Information for painting the component.
26 ƒƒprivateƒintƒnumTokensƒ=ƒ0;
27 ƒƒprivateƒintƒmaxTokens;
28
29 ƒƒprivateƒRectangleƒselectionƒ=ƒnull; // selected area
30 ƒƒprivateƒintƒnumSelectedƒ=ƒ0; // # tokens in selected area
31 ƒƒ
32 /** Create a new component.
33 * @param maxTokens The maximum number of tokens that can be displayed. */
34 ƒƒpublicƒPileComponent2(intƒmaxTokens)
35 ƒƒ{ƒsuper();
36 ƒƒƒƒthis.maxTokensƒ=ƒmaxTokens;
37 ƒƒƒƒthis.setMinimumSize(newƒDimension(40,ƒ60));
38 ƒƒƒƒthis.setPreferredSize(newƒDimension(60,ƒ90));
39
40 ƒƒ// Add the mouse listener.
41 ƒƒƒƒthis.addMouseListener(newƒMListener());
42 ƒƒƒƒthis.addMouseMotionListener(newƒMMListener());
43 ƒƒ}
44
45 /** Add an action listener to this component's list of listeners. */
46 ƒƒpublicƒvoidƒaddActionListener(ActionListenerƒlistener)
47 ƒƒ{ƒthis.actionListeners.add(listener);
48 ƒƒ}
49
50 /** Set the size of the pile.
51 * @param num The new pile size. 0 <= num <= maxTokens */
52 ƒƒpublicƒvoidƒsetPileSize(intƒnum)
53 ƒƒ{ƒifƒ(numƒ<ƒ0ƒ||ƒnumƒ>ƒthis.maxTokens)
54 ƒƒƒƒ{ƒthrowƒnewƒIllegalArgumentException("too many/few tokens");
55 ƒƒƒƒ}
56 ƒƒƒƒthis.numTokensƒ=ƒnum;
57 ƒƒƒƒthis.selectionƒ=ƒnull;
58 ƒƒƒƒthis.numSelectedƒ=ƒ0;
59 ƒƒƒƒthis.repaint();
60 ƒƒ}
61
62 /** Paint the component. */
63 ƒƒpublicƒvoidƒpaintComponent(Graphicsƒg)

754
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

Listing 13-23: An interactive component that allows the user to select a number of tokens

(continued)

64 ƒƒ{ƒ// Values to use in painting.
65 ƒƒƒƒintƒwidthƒ=ƒthis.getWidth();
66 ƒƒƒƒintƒheightƒ=ƒthis.getHeight();
67 ƒƒƒƒintƒtokenDiaƒ=ƒMath.min(width,ƒheight/this.maxTokens);
68 ƒƒƒƒintƒtokenLeftƒ=ƒwidth/2ƒ-ƒtokenDia;
69
70 // Draw the selection rectangle, if there is one.
71 ƒƒƒƒg.setColor(Color.BLACK);
72 ƒƒƒƒifƒ(this.selectionƒ!=ƒnull)
73 ƒƒƒƒ{ƒRectangleƒselƒ=ƒthis.selection;
74 ƒƒƒƒƒƒg.drawRect(sel.x,ƒsel.y,ƒsel.width,ƒsel.height);
75 ƒƒƒƒ}
76
77 // Draw the tokens. Detect which ones are selected. Count them
78 // and color them differently.
79 ƒƒƒƒthis.numSelectedƒ=ƒ0;
80 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.numTokens;ƒi++)
81 ƒƒƒƒ{ƒintƒtopƒ=ƒheightƒ-ƒ(iƒ+ƒ1)ƒ*ƒtokenDia;
82 ƒƒƒƒƒƒifƒ(this.selectionƒ!=ƒnullƒ&&ƒ
83 ƒƒƒƒƒƒƒƒƒƒthis.selection.contains(tokenLeftƒ+ƒtokenDiaƒ/ƒ2,
84 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtopƒ+ƒtokenDiaƒ/ƒ2))
85 ƒƒƒƒƒƒ{ƒthis.numSelected++;
86 ƒƒƒƒƒƒƒƒg.setColor(Color.YELLOW);
87 ƒƒƒƒƒƒ}ƒelse
88 ƒƒƒƒƒƒ{ƒg.setColor(Color.BLACK);
89 ƒƒƒƒƒƒ}
90
91 ƒƒƒƒƒƒg.fillOval(tokenLeft,ƒtop,ƒtokenDia,ƒtokenDia);
92 ƒƒƒƒ}
93 ƒƒ}
94
95 /** Get the number of tokens currently selected.
96 * @return the number of tokens currently selected */
97 ƒƒpublicƒintƒgetNumSelected()
98 ƒƒ{ƒreturnƒthis.numSelected;
99 ƒƒ}

100
101 /** A helper method to inform all listeners that a selection has been made. */
102 ƒƒprivateƒvoidƒhandleEvent()
103 ƒƒ{ƒActionEventƒevtƒ=ƒnewƒActionEvent(
104 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis,ƒActionEvent.ACTION_PERFORMED,ƒ"");

755
13.8

G
RAPH

ICAL V
IEW

S

Listing 13-23: An interactive component that allows the user to select a number of tokens

(continued)

105 ƒƒƒƒforƒ(ActionListenerƒalƒ:ƒthis.actionListeners)
106 ƒƒƒƒ{ƒal.actionPerformed(evt);
107 ƒƒƒƒ}
108 }
109
110 /** Adjust the selection's size. */
111 ƒƒprivateƒvoidƒadjustSelectionSize(PointƒmPos)
112 ƒƒ{ƒthis.selection.setSize(mPos.xƒ-ƒthis.selection.x,
113 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒmPos.yƒ-ƒthis.selection.y);
114 ƒƒƒƒthis.repaint();ƒ
115 ƒƒ}
116
117 /** Listen for mouse events within the pile. */
118 ƒƒprivateƒclassƒMListenerƒextendsƒObjectƒ
119 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒMouseListener
120 ƒƒ{
121 /** A mousePressed event signals the beginning of a selection. */
122 ƒƒƒƒpublicƒvoidƒmousePressed(MouseEventƒe)
123 ƒƒƒƒ{ƒPileComponent2.this.selectionƒ=ƒ
124 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒnewƒRectangle(e.getPoint());
125 ƒƒƒƒ}
126
127 /** A mouseReleased event signals the end of a selection. Finish up the
128 * selection and inform the listeners. */
129 ƒƒƒƒpublicƒvoidƒmouseReleased(MouseEventƒe)
130 ƒƒƒƒ{ƒPileComponent2.this.adjustSelectionSize(e.getPoint());
131 ƒƒƒƒƒƒPileComponent2.this.handleEvent();
132 ƒƒƒƒ}
133 ƒƒƒ
134 // Required by MouseListener but not needed in this program.
135 ƒƒƒƒpublicƒvoidƒmouseClicked(MouseEventƒe)ƒƒƒ{}
136 ƒƒƒƒpublicƒvoidƒmouseEntered(MouseEventƒe)ƒƒƒ{}
137 ƒƒƒƒpublicƒvoidƒmouseExited(MouseEventƒe)ƒƒƒƒ{}
138 ƒƒ}
139
140 /** Listen for mouse events within the pile. */
141 ƒƒprivateƒclassƒMMListenerƒextendsƒObjectƒ
142 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒMouseMotionListener
143 ƒƒ{

756
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

Listing 13-23: An interactive component that allows the user to select a number of tokens

(continued)

144 /** The bounds of the selection's rectangle changed. Adjust it. */
145 ƒƒƒƒpublicƒvoidƒmouseDragged(MouseEventƒe)
146 ƒƒƒƒ{ƒPileComponent2.this.adjustSelectionSize(e.getPoint());
147 ƒƒƒƒ}
148 ƒƒƒƒ
149 // Required by MouseMotionListener but not needed in this program.
150 ƒƒƒƒpublicƒvoidƒmouseMoved(MouseEventƒe)ƒƒƒƒƒ{}
151 ƒƒ}
152 }

13.9 Patterns

13.9.1 The Model-View-Controller Pattern

Name: Model-View-Controller

Context: A program requires a graphical user interface to interact with the user. You
want to program it with the good software engineering principles of encapsulation,
information hiding, high cohesion, and low coupling to facilitate future changes.

Solution: Organize the program into a model with one or more views and controllers.
The model abstracts the problem the program is designed to solve. Each view displays
some part of the model to the user, while controllers translate user actions in a view
into method calls on the model.

The Model-View-Controller pattern requires three templates: one for the model, one for
the combination of a view and a controller, and one for the main method. Listing 13-13
contains an excellent start on a template for views, but needs an inner class for a controller.
Listing 13-1 and Listing 13-3 can be generalized for the model’s template and the main
method’s template, respectively.

Consequences: Because the model depends only on objects implementing the IView

interface, coupling is extremely low. The interface can be changed or even completely
replaced, usually without changing the model.

LOOKING AHEAD

Written Exercise 13.2
asks you to prepare
these templates.

757

Related Patterns:
➤	 The Extended Class pattern is used by the views when they extend JPanel.

➤	 The Has-a (Composition) pattern is used to relate the model to the views and
the views to the model.

➤	 The Process All Elements pattern is used to update all of the views with
changes in the model.

➤	 The Strategy pattern is used to lay out the view’s components and to provide a
controller (listener) that reacts appropriately to events in a particular component.

13.10 Summary and Concept Map

13.10
S

U
M

M
ARY AN

D
 C

O
N
CEPT M

AP

Graphical user interfaces use a library of objects, commonly called components, to
interact with users. The program is organized into a model containing the abstractions
related to the problem, views that display the model to the user, and controllers that
interpret user actions to modify the model. One model may have several views, and
each view may have several controllers.

It is also possible to create components to perform specific tasks for which no existing
component is available.

758
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

is
di

sp
la

ye
d

by

is updated by

implement

are composed of

are examples of

are examples of

are o
ften writte

n as a
n

are
regi

ster
ed w

ith

contain
are specified by

are passed

are
ca

lle
d

by

may
ha

ve
se

ve
ra

l

ar
e

no
tif

ied
of

up
da

te
s by

a model

views

controllers

listener
interfaces

components

JButton,
JTextField

ActionListener,
ListSelectionListener

inner class

event
methods

event
objects

layout
managers

list
en

to

organize the placement ofregister controllers with

13.11 Problem Set

Written Exercises

13.1 Explain how using subviews (Section 13.5) is good software engineering. Refer
specifically to the concepts of cohesion and coupling.

13.2 Write the three code templates required for the Model-View-Controller pattern.
Listing 13-13 contains an excellent start on a template for views, but needs an
inner class for a controller. Listing 13-1 and Listing 13-3 can be generalized for
the model’s template and the main method’s template, respectively.

13.3 Prepare a class diagram showing the relationships between the classes in the
Model-View-Controller pattern. Assume the controller has been written in a
separate class, as shown in Listing 13-9, and implements an ActionListener.

13.4 List the signatures for all the methods required to implement a WindowListener.

759

13.5 The Java library contains two classes named MouseAdapter and

MouseMotionAdapter. Discuss how they could be used to simplify the

PileComponent2 class shown in Listing 13-23.

13.6 The Java library contains an interface named MouseInputListener. Examine
the documentation and discuss how it could be used in the PileComponent2

class shown in Listing 13-23.

Programming Exercises

13.7 Find the code for the version of Nim with multiple views.

a. Add a new view whose function is to offer hints to the current player. (Hint:
Assuming the rules where 1, 2, or 3 tokens may be removed, a player who
leaves 1, 2, or 3 tokens for his or her opponent has made a serious mistake.
Similarly, a player who leaves exactly four tokens is in a very strong posi
tion. Generalize these observations.)

b. Modify the NimPlayerView class to use a JComboBox for user input
instead of JButton objects.

c. Modify the NimPlayerView class to use a JSlider for user input.

d. Add a new view whose function is to start a new game. The user should be
able to specify who starts and how large the initial pile of tokens should be.
The player should also be able to start a new game with the program choos
ing either or both of these values randomly.

e. Views do not actually need to belong to a graphical user interface. Write a
class named NimLogger that implements IView. Modify the Nim program
to use NimLogger to write the state of the game after each move to a file.
(Hint: You should not extend JPanel or include any classes from the
javax.swing or java.awt packages. Create the NimLogger object in the
main method.)

f. Modify the model and the view so users may remove up to half of the
remaining tokens in each turn. Start the game with a random pile of 20 to
30 tokens. The existing views with three buttons each are inappropriate.
Design a new view.

g. Modify the PileComponent2 class to show the tokens as a block, three
tokens wide. The top row of the block may have less than three tokens.

h. The PileComponent2 class shown in Listing 13-23 does not work when a
user clicks and drags the mouse upward or leftward. The problem is that the
width or the length of the selection rectangle becomes negative, resulting in
an “empty” rectangle. Fix this problem.

i.	 The PileComponent2 class shown in Listing 13-23 currently allows the
user to select any number of visible tokens, even though the game only
allows a maximum of three tokens to be removed. Fix the component so
that the selection rectangle is not allowed to enclose more than three tokens.

13.11
P

RO
BLEM

 S
ET

760
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

13.8 Find the code displayed in Listing 13-21. Write a simple main method to dis
play it in a frame. Observe that it is possible to select several items at once

using the Shift or Control keys.

a. Modify the program to print all of the items that have been selected.

b. Modify the program so users can select only one item at a time.

c. The JList documentation includes sample code for a class named

MyCellRenderer. Read the documentation, and then change the program

so that each element of the list is displayed using the appropriate color.

Programming Projects

13.9 Write a program to assist users in calculating their target heart rate for an exer
cise program. You can find many formulas on the Web for calculating target

heart rate. One is based on the user’s age, resting heart rate, and targeted inten
sity: intensity * (220 – age – restingHR) + restingHR, where intensity is a per
centage (typically 80 to 90%), age is the user’s age in years, and restingHR is

the user’s resting heart rate in beats per minute. The model will have mutator

methods for intensity, age, and restingHR, and accessor methods for those

three plus the target heart rate.

Two possible views are shown in Figure 13-17.

a. Write the program’s view using JTextField components.

b. Write the program’s view using JSlider components.

(figure 13-17)

Two possible views for a

target heart rate calculator

13.10 Write a program that allows you to display font samples. A proposed user
interface is shown in Figure 13-18. The model for this program will have meth
ods such as setFontName, setFontSize, setBold, setItalic, and
getFont. The components used in the interface include JComboBox,
JCheckBox, JTextArea, and becker.gui.FormLayout.

761

(figure 13-18)

Two interfaces

13.11
P

RO
BLEM

 S
ET

An interface for generating font samples	 An interface for plotting the popularity of names
through time

13.11 Explore the documentation for the becker.xtras.nameSurfer package.5 In
particular, see the package overview and Figure 13-18 for an example of the
interface.

a. Write a model named SurferModel. Demonstrate your model, working
with classes from the nameSurfer package to form a complete program.

b. Write a view named SurferView. Demonstrate your view, working with
classes from the nameSurfer package to form a complete program. (Hint:
You will need to implement a custom component to draw the graph.)

13.12 Implement a view to choose a color. Figure 13-19 has three JSlider compo
nents, one for each of the red, green, and blue parts of a color. Their values
range between 0 and 255. Use an empty JPanel to display the current color as
the sliders are moved by calling the panel’s setBackground method.

Demonstrate your view with a simple program. The model will have two meth
ods: setColor and getColor. setColor is called when the OK button is
pressed, resulting in a second view being updated with the chosen color.

(figure 13-19)

Sample interfaces for a

color chooser and a

Web browser

Simple color chooser	 Simple Web browser

5 The original idea for this problem is attributed to Nick Parlante at Stanford University.

762
CH

AP
TE

R
13

 |
G

RA
PH

IC
AL

 U
SE

R
IN

TE
RF

AC
ES

13.13 Use the JEditorPane to implement a simple Web browser like the one shown
in Figure 13-19. Users should be able to type a URL into a text field and have
it displayed in the JEditorPane. Your browser should also correctly follow
links to display a new page. The JEditorPane may not be editable for links
to work. The model for the browser will be the current URL to display.
Enhancements may require adding a history list and other features to
the model.

a. Add scroll bars to the JEditorPane that show only if needed.

b. Add a toolbar with Forward, Back, and Home buttons.

c. Use a JComboBox for entering URLs. Add URLs the user has typed to the
JComboBox for easier selection in the future.

13.14 Implement the game of Tic-Tac-Toe for two users (see Figure 13-20). Search
the Web for the rules if you are unfamiliar with the game. Use a button for
each of the nine squares to gather input from the users. Disable the buttons
and change their labels as they are played. When the mouse is moved over an
unplayed square, show either X or O, depending on whose turn it is. Announce
the winner with a dialog box and start a new game.

(figure 13-20)

Sample interfaces for a

game and an animation

Tic-tac-toe game Animated bouncing ball

13.15 Write a program that displays a bouncing ball and allows for its speed
to be changed and the size of the box it bounces in to be changed
(see Figure 13-20). Note the following hints:

➤	 Read the documentation for the javax.swing.Timer class. An appropriate
delay is 1000/30. There are several classes named Timer; be sure to read the
right one.

➤	 Write a BallModel class with methods such as getBallBounds and
setBoxBounds. The java.awt.Rectangle class is convenient for main
taining size and position information for both the ball and the box. The
BallModel will also contain an instance of Timer, updating the position of
the ball every time it “ticks.”

763

➤	 The BallView class should contain a custom component to draw the ball. It
will need a controller implementing ComponentListener to resize the
model’s box when the component is resized.

➤	 The BallView class should also contain an instance of JSlider to adjust
the speed of the bouncing ball.

13.16 Implement a model for a right triangle. It will have two methods to set the base
and the height but will calculate the length of the hypotenuse using the
Pythagorean theorem (a2 + b2 = c2). It will also have three methods to get the
length of each side. The length of the base and the height must be between 1
and 100, inclusive. Figure 13-21 shows several different views of the model.

a. Implement a view using JTextField components.

b. Implement a view using JSlider components.

c. Implement a view using a JButton to increment the length of the base and
another to decrement it. Do so similarly for the height.

d. Implement a view using JSpinner to adjust the base and height.

e. Implement a view using JCombobox or JList that allows the user to select
one of several standard triangle sizes.

f. Implement a custom component that draws a picture of the triangle. Set the
size of the triangle using one of the other views.

g. Implement a custom component that draws a picture of the triangle. Add a
controller for the mouse that detects clicks on the triangle. When the trian
gle is clicked, paint “handles” to show that it is selected. Allow the user to
change its size by dragging the handles.

h. Implement a view showing several of the preceding views other than (e). Be
sure that they all display the same information about the triangle model.

13.11
P

RO
BLEM

 S
ET

(figure 13-21)

Several views of a

triangle model

Epilogue

Congratulations! You’ve learned a lot about programming computers using this text
book. However, programming represents only a portion of what computer specialists
do. If you choose to continue studying computer science, what do you have to look for
ward to? This epilogue gives a glimpse.

The topics discussed here are based on curricular recommendations by the Association
for Computing Machinery and the Computer Society of the Institute for Electrical and
Electronic Engineers, the two leading professional organizations for computing disci
plines. These topics represent a widely accepted core of material that undergraduate
computer science students should know.

Programming Fundamentals

Most of the material we have studied falls into the area of programming fundamentals.
Future courses include further study of data structures and recursion. Data structures
are used to organize data, arrays being one of the simplest. The HashSet and TreeMap

classes are implementations of other data structures.

Recursion occurs when a method calls itself to solve a smaller instance of the same
problem. It’s a powerful technique that is often explored at the same time as recursive
data structures, such as trees and lists.

Discrete Structures

Discrete structures are areas of mathematics that are particularly helpful to computing
professionals, including the study of sets, logic, proof techniques, graphs, and trees.
When we studied Boolean expressions, we were learning about logic.

Many problems in the real world, such as routing messages on the Internet, can be rep
resented as a mathematical tree or graph (which is different from graphing data on a
chart). Knowledge of discrete structures is often critical to solving such problems.

765

766
EP

IL
O
G
U
E

Algorithms and Complexity

When we explored enlarging arrays to hold more elements, we briefly touched on algo
rithms and complexity. We identified two different algorithms: one that enlarges the
array by one element, and one that doubles the size of the array. However, their
complexity—the amount of time each takes to do its job—was very different.
Experimental results were given in Figure 10-19. It’s also possible to approximate it
mathematically.

Architecture and Organization

These topics address how the computer hardware is organized and how the very low
est levels of software interact with it. In Section 8.2.1 we discussed how the computer’s
memory is organized like a large array. Other topics within this area include how the
CPU (central processing unit) works, how to connect devices such as keyboards and
networks to the computer, and how your programs and data are represented within the
computer.

Operating Systems

The operating system manages the computer’s resources for its users and provides ways
for programmers to access these resources. Perhaps one of the clearest ways we use the
operating system is in performing input and output via the console or files. The oper
ating system takes care of details like finding free space on the disk for our files, orga
nizing the files into directories, and interacting with the electronics in the disk drive
itself to read and write the data.

Modern operating systems appear to do many things concurrently. Our brief explo
ration of threads to run several robots concurrently (Section 3.5.2) introduce some of
the techniques involved, but not their complexity.

Net-Centric Computing

Connecting computers over a network has fundamentally changed computing. The
World Wide Web is only the most visible result of this shift. Programs running on one
machine increasingly access services on other machines. These services might be as sim
ple as reading a file or as complex as interfacing with the ordering systems of your
company’s suppliers.

767
E

PILO
G
U
E Programming Languages

Java is one of many programming languages. As an object-oriented language, Java is
similar to other object-oriented languages such as C++, C#, Smalltalk, Ada, and so on.
On the other hand, it is quite different from functional languages such as Scheme and
Lisp, or a scripting language such as Python. Each of these paradigms (object-oriented,
functional, and scripting) has a different way of thinking about programming. Some
problems that are hard to solve using one paradigm are much easier to solve using
another.

Most computer scientists use only one or two languages from any given paradigm, but
often switch between paradigms depending on the problem they are solving.

Human-Computer Interaction

Our work in building graphical user interfaces provides a good introduction to this
area of study. Other topics in this area include how the psychology and physiology of
people affect the design of interfaces, techniques for evaluating the quality of inter
faces, and processes for designing interfaces.

A broader experience in implementing interfaces includes using a wider variety of com
ponents, including animation, and working with libraries for languages other than Java.

Graphics and Visual Computing

Graphics and visual computing is composed of four overlapping areas. First, computer
graphics is the art and science of using computers to communicate using visual images.
Such images will have an underlying model. Subareas of graphics include developing
models to facilitate creating and viewing images, designing devices and techniques that
facilitate human interaction with the model, finding techniques for converting the
model to visual form, and storing images. Applications include everything from movie
special effects to manipulating images taken with a digital camera.

Second, visualization displays information in a way that enhances human understand
ing of the information. Visualizing strands of DNA was one early use.

Third, virtual reality provides a 3D, computer-generated environment to enhance the
interaction between a human and the environment. Applications include games, simu
lations, and remote handling of dangerous materials.

Lastly, computer vision seeks to understand the properties and structure of the 3D
world using 2D images. A robot that can navigate around obstacles is a classic test for
computer vision.

768
EP

IL
O
G
U
E

Intelligent Systems

This area is also called artificial intelligence (AI). It is concerned with designing
autonomous agents that act rationally in interactions with their environment, other
agents, and people. Robots are one application of such techniques.

Artificial intelligence also provides techniques for solving problems that are difficult or
impractical to solve using exact methods. These include using heuristics to guide a
search, representing a human expert’s knowledge in a program to help non-experts,
and exploring ways that programs can “learn” from experience.

Information Management

Managing information is critical to most uses of computers. The study of information
management includes methods to capture, represent, organize, transform, and present
information. It also includes algorithms for efficiently and effectively accessing and
updating stored information. The most obvious application of these techniques is
developing and deploying the database systems depended on by all but the smallest
companies.

Social and Professional Issues

Computers are a tool that can be applied to the benefit or the detriment of society.
Computing professionals must be able to ask serious questions about the impact of
their work on their users and society as a whole, and have the intellectual tools to eval
uate the proposed answers. This area of computer science interacts with philosophy,
ethics, history, social studies, risk analysis, and similar fields.

Software Engineering

Software engineering is concerned with effectively and efficiently building software
systems that satisfy standard requirements. The topics discussed in Chapter 11—using
a development process, testing, evaluating software quality, and so on—are all activi
ties crucial to software engineering.

Computational Science and Numerical Methods

Computers represent numbers with finite precision—for example, 1/10 cannot be repre
sented exactly in a computer. This simple fact requires techniques to overcome the com
puter’s limitations when it is used for applications such as modeling molecules, fluids,
and drug interactions. Another area is concerned with performing calculations efficiently,
often on the huge numbers of equations necessary to forecast weather.

769
E

PILO
G
U
E Summary

Learning to program is only the tip of the iceberg known as computer science. Your
new knowledge of programming can be a stepping stone to a successful career as a
computing professional. However, whether or not you choose to pursue a computing
career, your understanding of programming will help you use computers more effec
tively in almost any career you choose to pursue.

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 771

Appendix A Glossary

Most scientific disciplines have a specialized vocabulary, allowing experts in the field
to communicate precisely with each other. Computer science is no different. Gathered
here are all the specialized terms used in the text, together with brief definitions. Come
here for a quick reminder of a term’s definition.

Key Terms

absolute path—A sequence of directories separated by a special character and begin
ning with a known location that is used to specify the location of a file. See also
relative path.

abstract class—A class that declares or inherits an abstract method. Such classes are
declared using the abstract keyword and are often used to declare types in poly
morphic programs.

abstract method—A method that does not have a body. Such methods must be
declared with the abstract keyword.

Abstract Windowing Toolkit (AWT)—A collection of classes used to implement graphical
user interfaces.

abstraction—A method of dealing with complexity that eliminates or hides irrelevant
details and groups other sets of details into coherent, higher-level chunks.

access modifier—The keywords public, private, and protected. An access modi
fier controls which clients may have access to the method it modifies.

accessor method—A method that returns the value of an instance variable.
address—A numeric identifier for a particular memory location.
algorithm—A finite set of step-by-step instructions that specify a process.
alias—An alternate name or reference for an object. All of an object’s aliases can be

used to access the object.
and—A logical connector written in Java as &&. The result is true if and only if both

operands are true.
anonymous class—A class without a name. It is used to declare and instantiate a single

object at the point where the object is needed.
API—See application programming interface.
application programming interface (API)—The set of publicly available methods by

which a program accesses the services offered by a class or package.
architecture—The manner in which the most important classes in a program relate to

each other.

771

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 772

772
AP

PE
N
D
IX

 A
| G

LO
SS

AR
Y

argument—A value that is copied to a corresponding parameter when a method or
constructor is called.

array—A kind of variable that can store many values, each one associated with an
index.

assertion—A test that the programmer believes will always be true at a particular
point in the code.

assignment statement—A statement that gives a new value to a variable on the left side
of an equal sign (=).

attribute—An item of information encapsulated in a software object. See also instance
variable.

avenue—A road on which robots may travel north or south. See also road, street.
AWT—See Abstract Window Toolkit.
blank final—An instance variable declared to be final but not given an initial value

until the constructor is executed.
block—1. The statements contained between a matched pair of curly braces. 2. To wait

for user input.
body—The statements controlled by the test in an if statement or a looping statement.
Boolean expression—An expression that evaluates to either true or false.
bottom factoring—To remove statements common to both clauses of an if-else

statement and place them after the if-else statement.
bottom-up design—A design methodology that uses available resources to design a

solution to a problem. See also top-down design.
bottom-up implementation—Implementing a program beginning with methods that

perform relatively simple tasks and using them to build more complex methods.
See also top-down implementation.

bounding box—The smallest rectangle that will enclose a shape drawn on a screen.
breakpoint—An identified place in the source code for a debugger to temporarily stop

execution.
buffering—Collecting information until it can all be dealt with at once. Commonly

used to improve performance in input and output operations.
bug—A defect in a program.
byte code—An encoding of a program that is more easily executed by a computer than

source code. A Java compiler translates source code into byte code.
byte stream—An input or output stream that carries information encoded in binary

and is generally not human readable. See also character stream, stream.
cascading-if—A sequence of if-else statements formatted to emphasize that at

most, one of several clauses will be executed.
cast—Explicitly converting a value from one primitive type to another compatible

type. Also used to assign an object reference to a variable with a more specific type.
character stream—An input or output stream that carries information encoded as char

acters and is generally human readable. See also byte stream, stream.
checked exception—An exception that is checked by the compiler to verify that it is

either caught with a try-catch statement or declared to be thrown with a
throws clause. See also exception, unchecked exception.

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 773

773
K

EY T
ERM

S

class—The source code that defines one or more objects that offer the same services
and have the same attributes (but not necessarily the same attribute values).

class diagram—A graphical representation of one or more classes that show their
attributes, services, and relationships with other classes.

class variable—A variable that is shared by all instances of a class. Also called a static
variable. See also instance variable, parameter variable, temporary variable.

classpath—A list of one or more file paths where the Java system looks for the com
piled classes used in a program.

client—An object that uses the services of another object, called the server.
close—To indicate that a program is finished using a file so that resources can be

released.
closed for modification—The idea that a mature class should be extended rather than

modified when changes or enhancements are needed. See also open for extension.
cohesion—The extent to which each class models a single, well-defined abstraction and

each method implements a single, well-defined task.
collaborator—A class that works with another class to accomplish some task.
color chooser—A graphical user interface component designed to help a user choose

a color.
column-major order—A 2D array algorithm that accesses the array such that the col

umn changes more slowly than the row. See also row-major order.
command—A service that changes the state of an object or otherwise carries out some

action. See also query, service.
command interpreter—A program that repeatedly accepts a textual command from a

user and then interprets or executes the command.
comment—An annotation in the source code intended for human readers. Comments

do not affect the execution of the program.
comment out code—To put code inside comments so that it is no longer executed when

the program is run.
comparison operator—The operators used to compare the magnitude of two values: <,

<=, ==, !=, >=, and >.
compile—To translate source code into a format more easily executed by a computer,

such as byte code.
compiler—A computer program that compiles or translates source code into a format

more easily executed by a computer.
compile-time error—A programming error that is found when the program is com

piled. See also intent error, run-time error.
component—An object such as a button or text box that is designed to be used as part

of a graphical user interface.
composition—A relationship between two classes in which one holds a reference to the

other in an instance variable. Also known as has-a.
concatenation—Joining two strings to form a new string.

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 774

774
AP

PE
N
D
IX

 A
| G

LO
SS

AR
Y

concept map—A diagram that uses labeled arrows to connect concepts, represented by
a few words.

concrete class—A class that implements the abstract methods named in its superclasses
or the methods named in an interface. See also abstract class.

console—A window used by a program to communicate with a person using printed
characters on lines that appear one after another.

constant—A meaningful name given to a value that does not change.
constraint—An object limiting how a user interface component may be positioned.
constructor—A service provided by a class to construct or instantiate objects belonging

to that class.
content pane—The part of a frame designed to display the components of a user interface.
contract—An agreement specifying what client and server objects can each expect from

each other.
control characters—Character codes used to control a terminal or printer. Examples

include the newline and tab characters.
controller—The part of the Model-View-Controller pattern responsible for gathering

input from the user and using it to modify the model. See also model, view.
correct—A description of a program that meets its specification.
count-down loop—A loop controlled by a counter variable that is decremented until it

reaches zero.
coupling—The extent to which the interactions between classes are minimized.
CRC card—A piece of paper recording the class name, responsibilities, and collaborators

for one class during a program’s walk-through. CRC is an abbreviation for Classes,
Responsibilities, and Collaborators. See also walk-through.

cursor—A marker that divides a program’s input into the part that has already been
read and the part that has not yet been read. Also used to refer to an insertion point.

dangling else—A combination of if statements and an else-clause where it is
unclear to which if statement the else clause belongs.

data acquisition methods—Methods used to obtain data from an input stream, such as
the Scanner class. See also data availability methods.

data availability methods—Queries used to detect the kind of data available to be read
from an input stream, such as the Scanner class. See also data acquisition methods.

debug—The process of removing bugs from a program.
debugger—A tool used to help debug programs by stopping the program’s execution at

designated points, executing the program one statement at a time, and showing the
values of the program’s variables.

declaration statement—A statement that introduces a new variable into a program.
deep copy—A copy of an object that also copies any objects to which it refers. See also

shallow copy.
delimiter—A value such as a space or colon that separates other values or groups of values.
design by contract—A method for designing a program by consistently specifying the pre

conditions and postconditions of each method and invariants on classes as a whole.

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 775

775
K

EY T
ERM

S

detail—An informal term referring to an instance variable or a method.
development cycle—Steps that are repeated while implementing a program, including

choosing scenarios, writing code to implement them, testing the result with users,
and possibly updating the program’s design. One part of a larger development
process. See also development process.

development process—A process to direct the design and implementation of a program.
documentation comment—A comment designed to be extracted from the source code

and used as reference material.
easy to learn—One of five criteria used to evaluate user interfaces. In particular, how

well the program supports users learning to use it as well as those deepening their
understanding of it. See also five Es.

effective—One of five criteria used to evaluate user interfaces. In particular, the com
pleteness and accuracy with which users achieve their goals for using the program.
See also five Es.

efficient—1. One of five criteria used to evaluate user interfaces. In particular, the speed
and accuracy with which users complete tasks while using the program. See also five
Es. 2. Solving a problem without wasting such resources as memory or time.

element—One item in a collection.
else clause—The part of an if statement that is executed if the Boolean expression

is false.
encapsulation—Containing an object’s attributes within itself, allowing access to them

only via the object’s public services.
engaging—One of five criteria used to evaluate user interfaces. In particular, the degree

to which the program is pleasant or satisfying to use. See also five Es.
enumerated type—A reference type that has a programmer-defined set of values.
enumeration—See enumerated type.
equivalence—See object equality.
error tolerant—One of five criteria used to evaluate user interfaces. In particular, the

degree to which the program prevents errors and facilitates recovery from those
that do occur. See also five Es.

escape sequence—An alternative means of writing characters that are normally used
for another purpose. For example, \” to include a double quote in a string.

evaluate—The process of calculating the value of an expression.
evaluation diagram—A diagram showing how an expression is evaluated.
event—An action in the user interface to which the program must respond.
event object—An object containing information about one event.
exception—A type of error message that includes information about how the program

arrived at the point at which the error occurred. See also checked exception,
unchecked exception.

exponent—The part of a number expressed in scientific notation that indicates how far
and in which direction the decimal point should be shifted. See also mantissa, sci
entific notation.

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 776

776
AP

PE
N
D
IX

 A
| G

LO
SS

AR
Y

expression—A combination of operators and operands that can be evaluated to pro
duce a single value.

extend—To create a new class based on an existing class.
extension—The part of a file’s name following the last period and used to indicate the

kind of information contained in the file.
factory method—A method that creates and returns an object. Sometimes used as an

alternative to a constructor.
field—One item of identifiable information in a record. See also record.
file—A place, usually on a disk drive, where information is stored.
file format—The design for how information is organized in a particular file.
final situation—A description of the desired state of a city and all that it contains,

including robots, when a program ends. See also initial situation.
five Es—Five criteria used to evaluate the quality of user interfaces. See also easy to

learn, effective, efficient, engaging, error tolerant.
floating point—A computer’s internal representation of a number with a decimal point.
flow of control—One sequence of statements, each of which executes completely

before the next begins. A program may have several flows of control, each of which
is called a thread. See also thread.

flowchart—A diagram illustrating the different paths a program may take through a
code fragment.

foreach—A variety of for loop that accesses each member of a collection one at a time.
format specifier—A code embedded in a format string specifying how one particular

value should be formatted when output. See also format string.
format string—A string containing one or more format specifiers used to format output.
frame—A window appearing on a computer screen.
garbage—An object that does not have variables referencing it and therefore cannot

be used.
garbage collection—The process of removing objects that can no longer be used by a

program. See also garbage.
graphical user interface—A user interface with a visual representation that sends events

to a program. The events are generated via user interaction with input devices such
as a mouse or keyboard, and components drawn on the screen such as buttons or
text boxes. See also event.

hang—A program behaving abnormally such that it does not respond to input and
does not complete its execution.

has-a—See composition.
hashing—A technique for storing elements of a collection based on a hashcode. Used

by some collection classes, such as HashMap.
helper method—A method that exists primarily to simplify another method.
high-fidelity prototype—A preliminary version of a program used for evaluation that

may perform many of the functions expected in the final program. See also low-
fidelity prototype, prototype.

host name—The name of a computer connected to the Internet.

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 777

777
K

EY T
ERM

S

identifier—A name for a part of a program, such as a class, a variable, or a method.
immutable—Immutable objects cannot be changed after they are created. See also mutable.
implicit parameter—A reference to the object used to call a method. May be accessed

within the method with the keyword this.
index—The position of one element within an ordered collection, such as an array, a

string, or an ArrayList.
infinite loop—A loop that lacks a way to affect the termination condition, resulting in

its indefinite execution.
infinite recursion—A situation in which a method calls itself repeatedly with no provision

for avoiding another call to itself.
information hiding—Hiding and protecting the details of a classes’ operation from others.
inherit—To receive capabilities from another class because of a superclass-subclass

relationship. The relationship between the classes is sometimes described with the
term “is-a.” See also extend.

inheritance hierarchy—The relationship of several classes that inherit from a common
superclass. See also inherit.

initial value—The first value a variable is assigned.
initial situation—A description of the desired state of a city and all that it contains,

including robots, when a program begins. See also final situation.
inner class—A class definition that is contained within the definition of another class,

allowing it to access the outer classes’ private methods and instance variables.
input—Information that is obtained from outside the program—for example, from the

person running the program.
input stream—A stream that carries information from a source to a program. See also

output stream, source, stream.
insertion point—The point on the console or in a user interface component where the

next character typed by the user will appear.
instance—Each object is one instance of a class.
instance variable—A variable that is specific to an object. See also class variable, parameter

variable, temporary variable.
instantiate—The act of constructing an instance of a class—that is, creating an object.
integer division—Division of an integer by another integer where any remainder or

fractional part in the answer is discarded.
intent error—An error in which the program does not produce the desired results,

even though it compiles correctly and does not generate run-time errors. See also
compile-time error, run-time error.

interaction—An informal term referring to a method calling another method or using
an instance variable. See also detail.

interface—A Java construct listing a set of methods. It is used to define a new type and
also to specify that a class belongs to that type because it implements all of the
methods listed by the interface.

invoke—To cause an object to perform a specific service.
I/O—An abbreviation for input and output.

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 778

778
AP

PE
N
D
IX

 A
| G

LO
SS

AR
Y

IP address—The address of a computer on the Internet.
is-a—See inherit.
java archive (jar) file—A single file containing many compiled classes, making the

classes easier to distribute.
javadoc comment—See documentation comment.
key—A value used to uniquely identify another value.
keyboard focus—A property of at most one component in a user interface, the component

that will receive input from the keyboard.
keyword—The words defined by the language to have special meaning and that cannot

be used as identifiers. Examples include class, while, and int. Also called a
reserved word.

layout—The act of arranging components in a graphical user interface.
layout managers—An object that manages the layout of components in a graphical

user interface.
left justified—Elements (typically lines of text) that are aligned vertically on the left

side. See also right justified.
lexicographic order—Ordering strings by comparing their individual characters.
library—A collection of resources available to be used in many different programs. See also

package.
lifeline—A part of a sequence diagram that shows the lifetime of an object.
lifetime—The time in which values are preserved in a variable before they are

destroyed by either the object containing them being garbage-collected or the vari
able going out of scope.

list—An ordered collection of elements, perhaps with duplicates. See also map, set.
listener—An object registered with a component that responds to events generated by

the component.
local variable—See temporary variable.
logic error—See intent error.
logical negation operator—The operator !. It negates the Boolean expression following

it. See also negate.
loop—A statement that repeats the statements it controls. A while statement is a form

of loop.
loop-and-a-half—A loop that must execute part of its body one more time than the rest

of the body. Typically implemented with duplicate code before or after a while

loop or with a while-true loop.
low-fidelity prototype—A model of a program used for evaluation purposes that only

approximates the final design, perhaps using paper and pencil. See also high-
fidelity prototype, prototype.

mantissa—The fractional portion of a number expressed in scientific notation. See also
exponent, scientific notation.

map—An object storing a collection of objects, each identified by a key. See also key,
list, set.

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 779

779
K

EY T
ERM

S

memory—Part of the computer hardware that stores information, such as variables
and program instructions.

message—A client object sends a message to a server object to invoke one of its services.
method—The source code that implements a specific service.
method resolution—The process of determining the correct method to execute in

response to a method call.
mixin—A type, defined by an interface, that supplements the primary type of a class.
model—1. A simplified description of a problem, usually in a formal notation such as

mathematics or a computer program, that enables people to forecast the future,
make decisions, or otherwise solve the problem. 2. The part of the Model-View-
Controller pattern that models or abstracts a problem. 3. To create a simplified
description of something to help us make decisions, predict future events, or main
tain relevant information.

multi-line comment—A comment that may span multiple lines. It begins with /* and
ends with */. See also comment, documentation comment.

multiplicity—The notation on arrows in a class diagram indicating how many
instances of a class are used by an object.

mutable—A mutable object can be changed after it has been created. See also
immutable.

natural language—Language used in everyday speech.
negate—To make a Boolean expression return the opposite value.
nest—To place a control statement such as if or while within another control statement.
nested loop—A loop that occurs within another loop.
newline character—A character that divides two lines of text. It can be represented in a

string with the character sequence ‘\n’.
null—A special value that can be assigned to any object reference, meaning it does not

refer to any object.
object diagram—A diagram that shows one or more specific objects and the values of

their attributes.
object equality—Tested with the equals method. Establishes whether two object ref

erences refer to objects that are equivalent. See also object identity.
object identity—Tested with ==. Establishes whether two object references refer to the

same object. See also object equality.
object-oriented programming language—A computer programming language incorpo

rating the ideas of encapsulation, inheritance, and polymorphism.
open—Preparing a file for input or output.
open for extension—A class that is written in such a way that it can be modified

through inheritance. See also extend, inherit.
operand—The value, variable, or query on which an operation is to be done. See also

operator.
operator—A symbol denoting an operation, such as addition or division, to be performed

on its operands. See also operand.

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 780

780
AP

PE
N
D
IX

 A
| G

LO
SS

AR
Y

or—A logical connector written in Java as ||. The result is true if and only if at least
one of the operands is true.

origin—The place from which measurement begins. In a robot city, the intersection of
street 0 and avenue 0. On a computer screen, the upper-left corner.

output—Information that is produced by a program and displayed on a screen or written
to a file.

output stream—A stream that carries information from a program to a sink or destination.
See also input stream, sink, stream.

overload—Two or more methods with the same name but different signatures are over
loaded. The Java system chooses which one to execute based on the actual parameters
used when the method is called. See also signature.

override—Replacing a method in the class being extended with a new version of the
method.

package—A group of classes, usually organized around a common purpose.
parameter variable—A type of variable used to communicate a value to a constructor

or service to use in accomplishing its purpose. See also class variable, instance vari
able, temporary variable.

partially filled array—An array that uses the elements with indices 0..n-1 to store val
ues, where n ≤ s, the size of the array. n is stored in an auxiliary variable.

picture element—A small dot displayed on a computer screen. Many picture elements
compose the image displayed. Often abbreviated as “pixel.”

pixel—See picture element.
point—A unit of measurement, used for fonts, equal to 1/72 of an inch.
polymorphism—Setting up two or more classes so that objects can be sent the same

message but respond to the message differently—that is, in ways appropriate to the
kind of object receiving the message.

postcondition—A statement of what should be true after a method executes. See also
precondition.

precedence—A rule that determines which operations are done first when an expres
sion is evaluated.

precision—The closeness of the approximation between a value stored in the computer
and the actual value.

precondition—A situation that must be true when a method is called to ensure that it
executes correctly. See also postcondition.

predicate—1. A query (method) that returns a value of either true or false. 2. The
part of a sentence that contains a verb and explains the action or the condition of
the subject. See also subject.

primary key—When sorting records, the primary key is the most important determi
nant of the order. See also secondary key.

primitive—The most basic available methods out of which more complex methods
are built.

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 781

781
K

EY T
ERM

S

primitive type—A type whose values can be manipulated directly by the underlying hard
ware. In Java, they include int, double, and boolean. See also reference type.

processing stream—A stream that processes information as it flows from a source to a
sink. See also provider stream, stream.

program—A detailed set of computer instructions designed to solve a problem.
prompt—An indication to the user that some action is required. A prompt is usually

printed on the screen just before input is required from the user.
prototype—A preliminary version of a program used for evaluation or learning pur

poses. See also high-fidelity prototype, low-fidelity prototype.
provider stream—A stream that provides information from a source or to a sink. See also

processing stream, sink, source, stream.
pseudocode—A blend of a natural language and a programming language, allowing

people to think more rigorously about programs without worrying about program
ming language details.

query—A service or method that answers a question. See also command, method, service.
random access—A property of an information collection where every item can be

accessed as easily and as fast as every other item.
range—The number of different values belonging to a type such as int or double.
read—Obtaining input from a file or other input stream.
record—A collection of information pertaining to one thing (for example, an

employee) in a file that typically contains information about many of those things.
See also field.

refactor—The process of modifying a program to improve its overall quality without
changing its functionality.

reference—The information stored in a variable that refers or leads to a specific object.
reference type—A type whose values are defined by a class or an interface. See also

primitive type.
reference variable—A variable that refers to an object or contains null.
register—Adding an object to a list of objects that should be notified when certain

events occur.
relative path—A sequence of directories that gives a file location relative to the current

working directory. See also absolute path, working directory.
reliability—A characteristic of quality programs in which the program does not crash,

lose, or corrupt data, and is consistent in how it operates.
remainder operator—An operator that returns the remainder or part that is left after

dividing one integer by another. See also integer division.
requirements—A written statement of what a program is supposed to do. Also called

specifications.
reserved word—See keyword.
responsibility—The things a class must do to support the operation of the program.

Identified during the design of the program.

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 782

782
AP

PE
N
D
IX

 A
| G

LO
SS

AR
Y

return—The action of going back to the statement that called the currently executing
method. If the method is a query, it also provides a value to the expression from
which it was called.

return type—The type of the value returned by a query. Specified just before the
method’s name when it is declared.

right justified—Elements (typically lines of text) that are aligned vertically on the right
side. See also left-justified.

road—A street or an avenue on which a robot may move between intersections. See
also avenue, street.

row-major order—A 2D array algorithm that accesses the array such that the row
changes more slowly than the column. See also column-major order.

run-time error—An error detected when a program executes or runs because it has exe
cuted an instruction in an illegal context. See also compile-time error, intent error.

scenario—A specific task that a user may want to perform with the program. Also
known as use case.

scientific notation—A number expressed as the multiplication of a fractional number
(the mantissa) and 10 raised to some power (the exponent). See also exponent,
mantissa.

scope—That part of a program where an identifier is available for use.
search—The process of attempting to locate one value in a collection of values.
secondary key—When sorting records, the secondary key is used to determine the

order of records that have equal primary keys. See also primary key.
self-documenting code—Code that is written to minimize the need for documentation.

Well-chosen identifiers are the key tool used in writing self-documenting code.
semantics—The meaning of a statement. See also syntax.
sequence diagram—A diagram showing the sequence of activities among cooperating

objects.
serif—Short lines at the end of each stroke of a printed letter.
server—An object that provides services to a client object. See also client.
service—An action that an object performs in response to a message. Services are sub

divided into queries and commands. See also command, message, method, query.
set—An unordered collection of unique objects. See also list, map.
shallow copy—A copy of an object that does not copy any objects it references. See

also deep copy.
short-circuit evaluation—Evaluating a Boolean expression so that sub-expressions that

cannot affect the result are not evaluated.
side effect—A change in state caused by executing a method.
signature—The name of a method, together with an ordered list of all the types of its

parameters.
simulate—See trace.
single-line comment—A comment extending from a double slash (//) until the end of

the line. See also multiline comment, documentation comment.

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 783

783
K

EY T
ERM

S

sink—The destination for information flowing in a stream. See also source, stream.
software object—An abstraction in an object-oriented program used to model a real-

world entity.
source—The origin of information that flows in a stream. See also sink, stream.
source code—The words and symbols written by programmers to instruct a computer

what to do.
spaghetti code—A derisive description of source code written with undisciplined use of

a goto construct (which Java does not have). See also structured programming.
special symbols—Symbols that have a special meaning in the Java language, including

braces, parentheses, and the period and semicolon characters.
specification—See requirements.
stack trace—An ordered list of which methods called which methods, extending from

the point an exception is thrown back to the main method.
state—The state of being of an object as defined by the contents of its attributes.
state change diagram—A diagram that shows how an object’s state changes over time.
statement—An individual instruction in a programming language.
static variable—See class variable.
stepwise refinement—A method of writing programs where each method is defined in

terms of helper methods, each of which implement one logical step in solving the
problem. Also known as top-down design.

Strategy pattern—A pattern where one object uses another object that defines one
algorithm from a family of algorithms, making it easy to change the behavior of the
first object.

stream—An ordered collection of information that moves from a source to a destina
tion or sink. See also byte stream, character stream, input stream, output stream,
processing stream, provider stream.

street—A road on which robots may travel east or west. See also avenue, road.
structured programming—A programming discipline that restricts how flow of control

can be shifted from one part of the program to another. See also spaghetti code.
stub—A method that has just enough code to compile, but not enough to actually do

its job.
subclass—A class that receives part of its functionality from a superclass. See also

extend, inherit, superclass.
subject—The part of a sentence that says who or what did the action. See also predicate.
substitution principle—A key principle underlying polymorphism where an object of

one type, A, can substitute for an object of another type, B, if A can be used any
place that B can be used. See also polymorphism.

superclass—A class that has been extended to create a subclass. See also extend,
inherit, subclass.

Swing—A newer addition to the collection of classes available to write graphical user
interfaces in Java. See also Abstract Window Toolkit.

syntax—The form of a statement. See also semantics.

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 784

784
AP

PE
N
D
IX

 A
| G

LO
SS

AR
Y

tab stop—A predefined location where the insertion point will be located after a tab is
inserted into text.

tag—A keyword such as @param or @author used to identify standardized informa
tion in documentation comments. See also documentation comment.

template method—A method implementing the common part of a problem that has
several variations. The differences between the variations are expressed in helper
methods contained in subclasses.

temporary variable—A variable defined within a method. The variable and the infor
mation it contains are discarded when the method finishes execution. See also class
variable, instance variable, parameter variable.

test harness—A program used to test a method or class.
then clause—The statements that are executed when the test in an if statement is true.
thread—A sequence of statements that executes independently of other sequences of

statements. The execution of two or more threads may be interleaved. See also flow
of control.

throw—The action of interrupting the normal execution of a program with an exception.
token—A group of characters separated by delimiters. See also delimiter.
top factor—The process of removing redundant statements from the beginning of both

clauses in an if statement.
top-down design—Designing a program or a method by dividing it into logical pieces

that work together. These pieces are themselves designed using top-down design.
This process continues until a piece is so simple that it can be solved without divid
ing it. See also stepwise refinement, top-down implementation.

top-down implementation—Implementing a method by writing it in terms of helper
methods. Helper methods may also be defined in terms of other helper methods.
Eventually, each helper method will be simple enough to implement using existing
methods or without using helper methods. See also bottom-up implementation,
top-down design.

trace—To execute a program without the aid of a computer, usually by recording state
changes in a table. Also called simulate.

type—A designation of the valid values for a variable or parameter.
unchecked exception—An exception that the compiler does not require to be caught

with a try-catch statement or declared to be thrown with a throws clause. Used
for errors from which recovery should generally not be attempted. See also checked
exception, exception.

Unicode—A character encoding standard that allows up to 65,536 different characters
to be defined.

usability—A criteria of a program’s quality from a user’s perspective, determined by
the effort required to learn, operate, prepare input, and interpret output when
compared to the alternatives.

use case—See scenario.
validation—Determining if the intent of a program or program fragment is correct.

See also verification.

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 785

785
K

EY T
ERM

S

value—One item of information stored in a map collection that is identified by a key.
See also map.

variable—A named place where a program can store information. See also instance
variable, parameter variable, temporary variable.

variable declaration—A programming language statement that introduces a variable in
the source code and specifies its type.

verification—Determining if a program or program fragment correctly implements the
intended functionality. See also validation.

view—The part of the Model-View-Controller pattern that displays relevant informa
tion from the model to the user. See also controller, model.

walk-through—The process of simulating the execution of a program using other peo
ple, each of which takes on the role of one or more classes.

wall—An element of a robot’s environment that it cannot move through.
waterfall model—A development process in which the output of one phase is the input

to another phase. The waterfall model does not explicitly include iteration. See also
development process.

whitespace—Characters such as spaces and tabs that appear as white space when
printed on paper.

working directory—An executing program’s default directory. Files are read and writ
ten in the working directory unless their name includes an absolute or relative path.

wrapper class—A class whose only variable is a primitive, such as int or double.
Such classes exist so that a primitive value can be treated as an object.

write—The process of placing information in a file. See also read.

A Appendix C5743 40143.ps 11/30/06 1:32 PM Page 786

Appendix B Precedence Rules

Precedence rules establish the order of operations when an expression is evaluated. For
example, in 3 + 4 * 4, is the answer 19 or 28? It depends on whether you multiply or
add first. Normal precedence rules dictate that multiplication is done before addition.
Precedence can be overridden using parentheses. For example, (3 + 4) * 4 means that
the addition should be performed before the multiplication, yielding 28.

Precedence of Java Operators
Table B-1 lists all of the Java operators in order from the highest precedence (opera
tors that are used first) to the lowest (operators that are used last). Sometimes differ
ent operators have the same precedence. In this case, they are listed in indented groups.
For example, all of the multiplicative operators (*, /, %) have the same precedence.

When two operators with the same precedence appear together, the operators are per
formed left to right. That is, 3 * 4 / 6 is the same as (3 * 4) / 6. The only exception is
assignment. It is valid to write aƒ=ƒbƒ=ƒc, which means assign c to b and then assign
b to a. This style is not used in this book.

Some of these operators are beyond the scope of an introductory text and are marked
with an asterisk (*) on the right.

(table B-1) Operator Syntax

Precedence of Java Postfix operators
operators

Array access «arrayName»[«index»]ƒ

Member access «object_or_class».«memberName»ƒ

Parameter evaluation «methodName»(«parameterList»)ƒ

Postfix increment «variable»++ƒ

Postfix decrement «variable»--ƒ

Unary operators

Prefix increment ++«variable»ƒ

Prefix decrement --«variable»ƒ

Unary plus +«expr»ƒ

787

788

Operator Syntax (table B-1) continued

Unary minus -«expr»ƒ Precedence of Java

operators
Bitwise complement ~«expr» *

Logical negation !«expr»ƒ

Creation and cast

AP
PE

N
D
IX

 B
 |

PR
EC

ED
EN

CE
 R

U
LE

S

Object creation newƒ«className»ƒ

Cast («type»)«expr»ƒ

Multiplicative operators

Multiplication «expr»ƒ*ƒ«expr»ƒ

Division «expr»ƒ/ƒ«expr»ƒ

Remainder «expr»ƒ%ƒ«expr»ƒ

Additive operators

Addition «expr»ƒ+ƒ«expr»ƒ

Subtraction «expr»ƒ-ƒ«expr»ƒ

Bit shift operators

Left shift (propagate sign) «expr»ƒ<<ƒ«expr» *

Right shift (propagate sign) «expr»ƒ>>ƒ«expr» *

Right shift (propagate zero) «expr»ƒ>>>ƒ«expr» *

Relational operators

Less than «expr»ƒ<ƒ«expr»ƒ

Less than or equal to «expr»ƒ<=ƒ«expr»ƒ

Greater than «expr»ƒ>ƒ«expr»ƒ

Greater than or equal to «expr»ƒ>=ƒ«expr»ƒ

Class membership «object»ƒinstanceofƒ«className»ƒ

Equality operators

Equals «expr»ƒ==ƒ«expr»ƒ

Not equals «expr»ƒ!=ƒ«expr»ƒ

Bitwise AND operator «expr»ƒ&ƒ«expr» *

Bitwise exclusive OR operator «expr»ƒ^ƒ«expr» *

Bitwise inclusive OR operator «expr»ƒ|ƒ«expr» *

Logical AND operator «expr»ƒ&&ƒ«expr»ƒ

789

(table B-1) continued Operator Syntax

Precedence of Java Logical OR operator «expr»ƒ||ƒ«expr»ƒ

operators
Conditional «expr»ƒ?ƒ«expr»ƒ:ƒ«expr» *

Assignment ƒ

«var»ƒ=ƒ«expr»ƒ

«var»ƒ+=ƒ«expr»ƒ

«var»ƒ-=ƒ«expr»ƒ

«var»ƒ*=ƒ«expr»ƒ

«var»ƒ/=ƒ«expr»ƒ

«var»ƒ%=ƒ«expr»ƒ

«var»ƒ>>=ƒ«expr» *

«var»ƒ<<=ƒ«expr» *

«var»ƒ>>>=ƒ«expr» *

«var»ƒ&=ƒ«expr» *

«var»ƒ^=ƒ«expr» *

«var»ƒ|=ƒ«expr» *

P
RECED

EN
CE O

F JAVA O
PERATO

RS

C Appendix C5743 40143.ps 11/30/06 1:32 PM Page 791

Appendix C Variable Initialization
Rules

Variables always have a value. Initialization guarantees that a variable has a known
starting value. Without a known starting value, it is hard to have confidence in the cor
rectness of any computations done with the variable. This brief appendix outlines the
rules governing the initialization of instance variables, temporary variables, and para
meter variables.

Instance and Class Variables

Instance and class variables are always given an initial value, either explicitly by the
programmer or implicitly by the compiler. Implicit initializations by the compiler
depend on the variable’s type, as shown in Table C-1.

(table C-1) Type Implicit Initial Value

Implicit variable

initialization values byte, short, int, long 0

boolean false

char '\0000'

float +0.0f

double +0.0

object reference (including String) null

791

C Appendix C5743 40143.ps 11/30/06 1:32 PM Page 792

792

Temporary Variables

AP
PE

N
D
IX

 C
 |

VA
RI

AB
LE

 I
N
IT

IA
LI

ZA
TI

O
N
 R

U
LE

S

Temporary variables are not given an initial value by the compiler. The compiler
attempts to verify that each temporary variable is initialized before it is used. If the
compiler is unable to verify this property, it will issue a compile-time error.

Parameter Variables

Parameter variables are initialized by the corresponding actual parameter in the
method’s call.

Arrays

Each element of a newly created array is given a default value. The default value
depends on the array’s type, as shown in Table C-1.

 Appendix D Unicode Character Set

Fundamentally, computers simply store and manipulate numbers. Text can be processed
because each character is assigned a number. The computer manipulates numbers but
prints them as characters.

This appendix is about the assignment of characters to their numerical equivalents.

Understanding Encoding

Many children have played some sort of spy game that involved encoding secret mes
sages. The encoding is usually something like this:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

J H Q S I A R Z X B D N C O W M T P F U Y G K L V E

The message “GO TO THE HIDEOUT” is encoded by looking up “G” in the top row
and writing down “R”, the letter beneath it; then looking up “O” and writing down
“W”; and so on. The entire encoded message would be “RW UW UZI ZXSIWYU”.
Someone receiving the coded message could perform the reverse operation to recover
the original message.

The computer uses a similar encoding, except it matches letters with numbers:

A B C D E F G H I J K L M N O P …

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 …

When we type “GO TO THE HIDEOUT” into a program, the computer encodes it as
71 79 32 84 79 32 84 72 69 32 72 73 68 69 79 85 84. The spaces in the original mes
sage are encoded as 32. When it is time to print a message using, for example,
System.out.println, the computer looks up the number 71 to discover it should
display dots in the shape of “G”.

793

794

Encoding Characters

AP
PE

N
D
IX

 D
 |

U
N
IC

O
D
E

CH
AR

AC
TE

R
SE

T

A simple program that reads a line of text and displays the corresponding numeric
encoding is shown in Listing D-1.

Listing D-1: A program to translate a line of text into the equivalent numeric codes

1 importƒjava.util.Scanner;
2
3 /** Translate characters into their integer equivalents.
4 *
5 * @author Byron Weber Becker */
6 publicƒclassƒCharacterCodesƒextendsƒObject
7 {
8 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒ
9 ƒƒ{

10 ƒƒƒƒSystem.out.println("Type a line of text to show the Unicode encoding.");
11 ƒƒƒƒSystem.out.println("Type \"quit\" to end.");
12
13 ƒƒƒƒScannerƒinƒ=ƒnewƒScanner(System.in);
14 ƒƒƒƒwhileƒ(true)
15 ƒƒƒƒ{ƒSystem.out.print("> ");
16 ƒƒƒƒƒƒStringƒinputƒ=ƒin.nextLine();
17
18 ƒƒƒƒƒƒifƒ(input.equals("quit"))
19 ƒƒƒƒƒƒ{ƒbreak;
20 ƒƒƒƒƒƒ}
21
22 ƒƒƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒinput.length();ƒi++)
23 ƒƒƒƒƒƒ{ƒcharƒasCharƒ=ƒinput.charAt(i);
24 ƒƒƒƒƒƒƒƒintƒasIntƒ=ƒinput.charAt(i);
25 ƒƒƒƒƒƒƒƒSystem.out.println(""ƒ+ƒasCharƒ+ƒ" ("ƒ+ƒasIntƒ+ƒ")");
26 ƒƒƒƒƒƒ}
27 ƒƒƒƒ}
28
29 ƒƒ}
30 }

appendices/
charCodes/

The most common encodings correspond to the ASCII character set, one of the earliest
standards. They represent the character encodings from the number 0 up to 127 and are
shown in Table D-1.

795

(table D-1)

ASCII character set

decimal char decimal char decimal char decimal char

0 NUL 32 Space 64 @ 96 ̀

1 SOH 33 ! 65 A 97 a

2 STX 34 " 66 B 98 b

3 ETX 35 # 67 C 99 c

4 EOT 36 $ 68 D 100 d

5 ENQ 37 % 69 E 101 e

6 ACK 38 & 70 F 102 f

7 BEL 39 ' 71 G 103 g

8 BS 40 (72 H 104 h

9 TAB 41) 73 I 105 i

10 LF 42 * 74 J 106 j

11 VT 43 + 75 K 107 k

12 FF 44 , 76 L 108 l

13 CR 45 - 77 M 109 m

14 SO 46 . 78 N 110 n

15 SI 47 / 79 O 111 o

16 DLE 48 0 80 P 112 p

17 DC1 49 1 81 Q 113 q

18 DC2 50 2 82 R 114 r

19 DC3 51 3 83 S 115 s

20 DC4 52 4 84 T 116 t

21 NAK 53 5 85 U 117 u

22 SYN 54 6 86 V 118 v

23 ETB 55 7 87 W 119 w

24 CAN 56 8 88 X 120 x

25 EM 57 9 89 Y 121 y

26 SUB 58 : 90 Z 122 z

27 ESC 59 ; 91 [123 {

28 FS 60 < 92 \ 124 |

29 GS 61 = 93] 125 }

30 RS 62 > 94 ^ 126 ~

31 US 63 ? 95 _ 127 DEL

E
N
CO

D
IN

G
 C

H
ARACTERS

796
AP

PE
N
D
IX

 D
 |

U
N
IC

O
D
E

CH
AR

AC
TE

R
SE

T

The first column of the table contains control characters. One of the main uses for
these characters is to control some types of printers. If the character CR (carriage
return) was sent to the printer, the print head would return to the beginning of the line.
The LF character (line feed) moves the paper up one line.

Some of the control characters are still used and have escape sequences so they can be
easily inserted into a string. These are shown in Table D-2.

Escape Sequence Description Escape Sequence Description

\n newline (LF) \r return (CR)

\b backspace (BS) \\ backslash

\f form feed (FF) \' single quote

\t tab (TAB) \” double quote

(table D-2)

Escape sequences for

selected control

characters

The last three exist so that we can insert the backslash, single quote, and double quote
into strings. For example, if you really did want to print a backslash followed by the
character n, you couldn’t simply write:

System.out.println(“\n”);

because that would print a newline character. Instead, you would need to write

System.out.println(“\\n”);

The \\ is interpreted as a single backslash character. The n is considered as just the
letter n.

 Appendix E Selected Robot
Documentation

The becker library that accompanies this book includes many methods, particularly
those related to robots and the cities they inhabit. Full documentation is available on
the Web at www.learningwithrobots.com/doc. For the times that a computer isn’t
available, a briefer form of the documentation is printed below.

City

publicƒclassƒCityƒextendsƒjava.lang.Object

A City contains intersections joined by streets and avenues. Intersections may
contain Things such as Walls, Streetlights, and Flashers, as well as Robots.

Constructor Summary

City()

Construct a new City using the defaults stored in the becker.robots.ini file.

City(intƒnumVisibleStreets,ƒintƒnumVisibleAvenues)

Construct a new City that displays streets 0 through numVisibleStreets – 1 and
avenues 0 through numVisibleAvenues – 1.

City(intƒfirstVisibleStreet,ƒintƒfirstVisibleAvenue,
intƒnumVisibleStreets,ƒintƒnumVisibleAvenues)

Construct a new City that displays streets firstVisibleStreet through
numVisibleStreets – 1 and avenues firstVisibleAvenue through
numVisibleAvenues – 1.

City(StringƒfileName)

Construct a new City by reading information to construct it from a file.

City(java.util.Scannerƒin)

Construct a new City by reading information to construct it from a file.

797

www.learningwithrobots.com/doc

798
AP

PE
N
D
IX

 E
 |

SE
LE

CT
ED

 R
O
BO

T
D

O
CU

M
EN

TA
TI

O
N

Method Summary

protectedƒvoidƒcustomizeIntersection(Intersectionƒintersection)

Customize an Intersection, perhaps by adding Things to it.

IIterate<Light>ƒexamineLights()

Examine all the Light objects in this City, one at a time.

IIterate<Robot>ƒexamineRobots()

Examine all the Robot objects in this City, one at a time.

IIterate<Thing>ƒexamineThings()

Examine all the Thing objects in this City, one at a time.

IIterate<Thing>ƒexamineThings(IPredicateƒaPredicate)

Examine all the Thing objects in this City that match aPredicate, one at a time.

protectedƒIntersectionƒgetIntersection(intƒavenue,ƒintƒstreet)

Obtain a reference to a specified Intersection within this City.

booleanƒisShowingThingCounts()

Is this City showing the number of Things on each Intersection?

protectedƒvoidƒkeyTyped(charƒkey)

This method is called when this City’s display has the focus and a key is typed.

protectedƒIntersectionƒmakeIntersection(intƒavenue,ƒintƒstreet)

Make an Intersection that will appear at the specified avenue and street.

voidƒsave(Stringƒindent,ƒjava.io.PrintWriterƒout)

Save a representation of this City to a file for later use.

voidƒsetFrameTitle(Stringƒtitle)

Set the title of the implicitly created frame, if there is one.

voidƒsetSize(intƒwidth,ƒintƒheight)

Set the size of the implicitly created frame, if there is one.

voidƒsetThingCountPredicate(Predicateƒpred)

Set the predicate for what kinds of Things to count when showing the number of
Things on each Intersection.

799
F
LASH

ER voidƒshowFrame(booleanƒshow)

Should this City be shown in a frame? The default is to show it.

voidƒshowThingCounts(booleanƒshow)

Show the number of Things on each Intersection, counted according to the pred
icate set with the method setThingCountPredicate.

Direction

publicƒenumƒDirection

Constants that define directions within a City.

Field Summary

publicƒstaticƒintƒEAST
publicƒstaticƒintƒNORTH
publicƒstaticƒintƒWEST
publicƒstaticƒintƒSOUTH

Method Summary

Directionƒleft()

Which Direction is left of this Direction?

Directionƒright()

Which Direction is right of this Direction?

Directionƒopposite()

Which Direction is opposite of this Direction?

Flasher

publicƒclassƒFlasherƒextendsƒLight

A Flasher is commonly used to mark construction hazards on streets and avenues.
Flashers are small enough for a Robot to pick up and carry. They do not obstruct
the movement of Robots. Like all Lights, they can be turned on and off. Unlike some
kinds of Lights, when Flashers are “on,” their lights cycle on and off. When
Flashers are turned “off,” their lights stay off.

800
AP

PE
N
D
IX

 E
 |

SE
LE

CT
ED

 R
O
BO

T
D

O
CU

M
EN

TA
TI

O
N

Constructor Summary

Flasher(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue)

Construct a new Flasher, initially turned off.

Flasher(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue,ƒbooleanƒisOn)

Construct a new Flasher.

Flasher(RobotƒheldBy)

Construct a new Flasher held by a Robot.

Method Summary

protectedƒvoidƒsave(Stringƒindent,ƒjava.io.PrintWriterƒout)

Save a representation of this Flasher to an output stream.

voidƒturnOff()

Turn the Flasher off.

voidƒturnOn()

Turn the Flasher on so that it begins to flash.

Intersection

publicƒclassƒIntersectionƒextendsƒSimƒimplementsƒILabel

Karel the Robot lives in a city composed of intersections connected by roads. Roads
that run north and south (up and down) are called “Avenues” and roads that run east
and west are called “Streets.”

Intersections may contain Things such as Flashers, Walls, and Streetlights.
Some kinds of Things block Robots from entering or exiting an Intersection. It is
possible to build Things that are one-way, blocking Robots from entering but not
exiting (or vice versa) an Intersection.

Constructor Summary

Intersection(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue)

Construct a new Intersection.

801
IN

TERSECTIO
N

Method Summary

protectedƒvoidƒaddSim(SimƒtheThing)

Add a Sim to this Intersection.

intƒcountThings()

Determine the number of Things currently on this Intersection.

intƒcountThings(IPredicateƒpred)

Determine the number of Things currently on this Intersection that match the
given predicate.

protectedƒbooleanƒentryIsBlocked(Directionƒdir)

Determine whether something on this Intersection blocks Robots from entering
this Intersection from the given direction.

IIterate<Light>ƒexamineLights(IPredicateƒaPredicate)

Examine all the Light objects on this Intersection that match the given predicate,
one at a time.

IIterate<Robot>ƒexamineRobots(IPredicateƒaPredicate)

Examine all the Robot objects on this Intersection that match the given predicate,
one at a time.

IIterate<Thing>ƒexamineThings(IPredicateƒaPredicate)

Examine all the Thing objects on this Intersection that match the given predicate,
one at a time.

IIterate<Thing>ƒexamineThings()

Examine all the Thing objects on this Intersection, one at a time.

protectedƒbooleanƒexitIsBlocked(Directionƒdir)

Determine whether something on this Intersection blocks Robots from exiting the
Intersection.

intƒgetAvenue()

Get the avenue intersecting this Intersection.

protectedƒIntersectionƒgetIntersection()

Return a reference to this Intersection.

802

StringƒgetLabel()

Get the label for this Intersection.

AP
PE

N
D
IX

 E
 |

SE
LE

CT
ED

 R
O
BO

T
D

O
CU

M
EN

TA
TI

O
N

IntersectionƒgetNeighbor(Directionƒdir)

Get the Intersection neighboring this one in the given direction.

intƒgetStreet()

Get the street intersecting this Intersection.

protectedƒvoidƒremoveSim(Simƒs)

Remove the given Sim (Robot, Flasher, Streetlight, Wall, and so on) from this
Intersection.

protectedƒvoidƒsave(Stringƒindent,ƒjava.io.PrintWriterƒout)

Save a representation of this Intersection to an output stream.

voidƒsetLabel(StringƒaLabel)

Set a label for this Intersection.

StringƒtoString()

Report the internal state of this Intersection.

IPredicate

publicƒinterfaceƒIPredicate

A predicate says whether something is true or false about a Sim. A class implementing
the IPredicate interface does this via the isOK method, which returns true if some
condition about a Sim is true, and false otherwise.

A typical use for a predicate is to find a certain kind of Thing for a Robot to examine—
for example, a Light. To do this, define a class implementing IPredicate as follows:

ƒƒpublicƒclassƒALightPredƒimplementsƒPredicate

ƒƒ{ƒƒ//return true if the Sim passed is a Light, false otherwise

ƒƒƒƒƒpublicƒbooleanƒisOK(Simƒs)

ƒƒƒƒƒ{ƒƒreturnƒsƒinstanceofƒLight;

ƒƒƒƒƒ}

ƒƒ}

In a subclass of Robot, invoke the examineThings method like this:

ƒƒLightƒlightƒ=ƒthis.examineThing(newƒALightPred()).next();

803
IP

RED
ICATE

which will return a Light from the current Intersection, if there is one, and throw
an exception if there is not. The isBesideThing method in the Robot class can be
used to determine if the specified kind of Thing is available.

The IPredicate class also defines a number of useful predicates as constants. For
example, to pick up a Thing that is a Flasher, one could write

karel.pickThing(IPredicate.aFlasher);

Field Summary

staticƒIPredicateƒaFlasher

A predicate to test whether something is a Flasher.

staticƒIPredicateƒaLight

A predicate to test whether something is a Light.

staticƒIPredicateƒanyFlasher

A predicate to test whether something is a Flasher or a subclass of Flasher.

staticƒIPredicateƒanyLight

A predicate to test whether something is a Light or a subclass of Light.

staticƒIPredicateƒanyRobot

A predicate to test whether something is a Robot or a subclass of Robot.

staticƒIPredicateƒanyStreetlight

A predicate to test whether something is a Streetlight or a subclass of
Streetlight.

staticƒIPredicateƒanyThing

A predicate to test whether something is a Thing or a subclass of Thing.

staticƒPredicateƒanyWall

A predicate to test whether something is a Wall or a subclass of Wall.

staticƒPredicateƒaRobot

A predicate to test whether something is a Robot.

staticƒPredicateƒaStreetlight

A predicate to test whether something is a Streetlight.

804
AP

PE
N
D
IX

 E
 |

SE
LE

CT
ED

 R
O
BO

T
D

O
CU

M
EN

TA
TI

O
N

staticƒPredicateƒaThing

A predicate to test whether something is a Thing.

staticƒPredicateƒaWall

A predicate to test whether something is a Wall.

staticƒPredicateƒcanBeCarried

A predicate to test whether the Thing is something that a Robot can carry.

Method Summary

booleanƒisOK(SimƒtheSim)

Returns true if a certain condition is true about theSim, false otherwise.

Light

publicƒabstractƒclassƒLightƒextendsƒThing

A Light is a kind of Thing that can be turned on to make it brighter and turned off
to make it darker. Some Lights can be moved (Flasher) while others can’t
(Streetlight).

The Light class itself is abstract, meaning programmers cannot construct an instance
of Light. It must be extended to create a class that can be instantiated. This class does
define a common interface for all Lights so that any Light may be turned on or off
without knowing what specific kind of Light it is (polymorphism).

Constructor Summary

Light(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue)

Construct a new Light with the same default appearance as a Thing.

Light(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue,ƒDirectionƒ
ƒƒƒorientation,ƒbooleanƒcanBeMoved,ƒIconƒanIcon)ƒ

Construct a new Light.

Light(RobotƒheldBy)ƒ

Construct a new Light held by a Robot.

805
R

O
BO

T Method Summary

booleanƒisOn()ƒ

Determine whether the Light is turned on.

voidƒturnOff()ƒ

Turn the Light off.

voidƒturnOn()ƒ

Turn the Light on.

Robot

publicƒclassƒRobotƒextendsƒSimƒimplementsƒILabel,ƒIColor

Robots exist on a rectangular grid of roads and can move, turn left ninety degrees,
pick things up, carry things, and put things down. A Robot knows which avenue and
street it is on and which direction it is facing. Its speed can be set and queried.

More advanced features include determining if it is safe to move forward, examining
Things on the same Intersection as themselves, and determining if they are beside
a specific kind of Thing. They can pick up and put down specific kinds of Things and
determine how many Things they are carrying.

Constructor Summary

Robot(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue,ƒDirectionƒaDir)

Construct a new Robot at the given location in the given City with nothing in its
backpack.

Robot(Cityƒc,ƒintƒstr,ƒintƒave,ƒDirectionƒaDir,ƒintƒnumThings)

Construct a new Robot at the given location in the given City with the given number
of Things in its backpack. Override makeThing to customize the kind of Thing
added to the backpack.

806
AP

PE
N
D
IX

 E
 |

SE
LE

CT
ED

 R
O
BO

T
D

O
CU

M
EN

TA
TI

O
N

Method Summary

protectedƒvoidƒbreakRobot(Stringƒmsg)

This method is called when this Robot does something illegal such as trying to move
through a Wall or picking up a nonexistent object. An exception is thrown that stops
this Robot’s operation.

booleanƒcanPickThing()

Determine whether this Robot is on the same Intersection as a Thing it can pick up.

intƒcountThingsInBackpack()

How many Thing objects are in this Robot’s backpack?

intƒcountThingsInBackpack(IPredicateƒkindOfThing)

How many of a specific kind of Thing are in this Robot’s backpack?

IIterate<Light>ƒexamineLights()

Examine all the Light objects that are on the same Intersection as this Robot, one
at a time.

IIterate<Robot>ƒexamineRobots()

Examine all the Robot objects that are on the same Intersection as this Robot, one
at a time.

IIterate<Thing>ƒexamineThings(IPredicateƒaPredicate)

Examine all the Thing objects that are on the same Intersection as this Robot and
match the given predicate, one at a time.

booleanƒfrontIsClear()

Can this Robot move forward to the next Intersection safely?

intƒgetAvenue()

On which avenue is this Robot?

DirectionƒgetDirection()

Which Direction is this Robot facing?

StringƒgetLabel()

What is the string labeling this Robot?

807
R

O
BO

T doubleƒgetSpeed()

How many moves and/or turns does this Robot complete in one second?

intƒgetStreet()

On which street is this Robot?

doubleƒgetTransparency()

Get this Robot’s transparency.

booleanƒisBesideThing(IPredicateƒaPredicate)

Determine whether this Robot is on the same Intersection as one or more instances
of the specified kind of Thing.

protectedƒThingƒmakeThing(intƒnOf,ƒintƒtotal)

Make a new Thing to place in this Robot’s backpack. Override this method in a sub
class to control what kind of Thing is made when a Robot is constructed with Things
in its backpack.

voidƒmove()

Move this Robot from the Intersection it currently occupies to the next
Intersection in the Direction it is currently facing, leaving it facing the same
Direction.

voidƒpickThing()

Attempt to pick up a movable Thing from the current Intersection.

voidƒpickThing(IPredicateƒkindOfThing)

Attempt to pick up a particular kind of Thing from the Intersection this Robot
currently occupies.

voidƒpickThing(ThingƒtheThing)

Attempt to pick up a particular Thing from the Intersection this Robot currently
occupies.

voidƒputThing()

Take something out of this Robot’s backpack and put it down on the Intersection
this Robot currently occupies.

voidƒputThing(IPredicateƒkindOfThing)

Attempt to take a particular kind of Thing out of this Robot’s backpack and put it
down on the Intersection the Robot currently occupies.

808
AP

PE
N
D
IX

 E
 |

SE
LE

CT
ED

 R
O
BO

T
D

O
CU

M
EN

TA
TI

O
N

voidƒputThing(ThingƒtheThing)

Attempt to put down a particular Thing on the Intersection this Robot currently
occupies.

protectedƒvoidƒsave(Stringƒindent,ƒjava.io.PrintWriterƒout)

Save a representation of this Robot to an output stream.

voidƒsetLabel(StringƒtheLabel)

Set a label to identify this Robot.

voidƒsetSpeed(doubleƒmovesPerSecond)

Set this Robot’s speed.

voidƒsetTransparency(doubleƒtrans)

Set this Robot’s transparency.

voidƒturnLeft()

Turn this Robot left by 90 degrees or one-quarter turn.

RobotRC

publicƒclassƒRobotRCƒextendsƒRobot

A remote control robot, RobotRC for short, can be directed from a computer key
board. The City’s view must have the keyboard focus when the program is running
for the Robot to receive the instructions from the keyboard. When the City’s view has
the focus, it will have a thin black outline. Shift the focus between the speed control
and the start/stop button on the City’s view with the tab key.

Constructor Summary

RobotRC(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue,ƒDirectionƒaDir)

Construct a new RobotRC with nothing in its backpack.

RobotRC(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue,ƒDirectionƒaDir,ƒ
ƒƒƒintƒnumThings)

Construct a new RobotRC.

809
R

O
BO

TSEMethod Summary

protectedƒvoidƒkeyTyped(charƒkey)

This method makes the robot respond to the user’s key presses as shown in Table E-1.
It may be overridden to make the robot respond differently.

(table E-1) Keys Response

Keystroke responses m, M move

r, R turn right

l, L turn left

u, U pick up a Thing

d, D put down a Thing

RobotSE

publicƒclassƒRobotSEƒextendsƒRobot

A new kind of Robot with extended capabilities, such as turnAround and turnRight.

Constructor Summary

RobotSE(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue,ƒDirectionƒaDir)

Construct a new RobotSE with nothing in its backpack.

RobotSE(CityƒaCity,ƒint aStreet,ƒintƒanAvenue,ƒDirectionƒaDir,ƒ
ƒƒƒintƒnumThings)

Construct a new RobotSE.

Method Summary

booleanƒisFacingEast()

Determine whether this Robot is facing east.

booleanƒisFacingNorth()

Determine whether this Robot is facing north.

booleanƒisFacingSouth()

Determine whether this Robot is facing south.

810
AP

PE
N
D
IX

 E
 |

SE
LE

CT
ED

 R
O
BO

T
D

O
CU

M
EN

TA
TI

O
N

booleanƒisFacingWest()

Determine whether this Robot is facing west.

voidƒmove(intƒhowFar)

Move the given distance.

voidƒpickAllThings()

Pick up all the Things that can be carried from the current Intersection.

voidƒpickAllThings(PredicateƒkindOfThing)

Pick up all of the specified kind of Things from the current Intersection.

voidƒputAllThings()

Put down all the Things in this Robot’s backpack on the current Intersection.

voidƒputAllThings(PredicateƒkindOfThing)

Put down all of the specified kind of Things from the Robot’s backpack on the current

Intersection.

voidƒturnAround()

Turn this Robot around so it faces the opposite Direction.

voidƒturnLeft(intƒnumTimes)

Turn this Robot left the given number of times.

voidƒturnRight()

Turn this Robot 90 degrees to the right.

voidƒturnRight(intƒnumTimes)

Turn this Robot right the given number of times.

Sim

publicƒabstractƒclassƒSimƒextendsƒjava.lang.Object

A Sim is an element of a City that participates in the simulation, namely a Thing
(such as Walls or Lights), a Robot, or an Intersection.

Since this class is abstract it cannot be instantiated; only subclasses may be instantiated.
This class exists both to ensure that basic services required for the simulation are
present and to provide common implementations for required several services.

811
S

TREETLIG
H
T

Constructor Summary

Sim(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue,ƒDirectionƒorientation,ƒ
ƒƒƒIconƒtheIcon)

Construct a new Sim.

Method Summary

IconƒgetIcon()ƒ

Return the icon used to display the visible characteristics of this Sim, based on the
Sim’s current state.

protectedƒabstractƒIntersectionƒgetIntersection()

Return the Intersection where this Sim is located.

protectedƒvoidƒkeyTyped(charƒkey)

This method is called when a key is typed and keyboard input is directed to karel’s
world (the map, as opposed to a different window or the controls for karel’s world).

protectedƒvoidƒnotifyObservers()

Notify any observers of this Sim (for instance, the user interface) that it has changed.

protectedƒvoidƒnotifyObservers(java.lang.ObjectƒchangeInfo)ƒ

Notify any observers of this Sim (for instance, the user interface) that it has changed.

voidƒsetIcon(IconƒtheIcon)

Set the icon used to display this Sim.

Streetlight

publicƒclassƒStreetlightƒextendsƒLight

A Streetlight is a kind of Light that lights an intersection. Like all Lights, it can
be turned on and off. A Streetlight cannot be moved by a Robot.

Constructor Summary

Streetlight(Cityƒcity,ƒintƒaStreet,ƒintƒanAvenue,ƒDirectionƒcorner)

Construct a new Streetlight.

812
AP

PE
N
D
IX

 E
 |

SE
LE

CT
ED

 R
O
BO

T
D

O
CU

M
EN

TA
TI

O
N

Streetlight(Cityƒcity,ƒintƒaStreet,ƒintƒanAvenue,ƒDirectionƒcorner,
ƒƒƒbooleanƒisOn)

Construct a new Streetlight.

Method Summary

protectedƒvoidƒsave(Stringƒindent,ƒjava.io.PrintWriterƒout)

Save a representation of this StreetLight to an output stream.

voidƒturnOff()

Turn the Streetlight off.

voidƒturnOn()

Turn the Streetlight on.

Thing

publicƒclassƒThingƒextendsƒSim

A Thing is something that can exist on an Intersection. All Things have a loca
tion (avenue and street). Some Things can be picked up and moved by a Robot
(Flashers) while others cannot (Streetlights, Walls).

In addition to a location, all Things have an orientation, although it is common for the
orientation to always have a default value. Examples where that is not the case include
a Wall where the orientation determines which exit or entry into an Intersection is
blocked, and a Streetlight where the orientation determines which corner of the
Intersection it occupies.

Constructor Summary

Thing(Cityƒcity,ƒintƒaStreet,ƒintƒanAvenue)

Construct a new Thing with a default appearance that can be carried.

Thing(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue,ƒDirectionƒorientation)

Construct a new Thing with a default appearance that can be carried, in the given
orientation.

813
T

H
IN

G

Thing(CityƒaCity,ƒintƒaStreet,ƒintƒanAvenue,ƒDirectionƒorientation,
ƒbooleanƒcanBeMoved,ƒIconƒanIcon)

Construct a new Thing with an appearance defined by anIcon.

Thing(RobotƒheldBy)

Construct a new Thing held by the given Robot.

Method Summary

booleanƒblocksIntersectionEntry(DirectionƒentryDir)

Does this Thing block the entry of this Intersection from the given Direction?

booleanƒblocksIntersectionExit(DirectionƒexitDir)

Does this Thing block the exit of this Intersection in the given Direction?

booleanƒcanBeCarried()

Can this Thing be picked up, carried, and put down by a Robot?

protectedƒIntersectionƒgetIntersection()

Return a reference to this Thing’s Intersection.

protectedƒvoidƒsave(Stringƒindent,ƒjava.io.PrintWriterƒout)

Save a representation of this Thing to an output stream.

voidƒsetBlocksEntry(booleanƒnorth,ƒbooleanƒsouth,ƒbooleanƒeast,
ƒƒƒbooleanƒwest)

Set whether this Thing blocks a Robot’s entry from the given Directions.

voidƒsetBlocksEntry(DirectionƒaDir,ƒbooleanƒblock)

Set whether this Thing blocks a Robot’s entry from the given Direction.

voidƒsetBlocksExit(booleanƒnorth,ƒbooleanƒsouth,ƒbooleanƒeast,
ƒƒƒbooleanƒwest)

Set whether this Thing blocks a Robot’s exit from the given Directions.

voidƒsetBlocksExit(DirectionƒaDir,ƒbooleanƒblock)

Set whether this Thing blocks a Robot’s exit from the given Direction.

voidƒsetCanBeCarried(booleanƒcanCarry)

Set whether this Thing can be picked up and carried by a Robot.

814
AP

PE
N
D
IX

 E
 |

SE
LE

CT
ED

 R
O
BO

T
D

O
CU

M
EN

TA
TI

O
N

Wall

publicƒclassƒWallƒextendsƒThing

A Wall will block the movement of a Robot into or out of the Intersection that con
tains it, depending on the Robot’s direction of travel and the orientation of the Wall.

Constructor Summary

Wall(Cityƒcity,ƒintƒaStreet,ƒintƒanAvenue,ƒDirectionƒorientation)

Construct a new Wall.

Method Summary

protectedƒvoidƒsave(Stringƒindent,ƒjava.io.PrintWriterƒout)ƒ

Save a representation of this Wall to an output stream.

Index C5743 40143.ps 11/30/06 1:32 PM Page 815

Index

Note: page numbers in boldface type indicate key terms.

Special Characters
> (greater than operator), 177

< (less than operator), 176

>= (greater than or equal operator), 177

<= (less or than equal operator), 176

{ } (braces)

program structure, 18

defining scope, 224-225

!= (not equal operator), 176

% (remainder), 256, 292–293, 343

&& (and operator), 232

/* (multi-line comment), 82

// (single line comment), 18

/** (documentation comment), 83

* (asterisk), 400

+ (plus sign), 311

++ (increment), 242

+= (additive assignment operator), 242

/ (division), 92, 235, 292

== (equal operator), 176

– (minus sign), 343

= (assignment operator), 19, 176, 177

[] (brackets), 349

|| (or operator), 232

. (dot), 14

; (semicolon), 14, 15, 20

A
absolute path, 478

abstract class, 640

abstract methods, 639, 639–640

Abstract Windowing Toolkit (AWT), 92, 92–93

abstractions, 3, 3–4

pseudocode, 139

raising level, 55–56

AbstractModel method, 702–703

access modifiers, 148

accessor method(s), 286, 286–289

implementing, 359–361

Accessor Method pattern, 320

addresses, reference variables, 404, 404–406

algorithms, 116, 766

stepwise refinement. See stepwise refinement

2D array, 563–565

aliasing, 406–409, 407

dangers of aliases, 407–409

allocating arrays, 543

2D arrays, 565–566

ampersand (&), and operator, 232

and operator

Boolean, 231

Java (&), 232

animation, 317–318

anonymous classes, 677, 677–678

API (application programming interface), 743

architecture, 588, 588–595, 766

creating CRC cards, 591–592

developing class diagram, 595

developing scenarios, 592

identifying classes and methods, 589–590

walking through scenarios, 592–595

arguments, 14

passing, 401

arrays, 519–575

accessing specific elements, 522–524

allocation, 543

creating, 541–547

declaring, 542–543

dynamic. See dynamic arrays; partially filled

arrays

elements, 521

files compared, 540–541

finding extreme elements, 533–534

index, 521

initialization, 544–547

815

Index C5743 40143.ps 11/30/06 1:32 PM Page 816

816
IN

D
EX

multi-dimensional. See multi-dimensional
arrays

partially filled. See partially filled arrays

passing and returning, 547–550

patterns, 572–574

of primitive types, 558–561

processing all elements in, 527–528

processing matching elements, 528–529

searching for specified elements, 529–532

sorted, inserting into, 552–553

sorting. See sorting arrays

swapping elements, 525–526

visualizing, 521–522

ASCII character set, 794–796

assertions, 624

Assign a Unique ID pattern, 383–384

assignment statements, 192

with loops, 191–193
asterisk (*)

comments, 83

multiplicity, 400

attributes, 4

assigning, 651

implementing with instance variables, 275–276

software objects, 4, 5–6, 13

types, 13

avenues, 9

AWT (Abstract Windowing Toolkit), 92, 92–93

B
becker library, 243n, 797–814

Big Brothers/Big Sisters, 520

blank final, 305

blocks, 481

temporary variables, 224, 224–225

body of when statements, 174

Boole, George, 175n

Boolean expressions, 173, 231–238

combining, 231–236

De Morgan’s laws, 237

evaluating, 175–176, 233–234

legal, form of, 232–233

negating, 175

predicates, 187

short-circuit evaluation, 238

simplifying, 236–237

boolean method, 350, 436, 440, 444, 470

File class, 479, 480

Boolean operators, 231–232

boolean type, 224, 344–345

BorderLayout strategy, 683

bottom factoring, 248–249, 249

bottom-up design, 133

bottom-up implementation, 133

bounding boxes, 98

braces { }, temporary variables, 224–225

brackets ([]), nesting objects, 349

breakpoints, 311

buffering, 465

bugs, 34. See also debugging

built-in queries, 174–175

byte code, 29

byte integer type, 338

byte streams, 501, 503

C
Capek, Karel, 9n

capitalization of identifiers, 81

caret (^), compile-time errors, 31

Cascading-if pattern, 261

cascading-if statements, nesting statements,

227–230, 229

case of identifiers, 81

cast, 664

Catch an Exception pattern, 452

char method, 350

char type, 345–347

Character class, class methods, 372–373

character input streams, 501–502

character output streams, 502–503

character streams, 501

checked exceptions, 426, 427–428

City method, 797–799

class(es), 6, 6–7

abstract, 640

anonymous, 677–678

assigning methods, 652–653

client, 640

Index C5743 40143.ps 11/30/06 1:32 PM Page 817

817
IN

D
EX

closed for modification, 67

collaborating. See collaborating classes

concrete, 640

developing to specified interface, 378–379

extending. See extending classes

identifiers, 81

identifying, 412–413, 589–590, 648–651

immutable, 612–614

implementing accessor methods, 359–361

implementing command/query pairs, 361–366

inner, 735–737

modifying versus extending, 305–306

multiple, using, 394–398

mutable, 612

names, 80

null values, 398

objects versus, 7

open for extension, 67

passing arguments, 401

reimplementing, 396–397

relationships, 413

returning object references, 401–402

setting up relationships between, 493–494

single, using, 392–494

temporary variables, 401

wrapper, 446–447

writing, 358–366

class diagrams, 7

developing, 595

lists, 438–439

Robot class, 12–15

class methods, 368–374

Character class, 372–373

main method, 374

Math class, 369–372

Test class, 373–374

class relationships, 649–651
class variables, 366, 366–368

assigning unique ID numbers, 368

guidelines, 368

initialization, 791

client(s), 4, 400

client class, 640

clone method, 665–669

implementing, 666–667

shallow copies versus deep copies, 667–669
using, 666

closed for modification, 67

closing files, 461, 464

code

byte, 29

commenting out, 83

duplication, putting in helper methods,

608–609

packages, 26

pseudocode, 138–139

quality, writing. See writing quality code

sample, 744

self-documenting, 188

cohesion, complexity of programs, 615, 618

collaborating classes

diagraming, 399–400
GUIs, 447–449

collaborators, 591

collections, 431–447. See also lists; maps; sets

foreach loops, 437

color chooser, 71

column(s), formatting numbers, 342–343

column-major order, 563

combining Boolean expressions, 231–236

error common in, 236

operator precedence, 234–235

operators, 231

command(s), 4

correctness, 86

Draw a Picture, 105–106

meaning, 86

preconditions, 86

software objects, 4, 6

specification, 86

testing, 330–332

command interpreter(s), 486, 486–495
implementing, 487–492
separating user interface from model, 492–495

Command Interpreter pattern, 510–511

Command Invocation pattern, 42

command/query pairs, implementing, 361–366

comment(s), 81, 81–84

documentation, 83–84

Index C5743 40143.ps 11/30/06 1:32 PM Page 818

818
IN

D
EX

multi-line, 82–83
single-line, 81–82

commenting out code, 83
comparison operators, 176, 176–177
compilers, 29
compile-time errors, 30, 30–32
compiling programs, 29, 29–32

compile-time errors, 30–32

without an IDE, 495–496

complexity of programs, 615–621, 766
cohesion, 615, 618
coupling, 615, 620–621
encapsulation, 615, 616–617
information hiding, 615, 619

components, GUIs, 37. See also graphical user
interfaces (GUIs)

composition, 400
computational science, 768
concatenation, 347
concept maps, 45, 45–46
concrete class, 640
console, reading from, 480–481
console window, 310
constants, 285
constraints, 683
constructor(s), 13–14

extending classes, 59–62

implementing, 70

powerful, 610–611

Constructor pattern, 105
content pane, 37
contract, 623
control characters, 466
controllers, 449
controllers, GUIs, 698–700

building, 709–726
event objects, 737–738
implementing, 717–719
inner classes, 735–737
integrating with views, 738–739
registering, 719–720
variations, 735–740
writing and registering controllers, 716–720

correct programs, 584
count-down loop(s), 192, 192–193

Count-Down Loop pattern, 204–205
Counted Loop pattern, 262
Counting pattern, 259
coupling, complexity of programs, 615, 620–621
CRC, 591

designing cards, 591–592

D
dangling else, 250, 250–251
dash (–), data availability methods, 471
data, keeping together with processing, 611–612
data acquisition methods, 467, 467–471
data availability methods, 471, 471–472
DateTime class, 394–395
De Morgan, Augustus, 237
De Morgan’s laws, 237
debugger, 311, 311–312
debugging, 34

debugger, 311–312

printing expressions, 310–311

stepwise refinement, 135

declaration statements, 20
declaring

arrays, 542–543
instance variables, 302

deep copies, 667, 667–669
defensive programming, 621–624

assertions, 624
design by contract, 622–624
exceptions, 621–622

definitions, methods, overriding, 87–89
deleting elements in arrays, 553
delimiters, 467
design by contract, 623
detail, 615
development cycle, 595, 595–599
development process, 586, 586–599

defining requirements, 587–588

designing architecture, 588–595

iterative development, 595–599

diagraming collaborating classes, 399–400
dialog boxes, 503
Direction method, 799
direction variable, 283–286

Index C5743 40143.ps 11/30/06 1:32 PM Page 819

819
IN

D
EX

discrete structures, 765
Display a Frame pattern, 44
displaying images from files, 506–507
documentation, 606–607

API, 743

becker library, 243n, 797–814

external, 84–85

Robot class, 26–29

documentation comments, 83, 84–85
dot (.), messages, 14
double method, 470
double type, 338
do-while loops, 242–243
Draw a Picture command, 105–106
drawing using loops, 251–257

loop counter, 252–253

nesting selection and repetition, 253–257

dynamic arrays, 551–558
combining approaches, 557–558
partially filled. See partially filled arrays
resizing, 554–557

E
E method, 436
easy to learn GUIs, 626
Eclipse project, 311
Edison, Thomas, 34
effectiveness of GUIs, 625
efficiency of GUIs, 625
Eiffel programming language, 623n
Either This or That pattern, 202–203
elements

of arrays, 521
of collections, 431

else-clause, 183
encapsulation, 25, 615

complexity of programs, 615, 616–617
encoding, 793

Unicode, 794–796
engaging interfaces, GUIs, 625
enumeration(s) (enumerated types), 355–358, 356
Enumeration pattern, 382–383

equal sign (=)
equal operator, 176
statements, 19

equals method, overriding, 663–665
Equals pattern, 688
equivalence, 410

testing for, 410–411
Equivalence Test pattern, 450–451
error(s)

avoiding with stepwise refinement, 134–135
checking user input, 481–484
compile-time, 30–32
debugging. See debugging
intent (logic), 30, 33–34
run-time, 30, 32–33
testing for, with stepwise refinement, 135
user, GUI forgiveness of, 628

error messages, 11
error tolerance of GUIs, 626
Error-Checked Input pattern, 509–510
escape sequences, 346, 346–347, 796
evaluating expressions, 175, 175–176
evaluation diagrams, 233, 233–234
event(s), 716, 716–717
event objects, 716, 737–738
example programs, 15–25

multiple objects, 24–25

program listings, 17–18

sending messages, 20

setting up initial situation, 19–20

situations, 15–16

tracing programs, 20–22

exception(s), 424, 424–431
checked, 426, 427–428
defensive programming, 621–622
handling, 426–428
propagating, 428–429
reading a stack trace, 425–426
throwing, 424–425
unchecked, 426

Exception class, 424–425
exponents, 338
expressions, 175

evaluating, 175–176

Index C5743 40143.ps 11/30/06 1:32 PM Page 820

820
IN

D
EX

Extended Class pattern, 102–103
extending classes, 56–78, 59, 100–102

adding services, 62–64
form of extended classes, 59
implementing constructors, 59–62
implementing methods, 64–66
implementing objects, 69–73
modification versus extension, 67
vocabulary, 58–59

extensions, 477
external documentation, 84–85
extreme elements, finding in arrays, 533–534

F
factory method(s), 342, 660–661
Factory Method pattern, 689
fence-post problem, 212–213
fields, 460
file(s)

arrays compared, 540–541

closing, 461, 464

displaying images from, 506–507

manipulating, 479–480

opening, 461, 462–463

processing, 463

reading, 461–462

specifying locations, 478–479

structure, 466–472

writing, 464–466

File class, 477–480
filenames, 477
manipulating files, 479–480
specifying file locations, 478–479

file formats, 475, 475–477
File method, 479
filenames, 477
final keyword

instance variables, 284–285

parameter variables, 300

temporary variables, 294

final situation, 16
five E’s, 625, 625–626
Flasher method, 799–800

Flasher subclass, 76
flexibility

choosing implementations, 679–680
increasing with interfaces, 669–680

float type, 338
floating-point numbers, 338, 338–340
flow of control, 62, 62–63
FlowLayout strategy, 680–681
focus, GUI views, 721
fonts, GUI views, 721–725
for statements, 239–242

examples, 240–242

form, 239–240

foreach loops, 437
arrays, 528
collections, 437

forgiveness of GUIs for user errors, 628
format specifiers, 343
format string, 343
formatting numbers, 341–343

columnar output, 342–343
NumberFormat object, 341–342

frames, 35, 35–37
content pane, 37

G
garbage, 409
garbage collection, 409
goToNextRow method, 181–183
graphical user interfaces (GUIs), 35, 34–39,

697–758
adding components, 37–39
animation, 317–318, 569–572
AWT and Swing, 92–93
building and testing models, 705–709
building views and controllers, 709–726
collaborating classes, 447–449
controllers. See controllers, GUIs
design principles, 626–628
designing, 709–710
developing classes to specified interface,

378–379

Index C5743 40143.ps 11/30/06 1:32 PM Page 821

821
IN

D
EX

displaying images from files, 503, 506–507
drawing using loops, 251–257
extending, 92–102
file choosers, 503, 504–506
frames, 35–37
helper methods, 151–155
identifying listeners for components, 741–743
implementing, 377–378
informing user interface of changes, 379–380
invoking methods, 100
iterative design, 625–626
Java, 374–380
laying out components, 711–713
layout managers, 680–686
learning to use components, 740–747
libraries of components, 448
making graphical components interactive,

750–756

models, views, and controllers, 698–700

overriding methods, 97–99

painting components, 747–749

patterns, 700

quality, 624–628

repainting, 312–318

scaling images, 196–200

sequence diagrams, 733–735

setting up model and view, 700–705

specifying methods, 375–377

steps for building, 700

views. See views, GUI

graphics, 767

GregorianCalendar class, 394

GridBagLayout strategy, 683

GridLayout strategy, 681–682

GUIs. See graphical user interfaces (GUIs)

H
handling things, 12

hanging, 213

harvestIntersection method, 179–181

Has-a (Composition) pattern, 449–450

has-a relationships, 400

hashing, 441

helper classes, delegating work to, 614–615

helper method(s), 120

declaring parameters, 153

GUIs, 151–155
making private, 608

nesting statements, 227

putting duplicated code in, 608–609
using parameters, 153–155

Helper Method pattern, 155–156

high-fidelity prototypes, 625

host name, 460

human-computer interaction, 767

I

icons

changing size, 75

transparency, 75–76

identifiers, 79, 79–81
capitalization, 81

if statements, 169–171

flowcharts, 169

general from, 173

nesting statements, 225–226
semantics, 174

syntax, 174

then-clause, 173

while statements compared, 168–174

if-else statements, 183–186
else-clause, 183

example using, 184–186
then-clause, 183

images from files, displaying, 506–507

immutable classes, 612, 612–614

implementing

constructors, 70

objects, extending classes, 69–73
services, 70–71

implicit parameters, 63–64, 64

indenting programs, 79

IndexOf method, 355

Index C5743 40143.ps 11/30/06 1:32 PM Page 822

822
IN

D
EX

indices

arrays, 521, 560–561

strings, 350

infinite loops, 213, 213–214

infinite recursion, 88

information hiding, complexity of programs,

615, 619

information management, 768

inheritance, 59, 635–640

abstract classes, 639–640

adding new methods, 637–639

choosing between interfaces and, 646

polymorphism via, 635–640

inheritance hierarchy, 68

inherited methods, 87–92

method resolution, 90–92

overriding method definitions, 87–89

side effects, 92

initial situation, 16

setting up, 19–20

initial value, 219

initializing

array elements, 544–547

class variables, 791

instance variables. See initializing instance

variables

objects, 74

parameter variables, 792

temporary variables. See initializing temporary

variables

2D arrays, 565–566

initializing instance variables, 302–303, 791

using parameters, 298–300

initializing temporary variables, 792

delaying, 294–295

inner classes, 735, 735–737

input, 461

input streams, 500

insertion point, 466, 721

instance(s), 6

instance variable(s), 276

accessing, 278–280

accessor methods, 286–289

declaring, 276–277, 302

direction, 284–286

extending classes, 300–305

final, blank, 305

final keyword, 284–285

implementing attributes with, 275–276

initializing. See initializing instance variables

lifetime, 276

maintaining, 303

making private, 609–610

modifying, 280–282

parameter variables compared, 289, 306–307

static keyword, 285

temporary variables compared, 289, 306–307,

308–310
using, 303–304

Instance Variable pattern, 319–320

instantiation, 6, 6–7

int integer type, 338

int method, 350, 436, 440, 444, 470

integer(s)

ranges, 338

types, 337–338

integer division, 292

intelligent systems, 768

intent errors, 30, 33–34

interaction, 615

interfaces, 376, 669–680

choosing between inheritance and, 646

flexibility in choosing implementations,

679–680

increasing flexibility using, 669–680

mixin, 673–674

polymorphism via, 643–645

sorting in Java library, 673

Strategy pattern, 674–679

using, 671–674

intersection(s), 9–10
factoring out differences, 146–147

Intersection method, 800–802

invoking methods, 100

IP addresses, 460

IPredicate method, 802–804

is-a relationships, 400

iterative approach, 595–599

Index C5743 40143.ps 11/30/06 1:32 PM Page 823

823
IN

D
EX

J
.jar files, 499–500

Java Archive, 499, 499–500

Java library, sorting, 539–540, 673

Java Program pattern, 40–41

Java Tutorial, 744

javadoc tool, 84–85

JFileChooser, 503, 504–506

JFrame object, 36

JPanel object, components, 37–39

justification, columnar number format, 343

K
key(s), 431, 530

maps, 431

multiple, sorting using, 676–677

searching using, 530

keyboard focus, 721

keywords, 79, 80

L
layout(s), 680

layout managers, 680, 680–686

BorderLayout strategy, 683

FlowLayout strategy, 680–681

GridBagLayout strategy, 683

GridLayout strategy, 681–682

nesting layout strategies, 684–686

SpringLayout strategy, 683

learning, ease of, of GUIs, 626

left justification, 343

less than operator (<), 176

less than or equal operator (<=), 176

lexicographic order, 351, 351–352

libraries, 495–500

compiling without an IDE, 495–496

creating and using a package, 497–499

.jar files, 499–500

Java, sorting, 539–540, 673

lifetime of instance variables, 276

Light class, 77–78

Light method, 804–805

Linear Search pattern, 573–574

Liskov, Barbara, 645

lists, 431, 432–439

adding elements, 433–434

class diagrams, 438–439

construction, 432–433

foreach loops, 437

getting, setting, and removing elements,

434–435
processing elements, 436–438

local variables. See temporary variable(s)

logic errors, 30, 33–34

logical negation operator, 175

logical operators, 231–232

precedence, 234–235

long integer type, 338

long method, File class, 480

loop(s), 174. See also while loops

assignment statements, 191–193

count-down, 192–193

do-while, 242–243

drawing. See drawing using loops

foreach, 437, 528

guidelines on use, 246

infinite, 213–214

nested, 253

repetition, 253–257

when statements, 174

while-true, 243–246

loop counter, 252–253

Loop-and-a-Half pattern, 257–258

loop-and-a-half problem, 213, 246

low-fidelity prototypes, 625

M
main method, 704–705

class methods, 374

multiple, 335–337

maintainable programs, 586

maintaining instance variables, 303

mantissa, 338

Index C5743 40143.ps 11/30/06 1:32 PM Page 824

824
IN

D
EX

maps, 431, 441–445
construction, 442–443
methods, 443–444
processing elements, 444

Mark II computer, 34
matching elements, processing in arrays, 528–529
Math class, class methods, 369–372
memory, 404, 404–406
messages, 11, 14

sending, 20
method(s), 62

abstract, 639–640
ArrayList class, 435–436
assigning to classes, 652–653
defining, 85–86
helper. See helper method(s)
implementing, 64–66, 414–423, 653–655
inherited. See inherited methods
invoking, 100
keeping short, 607–608
names, 81
overloading, 298
overriding, 97–99, 298, 411, 662–669
private, 147–150
protected, 147–150
signatures, 87
specifying with interfaces, 375–377
stepwise refinement. See stepwise refinement

method resolution, 90, 90–92
Meyer, Bertrand, 623n
Miller, George A., 607
minus sign (–), format specifier, 343
mixin interfaces, 673, 673–674
models, 2, 2–9, 448

abstractions, 3–4

creating using software objects, 4–7

definition, 2

GUIs. See models, GUIs

overview, 2–4

robots, 7–9

separating user interface from, 492–495

models, GUIs, 698–700
building and testing, 705–709
infrastructure, 701–703
setting up, 700–705

Model-View-Controller pattern, 448–449, 700,
756–757

monospaced fonts, 722
move messages, 11
move method, direction, 286
moving, 11
multi-dimensional arrays, 562–569

allocating and initializing 2D arrays, 565–567
arrays of arrays, 566–569
2D array algorithms, 563–565

multi-line comments, 82, 82–83
multiple keys, sorting using, 676–677
multiple objects, 24–25
multiple robots, 140–141

with threads, 142–146
Multiple Threads pattern, 156–157
multiplicity, 400
mutable classes, 612

N
name(s). See also identifiers

commands, 86
parameters, 300

Named Constant pattern, 318–319
naming conventions, 80–81
natural language, 138
negating predicates, 175, 175–176
negations, simplifying, 236–237
nested loops, 253

avoiding, 607
nesting layout strategies, 684–686
nesting statements, 225–230, 226

cascading-if statements, 227–230

examples using if and while, 225–226

helper methods, 227

net-centric computing, 766
newline character, 466
not equal operator (!=), 176
null, 398
null values, 398
NumberFormat object, 341–342

Index C5743 40143.ps 11/30/06 1:32 PM Page 825

825
IN

D
EX

numeric types, 337–344

converting between, 340–341

floating-point, 338–340

formatting numbers, 341–343

integer, 337–338

shortcuts, 344

numerical methods, 768

O
object(s)

classes versus, 7

event, 737–738

identifying, 412–413, 589–590, 648–651

initializing, 74

instantiation, 6–7

multiple, 24–25

representing records as, 472–477

software. See software objects

object diagrams, 5

object equality, 410

testing for, 410–411

object identity, 410

Object Instantiation pattern, 41–42

object references, returning, 401–402

object-oriented design methodology, 412–424,

588–595, 647

identifying objects and classes, 412–413,

589–590, 648–651
identifying services, 414–423, 652–655
solving the problem, 423–424, 655–661

object-oriented programming languages, 4

Once or Not at All pattern, 201

Open File for Input pattern, 508

Open File for Output pattern, 508

open for extension, 67

opening files, 461, 462–463

operands, 232

operating systems, 766

operators, 231

Boolean, 231–232

comparison, 176–177

logical. See logical operators

precedence, 234–235, 787–792
primitive and reference types, 351

or operator, 231

organization, 766

origin, 9

output streams, 500

overloading methods, 298

overriding methods, 97–99, 298, 411

Object class, 662–669

toString method, 349

P
package(s), 26, 495

package statement, 497–499

paintComponent method, 312–318

painting

GUI components, 747–749
repainting, 312–318

@param tag, 83

parameter(s), 14, 189–196

assignment statements, 191–193

declaring, 153

stepwise refinement, 193–196

using, 153–155

while statements with, 190

parameter variables, 296–300

final keyword, 300

initializing, 792

initializing instance variables using, 298–300

instance variables compared, 289, 306–307

name conflicts, 300

temporary variables compared, 296–298,

306–307

Parameterized Method pattern, 158–159

Parameterless Command pattern, 105

partially filled arrays, 551, 551–554

deleting elements, 553

problems, 554

sorted, inserting into, 552–553

Pascal, Blaise, 568

Pascal’s Triangle, 568

Index C5743 40143.ps 11/30/06 1:32 PM Page 826

826
IN

D
EX

paths
absolute, 478
relative, 478–479

patterns, 39–44, 102–106
Accessor Method, 320
Assign a Unique ID, 383–384
Cascading-if, 261
Catch an Exception, 452
Command Interpreter, 510–511
Command Invocation, 42
Constructor, 103–104
Count-Down Loop, 204–205
Counted Loop, 262
Counting, 259
Display a Frame, 44
Either This or That, 202–203
Enumeration, 382–383
Equals, 688
Equivalence Test, 450–451
Error-Checked Input, 509–510
Extended Class, 102–103
Factory Method, 689
Has-a (Composition), 449–450
Helper Method, 155–156
Instance Variable, 319–320
Java Program, 40–41
Linear Search, 573–574
Loop-and-a-Half, 257–258
Model-View-Controller, 448, 700, 756–757
Multiple Threads, 156–157
Named Constant, 318–319
Object Instantiation, 41–42
Once or Not at All, 201
Open File for Output, 508
Parameterized Method, 158–159
Parameterless Command, 105
Polymorphic Call, 686–687
Predicate, 260–261
Process All Elements, 452–453, 573
Process File, 508–509
Query, 259–260
Scale an Image, 205
Sequential Execution, 43
Simple Predicate, 203–204
Strategy, 687

Template Method, 157–158

Temporary Variable, 258–259

Test Harness, 381

Throw an Exception, 451

toString, 381–382

Zero or More Times, 202

percent sign (%), format specifier, 343
pickThing messages, 12
picture elements, 36
pipe (|), or operator, 232
pixels, 36
plus operator (+), 311
points, 723
Polymorphic Call pattern, 686–687
polymorphism, 633–690

abstract classes, 639–640
adding new methods, 637–639
assigning attributes, 651
assigning methods to classes, 652–653
choosing between interfaces and inheritance, 646
class relationships, 649–651
examples, 640–642
identifying objects and classes, 648–651
identifying services, 652–655
implementing methods, 653–655
interfaces. See interfaces
overriding methods in Object class, 662–669
substitution principle, 645–646
via inheritance, 635–640
via interfaces, 643–645
without arrays, 661–662

positionForNextHarvest method, 181
postconditions, 623, 623–624
precedence, operators, 234–235, 235, 787–792
preconditions, 86, 622, 622–624
precision, 339
predicate(s), 175, 186–188, 589

Boolean expressions, 187

negating, 175–176

using non-Boolean queries, 188

Predicate pattern, 260–261
primary key, 676
primitive(s), 132
primitive type(s), 337

Index C5743 40143.ps 11/30/06 1:32 PM Page 827

827
IN

D
EX

primitive type arrays, 558–561
double, 558–559
indices, 560–561

printing expressions, 310–312
System.out object, 310–311

private keyword, 148–150

problem solving, 116

Process All Elements pattern, 452–453, 573

Process File pattern, 508–509

processing files, 463

processing streams, 501

professional issues, 768

program(s), 4

compiling, 29–32

complexity. See complexity of programs

correct, 584

evaluating with users, 598

example. See example programs

form, 25–26

hanging, 213

identifiers, 79–81

keywords (reserved words), 79, 80

maintainable, 586

modifying with stepwise refinement, 136–138

quality software, 584–586

reliability, 584

running, 32–34

special symbols, 79

style, 78–85

testable, 586

tracing. See tracing programs

understandability, 585

usability, 584

program fragments, 169n
programming defensively. See defensive

programming

programming fundamentals, 765

programming languages, 767

Eiffel, 623n
object-oriented, 4

prompt, 85, 481

Prompt class, 485

prototyping, 625

provider streams, 501

pseudocode, 138, 138–139
public keyword, 63–64, 148–150
putThing method, 178–179

Q
quality code, writing. See writing quality code
quality software

programmer’s perspective, 585–586

user’s perspective, 584

queries, 4, 330–337

built-in, 174–175

integer, testing, 176–177

multiple main methods, 335–337

non-Boolean, predicates, 188

return statements, 223

side effects, 224

size, 198–199

software objects, 4–5

storing results, 222–223

String object, 350–352

testing commands, 330–332

testing queries, 332–335

writing, 223–224

Query pattern, 259–260

R
random access, 541

ranges, integers, 338

reading, 461

from console, 480–481

files, 461–462

records as objects, 472–475

records, 460

representing as objects, 472–477

recursion, infinite, 88

refactoring, 586, 597

reference variables, 403–411, 404

aliases, 406–409

garbage collection, 409

memory, 404–406

testing for equality, 410–411

Index C5743 40143.ps 11/30/06 1:32 PM Page 828

828
IN

D
EX

refinement, stepwise. See stepwise refinement

registration, controllers, 719, 719–720

relative paths, 478, 478–479

reliability of programs, 584

remainder operator (%), 256, 292, 292–293

requirements, 587

defining in development process, 587–588

reserved words, 79, 80

resizing arrays, 554–557

responsibilities, 590

responsiveness of GUIs, 626–627

return statements, 223

right justification, 343

roads, 9

Roberts, Eric, 243

robot(s), services, 10–12

Robot class

class diagram, 12–15
documentation, 26–29

Robot class diagram, 12–15
services, 13, 14–15

Robot constructor, 13–14

Robot method, 805–808

Robot object, attributes, 13

RobotRC method, 808–809

RobotSE method, 809–810

row-major order, 563

running programs, 32–34

run-time errors, 30, 32–33

S
sample code, 744

sans serif fonts, 722

Scale an Image pattern, 205

scaling images, 196–200

size queries, 198–199
scenarios, 592

choosing, 596

developing, 592

implementing, 596–597

walking through, 592–595

scientific notation, 338

scope, temporary variables, 224–225, 225

searching, 530

keys, 530

for specific elements in arrays, 529–532

secondary key, 676

Selection Sort

coding, 536–538
overview, 535–536

self-documenting code, 188

semantics, 174

semicolons (;)

messages, 14, 15

statements, 20

sequence diagrams, 733, 733–735

Sequential Execution pattern, 43

serifs, 722

servers, 4, 400

services, 4, 13, 14–15, 62–64. See also

command(s); queries

flow of control, 62–63

identifying, 414–423, 652–655

implementing, 70–71

implicit parameters, 63–64

public keyword, 64

robots, 10–15

void keyword, 64

sets, 431, 439–441

construction, 439

limitations, 441

methods, 440

processing elements, 440–441

shallow copies, 667, 667–669

short integer type, 338

short-circuit evaluation, 238

shortcuts, numeric types, 344

side effects, 92, 224

signatures, methods, 87, 298

Sim method, 810–811

Simple Predicate pattern, 203–204

SimpleBot class, testing, 282–283

simplifying Boolean expressions, 236–237

De Morgan’s laws, 237

negations, 236–237

simulation

program execution. See tracing programs

pseudocode, 139

Index C5743 40143.ps 11/30/06 1:32 PM Page 829

829
IN

D
EX

single-line comments, 81, 81–82

sink, 500

situations, 15–16

final, 16

initial. See initial situation

size of icons, 75

size queries, 198–199

social issues, 768

software engineering, 768

software objects, 4

attributes, 4, 5–6, 13

class diagrams, 7

classes, 6–7

commands, 4, 6

modeling robots using, 12–15

queries, 4–5

Sojourner, 8–9

solving problems, 116

sorting arrays, 534–540

coding Selection Sort, 536–538

without helper methods, 538–539

Java library, 539–540

Selection Sort overview, 535–536

sorting using Java library, 539–540, 673

sound, 429–431

source, 500

source code, 17, 17–25

spaghetti code, 243

special symbols, 79

specification,

programs, 587

commands, 86

defining in development process, 587–588

SpringLayout strategy, 683

stack traces, 425–426, 426

state, 6

state change diagrams, 6

statement(s), 20. See also specific statements

static keyword, instance variables, 285

static variables. See class variables

stepwise refinement, 117, 117–138

error avoidance, 134–135

future modifications, 136–138

helper methods, 120

identifying required services, 118–119

parameters, 193–196

style, 247

testing and debugging, 135

understandability of programs, 133–134

Strategy pattern, 674, 674–679, 687

anonymous classes, 677–678

applications of strategy objects, 678–679

Comparator interface, 674–676

sorting with multiple keys, 676–677

streams, 500, 500–503

byte, 501, 503

character input, 501–502

character output, 502–503

processing, 501

provider, 501

street(s), 9

Streetlight method, 811–812

StreetLight subclass, 76

String method

Scanner class, 470

File class, 479

String type, 347–355

Java support, 347–348

overriding toString method, 349

querying strings, 350–352

transforming strings, 352–353

stroke, 200

structure of files, 466–472

structured programming, 243

stubs, 124

style, 246–251

positively stated simple expressions, 247–249

stepwise refinement, 247

visual structure of code, 250–251

styles of fonts, 722

subclasses, 58

subject, 589

substitution principle, 645, 645–646

superclasses, 58, 59

swapping array elements, 525–526

Swing, 92, 92–93

syntax, 174

Index C5743 40143.ps 11/30/06 1:32 PM Page 830

830
IN

D
EX

top-down design, 132. See also stepwiseT
refinement

tab stops, 347
tags, 83
Template Method pattern, 157–158
temporary variable(s), 218, 218–225,

290–296, 401
boolean type, 224
counting Things on an intersection, 219–220
delaying initialization, 294–295
final keyword, 294
initializing. See initializing temporary variables
instance variables compared, 289, 306–307,

308–310

parameter variables compared, 296–298,

306–307

scope, 224–225

storing results of queries, 222–223

tracing code, 221–222

writing queries, 223–224

Temporary Variable pattern, 258–259
Test class, class methods, 373–374
test harness, 330
Test Harness pattern, 381
test reversal, 247–248
testable programs, 586
testing

commands, 330–332

for equality, 410–411

queries, 332–335

SimpleBot class, 282–283

then-clause, 173, 183
Thing class

extending, 67–78
inheritance hierarchy, 68

Thing method, 812–813
ThingBag, 13
this keyword, 279
threads, 100

multiple robots, 142–146
Throw an Exception pattern, 451
throwing an exception, 424, 424–425
tokens, 467
top factoring, 249

toString method, overriding, 349, 662
toString pattern, 381–382
tracing programs, 20, 20–22

pseudocode, 139
temporary variables, 221–222

transparency, icons, 75–76
turning, 11
turnLeft messages, 11
2D array(s), 563–565

allocating and initializing, 565–566
2D array algorithms, 563–565

printing every element, 563–564
summing columns, 565
summing every element, 564–565

types, attributes, 13

U
unchecked exceptions, 426
understandability, 585

GUIs, 627–628
positively stated simple expressions, 247–249
stepwise refinement, 133–134

Unicode, 794–796
usability of programs, 584
use cases. See scenarios
user(s), 480–485

checking input for errors, 481–484

error, GUI forgiveness, 628

Prompt class, 485

reading from console, 480–481

user interfaces. See graphical user interfaces
(GUIs)

V
V method, 444
validation, 56
values, maps, 431
variable(s), 19, 273–322, 274

class (static). See class variables

Index C5743 40143.ps 11/30/06 1:32 PM Page 831

831
IN

D
EX

identifiers, 81

instance. See instance variable(s)

names, 80

non-numeric types. See boolean type; char

type; String type

numeric types. See numeric types

reference. See reference variables

selecting, rules of thumb for, 307

temporary (local). See temporary variable(s)

variable declarations, 19, 276, 276–277

verification, 56

views, 449

views, GUIs, 698–700

building, 709–726
infrastructure, 703–704
integrating with controllers, 738–739
making graphical components interactive,

750–756

multiple views, 726–735

painting components, 747–749

refining, 721–725

setting up, 700–705

updating, 713–715

view patterns, 725–726

visual computing, 767

visualizing arrays, 521–522

void keyword, 63–64

void method, 436, 440, 444

W
walk-throughs, 592

wall(s), 10

Wall method, 814

waterfall model, 598

when statements, 174

while loops, 212–218
avoiding common errors, 212–214
four-step process for constructing, 214–218

while statements, 171–173

flowcharts, 169

general form, 173–174

if statements compared, 168–174

nesting statements, 225–226

using with parameters, 190

while-true loops, 243–246

example, 245–246

form, 244

structured programming, 243

white space, programs, 78–79

whitespace, 466

working directory, 463

working incrementally, 744–747

wrapper classes, 446, 446–447

writing files, 464, 464–466

writing quality code, 606–615

avoiding nested loops, 607

delegating work to helper classes, 614–615

document classes and methods, 606–607

keeping data and processing together, 611–612

keeping methods shore, 607–608

making helper methods private, 608

making instance variables private, 609–610

putting duplicated code in helper methods,

608–609

writing immutable classes, 612–614

writing powerful constructors, 610–611

Z
Zero or More Times pattern, 202

Index C5743 40143.ps 11/30/06 1:32 PM Page 832

Index C5743 40143.ps 11/30/06 1:32 PM Page 833

Index C5743 40143.ps 11/30/06 1:32 PM Page 834

Index C5743 40143.ps 11/30/06 1:32 PM Page 835

Index C5743 40143.ps 11/30/06 1:32 PM Page 836

Index C5743 40143.ps 11/30/06 1:32 PM Page 837

Index C5743 40143.ps 11/30/06 1:32 PM Page 838

Index C5743 40143.ps 11/30/06 1:32 PM Page 839

Sun Microsystems, Inc. Binary Code License Agreement for the

JAVA 2 PLATFORM STANDARD EDITION RUNTIME ENVIRONMENT 5.0

SUN MICROSYSTEMS, INC. (“SUN”) IS WILLING TO LICENSE THE SOFTWARE IDENTIFIED BELOW TO YOU ONLY UPON THE CONDITION THAT YOU
ACCEPT ALL OF THE TERMS CONTAINED IN THIS BINARY CODE LICENSE AGREEMENT AND SUPPLEMENTAL LICENSE TERMS (COLLECTIVELY
“AGREEMENT”). PLEASE READ THE AGREEMENT CAREFULLY. BY DOWNLOADING OR INSTALLING THIS SOFTWARE, YOU ACCEPT THE TERMS OF
THE AGREEMENT. INDICATE ACCEPTANCE BY SELECTING THE “ACCEPT” BUTTON AT THE BOTTOM OF THE AGREEMENT. IF YOU ARE NOT
WILLING TO BE BOUND BY ALL THE TERMS, SELECT THE “DECLINE” BUTTON AT THE BOTTOM OF THE AGREEMENT AND THE DOWNLOAD OR
INSTALL PROCESS WILL NOT CONTINUE.
1. DEFINITIONS.	 “Software” means the identified above in binary form, any other machine readable materials (including, but not limited to, libraries, source files,

header files, and data files), any updates or error corrections provided by Sun, and any user manuals, programming guides and other documentation provided to you
by Sun under this Agreement. “Programs” mean Java applets and applications intended to run on the Java 2 Platform Standard Edition (J2SE platform) platform on
Java-enabled general purpose desktop computers and servers.

2. LICENSE TO USE.	 Subject to the terms and conditions of this Agreement, including, but not limited to the Java Technology Restrictions of the Supplemental
License Terms, Sun grants you a non-exclusive, non-transferable, limited license without license fees to reproduce and use internally Software complete and unmodi
fied for the sole purpose of running Programs. Additional licenses for developers and/or publishers are granted in the Supplemental License Terms.

3. RESTRICTIONS.	 Software is confidential and copyrighted. Title to Software and all associated intellectual property rights is retained by Sun and/or its licensors.
Unless enforcement is prohibited by applicable law, you may not modify, decompile, or reverse engineer Software. You acknowledge that Licensed Software is not
designed or intended for use in the design, construction, operation or maintenance of any nuclear facility. Sun Microsystems, Inc. disclaims any express or implied
warranty of fitness for such uses. No right, title or interest in or to any trademark, service mark, logo or trade name of Sun or its licensors is granted under this
Agreement. Additional restrictions for developers and/or publishers licenses are set forth in the Supplemental License Terms.

4. LIMITED WARRANTY.	 Sun warrants to you that for a period of ninety (90) days from the date of purchase, as evidenced by a copy of the receipt, the media on
which Software is furnished (if any) will be free of defects in materials and workmanship under normal use. Except for the foregoing, Software is provided “AS IS”.
Your exclusive remedy and Sun’s entire liability under this limited warranty will be at Sun’s option to replace Software media or refund the fee paid for Software.
Any implied warranties on the Software are limited to 90 days. Some states do not allow limitations on duration of an implied warranty, so the above may not apply
to you. This limited warranty gives you specific legal rights. You may have others, which vary from state to state.

5. DISCLAIMER OF WARRANTY.	 UNLESS SPECIFIED IN THIS AGREEMENT, ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT THESE DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

6. LIMITATION OF LIABILITY.	 TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST
REVENUE, PROFIT OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In no event will Sun’s liability to you, whether in contract, tort (including negligence), or oth
erwise, exceed the amount paid by you for Software under this Agreement. The foregoing limitations will apply even if the above stated warranty fails of its essential
purpose. Some states do not allow the exclusion of incidental or consequential damages, so some of the terms above may not be applicable to you.

7. TERMINATION.	 This Agreement is effective until terminated. You may terminate this Agreement at any time by destroying all copies of Software. This Agreement
will terminate immediately without notice from Sun if you fail to comply with any provision of this Agreement. Either party may terminate this Agreement immedi
ately should any Software become, or in either party’s opinion be likely to become, the subject of a claim of infringement of any intellectual property right. Upon
Termination, you must destroy all copies of Software.

8. EXPORT REGULATIONS.	 All Software and technical data dealivered under this Agreement are subject to US export control laws and may be subject to export or
import regulations in other countries. You agree to comply strictly with all such laws and regulations and acknowledge that you have the responsibility to obtain
such licenses to export, re-export, or import as may be required after delivery to you.

9. TRADEMARKS AND LOGOS.	 You acknowledge and agree as between you and Sun that Sun owns the SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET
trademarks and all SUN, SOLARIS, JAVA, JINI, FORTE, and iPLANET-related trademarks, service marks, logos and other brand designations (“Sun Marks”), and
you agree to comply with the Sun Trademark and Logo Usage Requirements currently located at http://www.sun.com/policies/trademarks. Any use you make of the
Sun Marks inures to Sun’s benefit.

10. U.S. GOVERNMENT RESTRICTED RIGHTS.	 If Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government’s rights in Software and accompanying documentation will be only as set forth in this Agreement; this is in accor
dance with 48 CFR 227.7201 through 227.7202-4 (for Department of Defense (DOD) acquisitions) and with 48 CFR 2.101 and 12.212 (for non-DOD acquisitions).

11. GOVERNING LAW.	 Any action related to this Agreement will be governed by California law and controlling U.S. federal law. No choice of law rules of any
jurisdiction will apply.

12. SEVERABILITY.	 If any provision of this Agreement is held to be unenforceable, this Agreement will remain in effect with the provision omitted, unless omission
would frustrate the intent of the parties, in which case this Agreement will immediately terminate.

13. INTEGRATION.	 This Agreement is the entire agreement between you and Sun relating to its subject matter. It supersedes all prior or contemporaneous oral or
written communications, proposals, representations and warranties and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or
other communication between the parties relating to its subject matter during the term of this Agreement. No modification of this Agreement will be binding, unless
in writing and signed by an authorized representative of each party.

SUPPLEMENTAL LICENSE TERMS
These Supplemental License Terms add to or modify the terms of the Binary Code License Agreement. Capitalized terms not defined in these Supplemental Terms shall
have the same meanings ascribed to them in the Binary Code License Agreement . These Supplemental Terms shall supersede any inconsistent or conflicting terms in the
Binary Code License Agreement, or in any license contained within the Software.
A.	 Software Internal Use and Development License Grant. Subject to the terms and conditions of this Agreement and restrictions and exceptions set forth in the Software

“README” file, including, but not limited to the Java Technology Restrictions of these Supplemental Terms, Sun grants you a non-exclusive, non-transferable, limited
license without fees to reproduce internally and use internally the Software complete and unmodified for the purpose of designing, developing, and testing your
Programs.

B.	 License to Distribute Software. Subject to the terms and conditions of this Agreement and restrictions and exceptions set forth in the Software README file, includ
ing, but not limited to the Java Technology Restrictions of these Supplemental Terms, Sun grants you a non-exclusive, non-transferable, limited license without fees
to reproduce and distribute the Software, provided that (i) you distribute the Software complete and unmodified and only bundled as part of, and for the sole pur
pose of running, your Programs, (ii) the Programs add significant and primary functionality to the Software, (iii) you do not distribute additional software intended
to replace any component(s) of the Software, (iv) you do not remove or alter any proprietary legends or notices contained in the Software, (v) you only distribute the
Software subject to a license agreement that protects Sun’s interests consistent with the terms contained in this Agreement, and (vi) you agree to defend and indem
nify Sun and its licensors from and against any damages, costs, liabilities, settlement amounts and/or expenses (including attorneys’ fees) incurred in connection with
any claim, lawsuit or action by any third party that arises or results from the use or distribution of any and all Programs and/or Software.

C.	 Java Technology Restrictions. You may not create, modify, or change the behavior of, or authorize your licensees to create, modify, or change the behavior of, classes,
interfaces, or subpackages that are in any way identified as “java”, “javax”, “sun” or similar convention as specified by Sun in any naming convention designation.

D.	 Source Code. Software may contain source code that, unless expressly licensed for other purposes, is provided solely for reference purposes pursuant to the terms of
this Agreement. Source code may not be redistributed unless expressly provided for in this Agreement.

E.	 Third Party Code. Third Party Code. Additional copyright notices and license terms applicable to portions of the Software are set forth in
the THIRDPARTYLICENSEREADME.txt file. In addition to any terms and conditions of any third party opensource/freeware license identified in the
THIRDPARTYLICENSEREADME.txt file, the disclaimer of warranty and limitation of liability provisions in paragraphs 5 and 6 of the Binary Code License Agreement shall
apply to all Software in this distribution.

For inquiries please contact: Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
(LFI#141623/Form ID#011801)

http://www.sun.com/policies/trademarks

	C5743_FM.pdf
	C5743_01.pdf
	C5743_02.pdf
	C5743_03.pdf
	C5743_04.pdf
	C5743_05.pdf
	C5743_06.pdf
	C5743_07.pdf
	C5743_08.pdf
	C5743_09.pdf
	C5743_10.pdf
	C5743_11.pdf
	C5743_12.pdf
	C5743_13.pdf
	C5743_Ep.pdf
	C5743_AppA.pdf
	C5743_AppB.pdf
	C5743_AppC.pdf
	C5743_AppD.pdf
	C5743_AppE.pdf
	C5743_Index.pdf
	C5743_LA.pdf

